Lepton and Quark masses from Top loops

Patrick Fox

Fermilab

Bogdan Dobrescu to appear...

Patrick Fox

Bogdan Dobrescu to appear...

Loopy masses for leptons and quarks

Patrick Fox

Bogdan Dobrescu to appear...

Standard Model Higgs

Responsible for W, Z mass and (charged) fermion masses

Associated hierarchies:

Gauge hierarchy

 $m_W \ll M_{pl}$

Yukawa hierarchy

 $y_e \ll y_t$

Technically natural but would still like an explanation

Symmetries (Froggatt Nielsen Models)

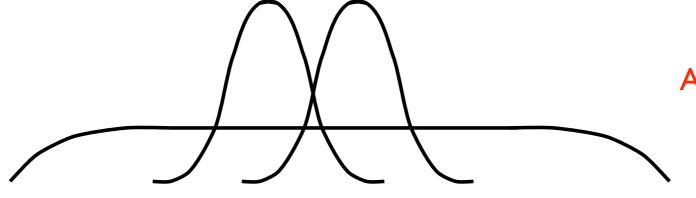
$$Y_{ij}\left(\frac{\phi}{M}\right)^{q_i+q_j+q_H}H\bar{\psi}_i\psi_j$$

$$Y_{ij}^{SM} = Y_{ij} \,\epsilon^{q_i + q_j + q_H} \qquad \epsilon = \frac{\langle \varphi \rangle}{M}$$

Charge the SM fermions differently

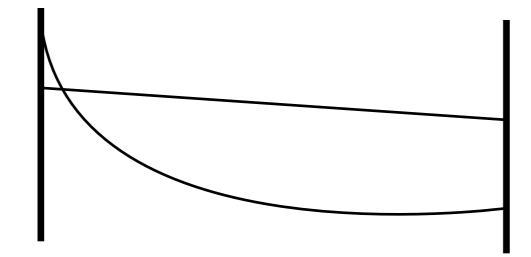
 $/ \perp$

<u>Geography</u> (Extra dimanaional models)



Arkani-hamed, Schmaltz

$$Y_{ij}^{SM} = \int dx_5 \,\psi_i(x_5)\psi_j(x_5)h(x_5)$$



Place the SM fermions in different places

•The SM is coupled to a strongly coupled CFT •SM fields get large anomalous dimensions •Enters approximate fixed point at scale μ and leaves at scale μ_0

$$Y_{ij}^{SM}(\mu) = Y_{ij}(\mu_0) \left(\frac{\mu}{\mu_0}\right)^{\frac{1}{2}(\gamma_i + \gamma_j + \gamma_H)}$$

SM fermions have different couplings

Many clever mechanisms exist but must treat SM fermions separately.

•Convert small differences to large differences

•Example where SM fermions all charged the same way but get differences in Yukawas?

Masses are generated through quantum effects

Electron mass from muon mass? Georgi and Glashow, `73

Work in the `80's, mainly one and two loop mass generation

Babu and Ma, `89

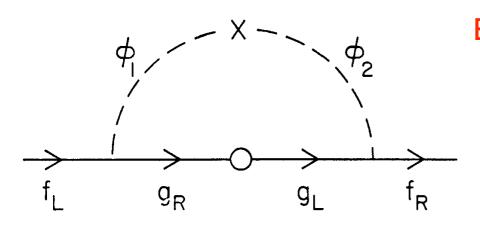
Masses are generated through quantum effects

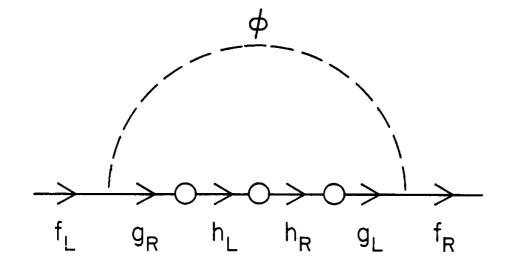
Electron mass from muon mass? Georgi and Glashow, `73

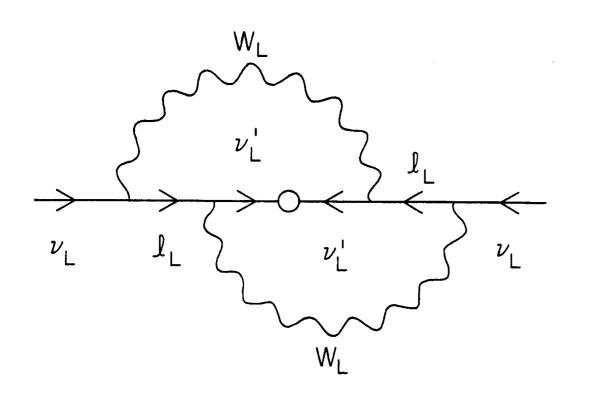
Work in the `80's, mainly one and two loop mass generation

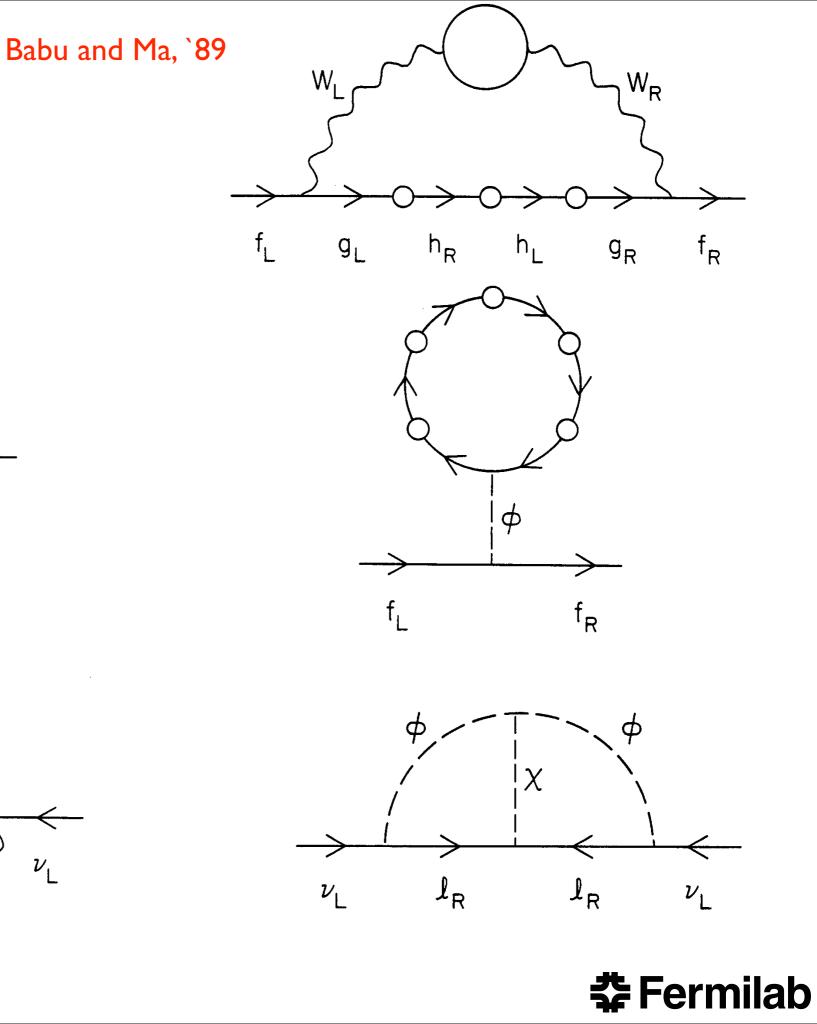
Babu and Ma, `89

Naively all masses at approximately the same loop order









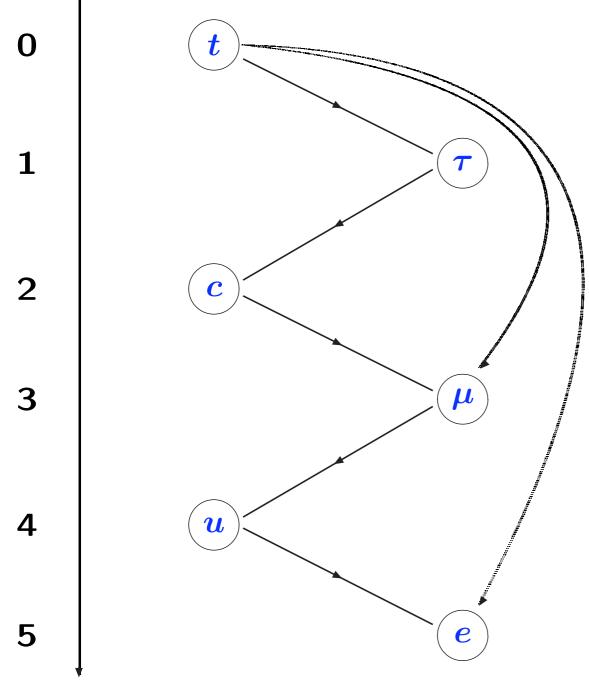
More ambitious attempt

0 1 $\boldsymbol{ au}$ 2 *C* 3 $\boldsymbol{\mu}$ 4 U 5 e

Loop-level where mass is generated

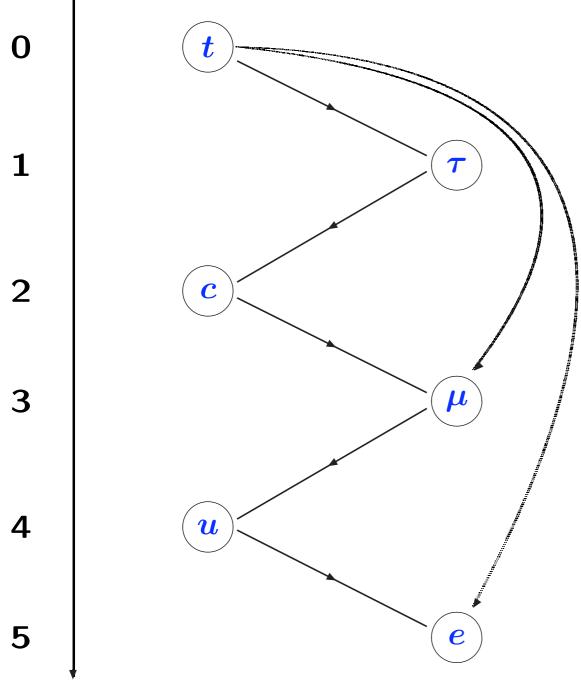
PJF and Dobrescu

PJF and Dobrescu



Loop-level where mass is generated

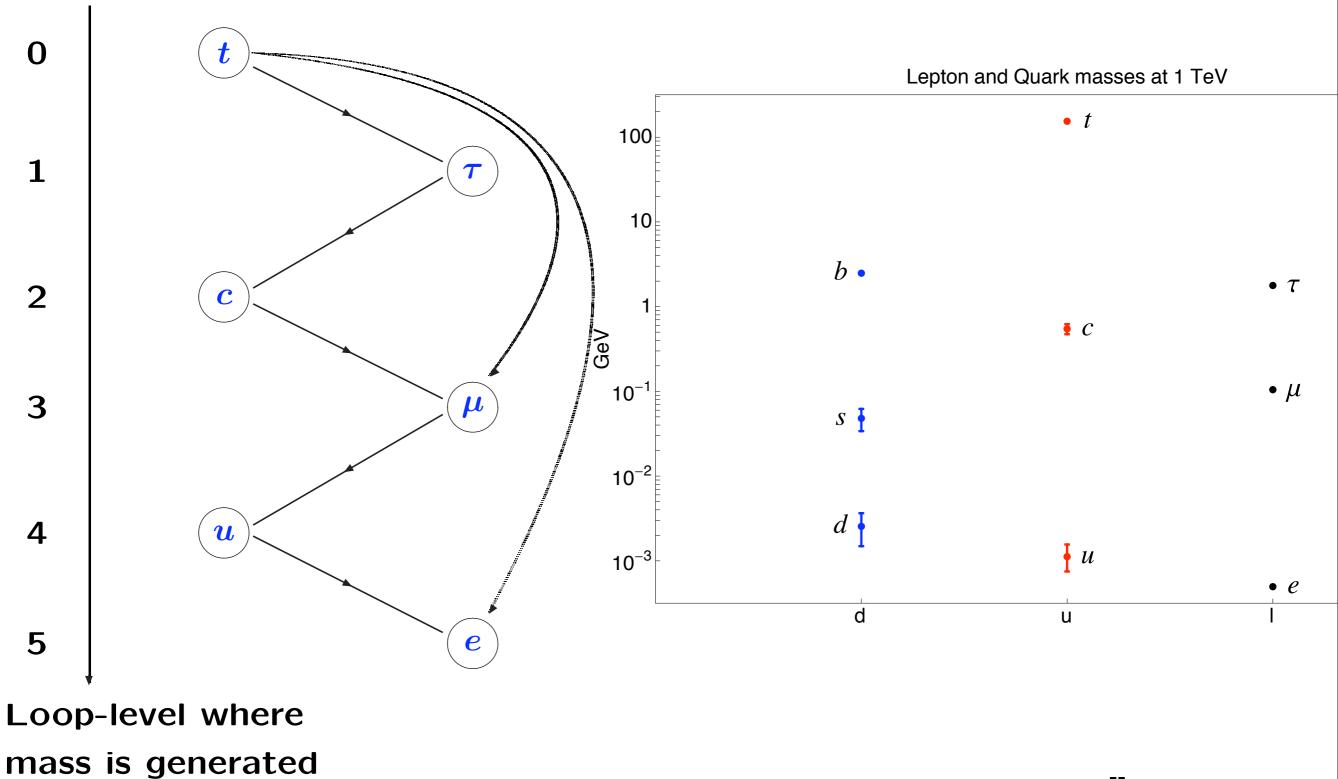
More likely to fail...?



Loop-level where mass is generated

More likely to fail...?

PJF and Dobrescu



Top is clearly special

So,

assume only the top has a tree level Yukawa

 $y_t H \bar{u}_R^3 Q_L^3$

Top is clearly special

So,

assume only the top has a tree level Yukawa

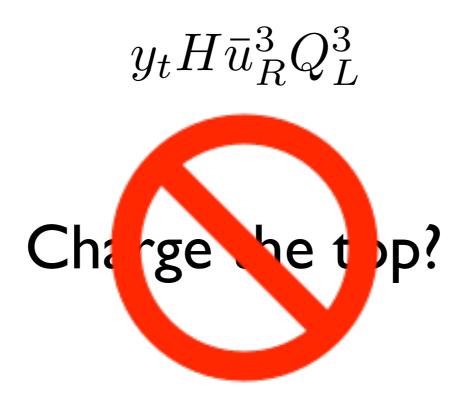
 $y_t H \bar{u}_R^3 Q_L^3$

Charge the top?

Top is clearly special

So,

assume only the top has a tree level Yukawa

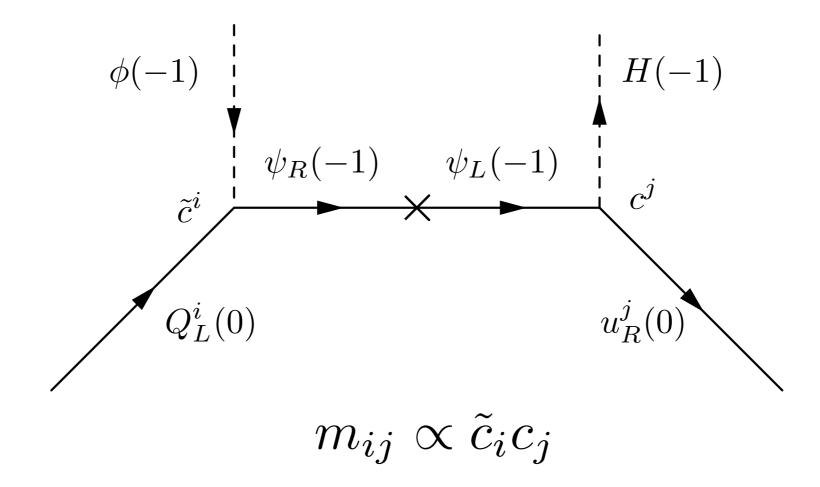


Instead charge Higgs under an extra $U(1)_H$

 $U(1)_H$ broken by the vev of a SM singlet $\phi\,$ of charge - I

Introduce a vector like pair of fermions with quantum numbers of left handed quarks, also charged under $U(1)_{\cal H}$

Yukawas:



But Ih top and rh top only appear *linearly* in couplings Redefine couplings so only one Ih and one rh couple Call these the top

Mass matrix is rank I

Only the top gets a tree level mass

Chiral symmetries

 $y_t \neq 0$ $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

Need to break remaining chiral symmetries

Introduce a scalar leptoquark $\mid r: (3, 2, +7/6) \mid$

Chiral symmetries

 $y_t \neq 0$ $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

Need to break remaining chiral symmetries

Introduce a scalar leptoquark $\begin{bmatrix} r : (3, 2, +7/6) \end{bmatrix}$ (charge 0 under extra U(1))

Chiral symmetries

 $y_t \neq 0$ $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

Need to break remaining chiral symmetries

Introduce a scalar leptoquark $\begin{bmatrix} r : (3, 2, +7/6) \end{bmatrix}$ (charge 0 under extra U(1))

Most general interactions:

$$\lambda_{ij} r \overline{u}_R^i L_L^j + \lambda'_{ij} r \overline{Q}_L^i e_R^j + \text{H.c.}$$

 $y_t \neq 0$

 $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

$$\stackrel{\lambda \neq 0}{\to} U(1)_u \times U(3)_d$$

$$U(3)_L \times U(3)_e^{\substack{\lambda \neq 0\\\lambda' \neq 0}} U(1)_L$$

With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order

 $y_t \neq 0$

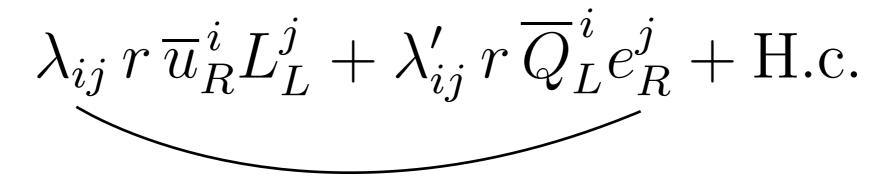
 $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

$$\stackrel{\lambda \neq 0}{\to} U(1)_u \times U(3)_d$$

$$U(3)_L \times U(3)_e^{\substack{\lambda \neq 0\\\lambda' \neq 0}} U(1)_L$$

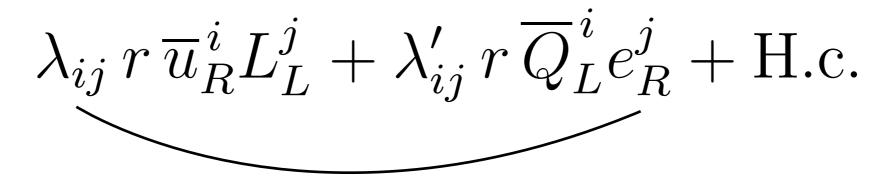
With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order

But what loop order?

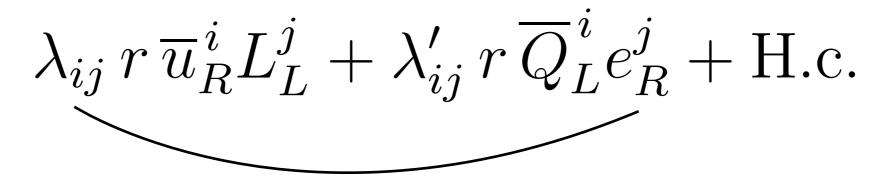


Redefine fields:

$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix}$$



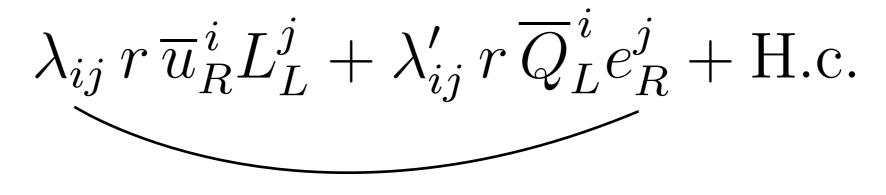
Redefine fields:



Redefine fields:

•Define L_3 so it only couples only to u_3

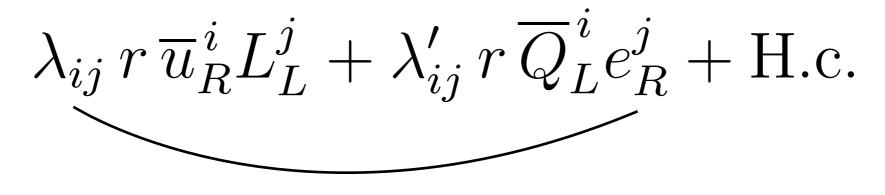
$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ 0 & 0 & \lambda_{33} \end{pmatrix}$$



Redefine fields:

- •Define L_3 so it only couples only to u_3
- u_2 couples only to L_2 and L_3

$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ 0 & \lambda_{22} & \lambda_{23} \\ 0 & 0 & \lambda_{33} \end{pmatrix}$$



Redefine fields:

- •Define L_3 so it only couples only to u_3
- u_2 couples only to L_2 and L_3
- •Rotation of u_1 and u_2

$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & 0 \\ 0 & \lambda_{22} & \lambda_{23} \\ 0 & 0 & \lambda_{33} \end{pmatrix}$$

 $\lambda_{ij} r \overline{u}_R^i L_L^j + \lambda'_{ij} r \overline{Q}_L^i e_R^j + \text{H.c.}$

Linear couplings

Redefine fields:

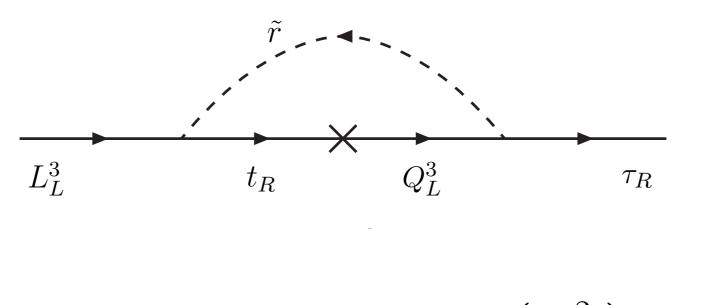
- •Define L_3 so it only couples only to u_3
- u_2 couples only to L_2 and L_3
- •Rotation of u_1 and u_2

$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & 0 \\ 0 & \lambda_{22} & \lambda_{23} \\ 0 & 0 & \lambda_{33} \end{pmatrix}$$

 $\lambda_{ij}, \lambda'_{ij}$ can be made real and positive

Fermilab

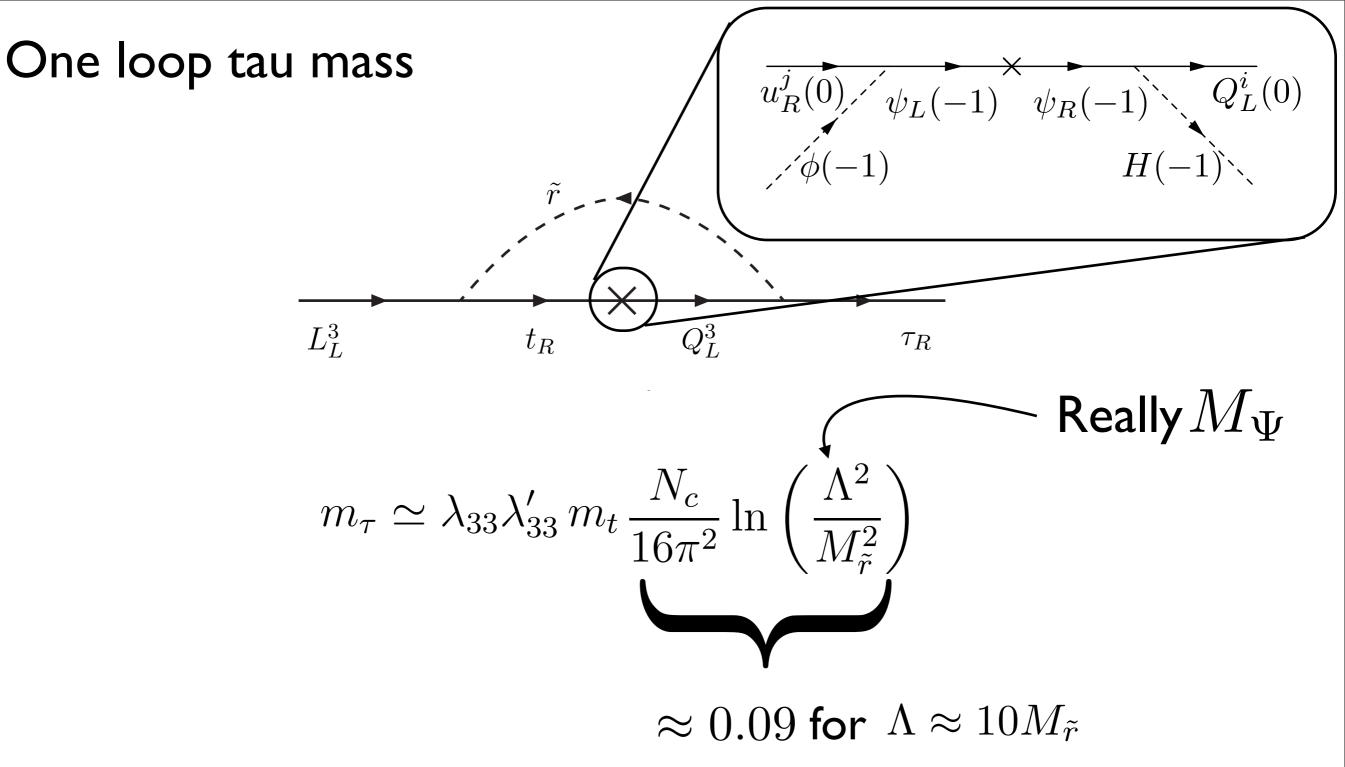
One loop tau mass



$$m_{\tau} \simeq \lambda_{33} \lambda_{33}' m_t \frac{N_c}{16\pi^2} \ln\left(\frac{\Lambda^2}{M_{\tilde{r}}^2}\right)$$

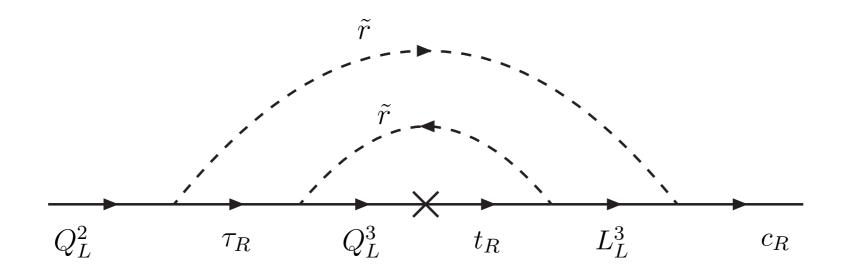
pprox 0.09 for $\Lambda pprox 10 M_{ ilde{r}}$

 $\lambda_{33}\lambda'_{33} \approx (0.36)^2$ for correct m_{τ}/m_t ratio



 $\lambda_{33}\lambda'_{33} \approx (0.36)^2$ for correct m_{τ}/m_t ratio

Two loop charm mass - a "rainbow" diagram



$$M_u[\tilde{r}\tilde{r}] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda'_{23}\lambda_{23} & \lambda'_{33}\lambda_{23} \\ 0 & \lambda'_{23}\lambda_{33} & \lambda'_{33}\lambda_{33} \end{pmatrix} \lambda'_{33}\lambda_{33} m_t \epsilon_{\tilde{r}}^{(2)}$$

$$m_c = \lambda'_{23} \lambda_{23} m_\tau \frac{1}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2}$$

 $\lambda_{23}\lambda_{23}' \approx (3.3)^2$ for correct $m_c/m_{ au}$ ratio

Two loop charm mass - a "rainbow" diagram

$$\widetilde{r}_{R}$$

$$\widetilde{One \ loop}_{L_{2}}$$

$$\widetilde{r}_{R}$$

$$\widetilde{l}_{L}^{3}$$

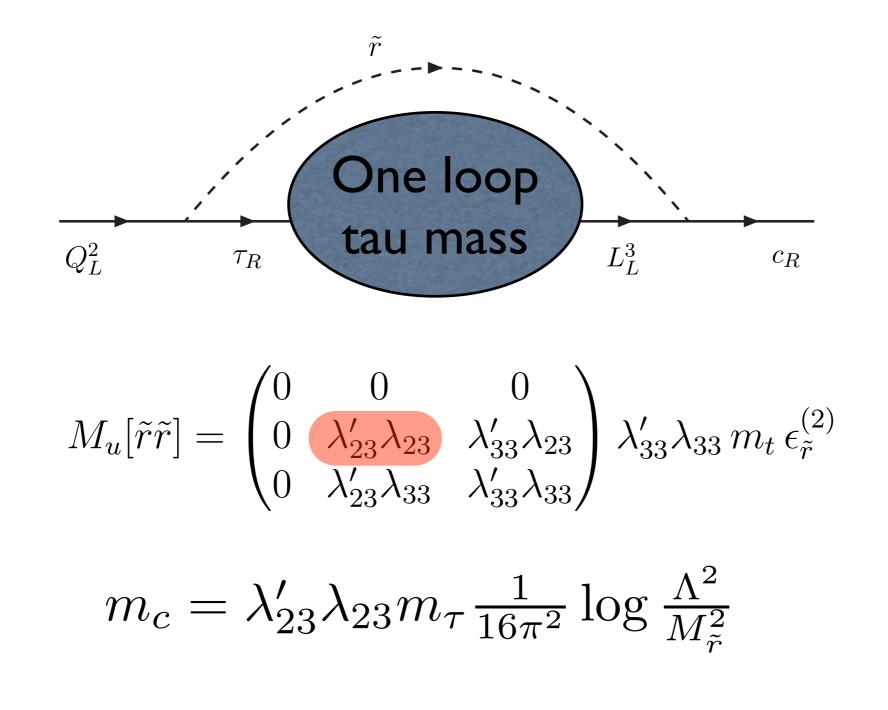
$$\widetilde{r}_{R}$$

$$M_{u}[\widetilde{r}\widetilde{r}] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda'_{23}\lambda_{23} & \lambda'_{33}\lambda_{23} \\ 0 & \lambda'_{23}\lambda_{33} & \lambda'_{33}\lambda_{33} \end{pmatrix} \lambda'_{33}\lambda_{33} m_{t} \epsilon_{\widetilde{r}}^{(2)}$$

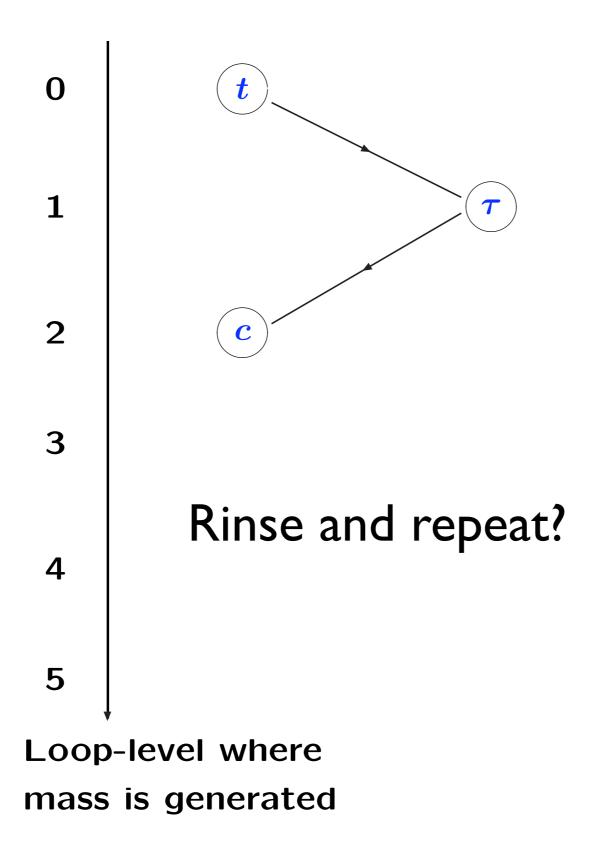
$$m_{c} = \lambda'_{23}\lambda_{23}m_{\tau} \frac{1}{16\pi^{2}} \log \frac{\Lambda^{2}}{M_{\widetilde{r}}^{2}}$$

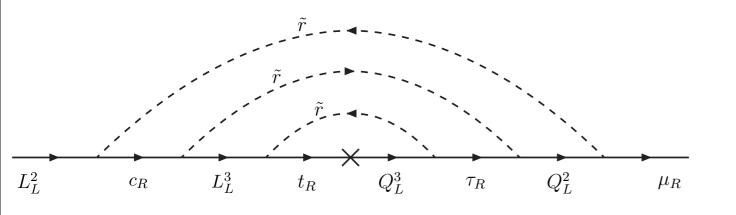
 $\lambda_{23}\lambda_{23}' \approx (3.3)^2$ for correct $m_c/m_{ au}$ ratio

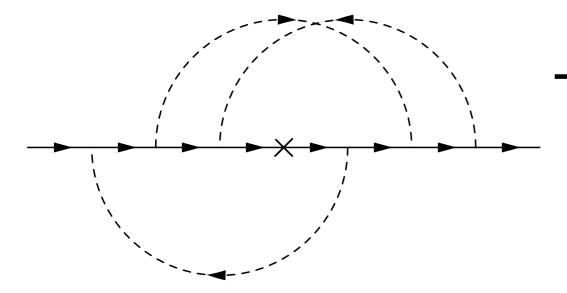
Two loop charm mass - a "rainbow" diagram



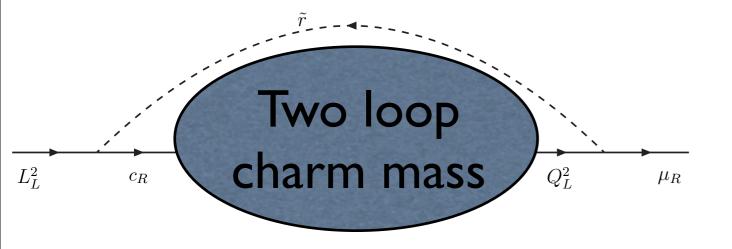
 $\lambda_{23}\lambda_{23}' \approx (3.3)^2$ for correct $m_c/m_{ au}$ ratio

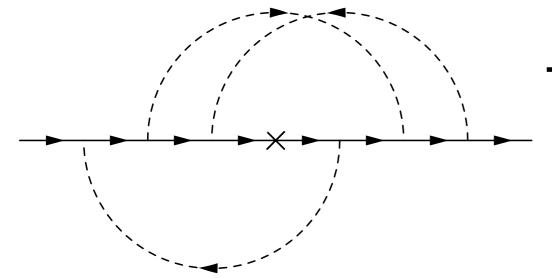




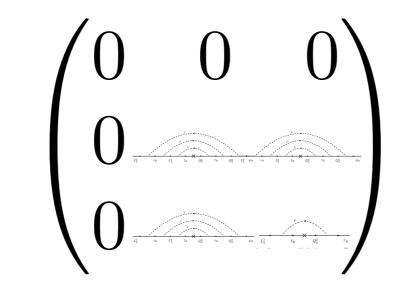


The diagram with no name $~\sim N_C$



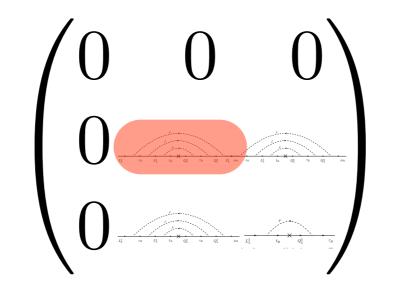


The diagram with no name $~\sim N_C$



$$m_{\mu} \approx \lambda_{22}^{\prime} \lambda_{22} m_c (1+x) \frac{N_c}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2}$$

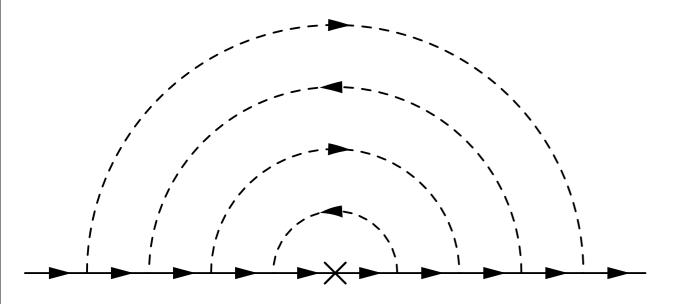
 $\lambda_{22}\lambda'_{22}(1+x) \approx (1.5)^2$ for correct m_{μ}/m_c ratio



$$m_{\mu} \approx \lambda_{22}^{\prime} \lambda_{22} m_c (1+x) \frac{N_c}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2}$$

 $\lambda_{22}\lambda'_{22}(1+x) \approx (1.5)^2$ for correct m_{μ}/m_c ratio

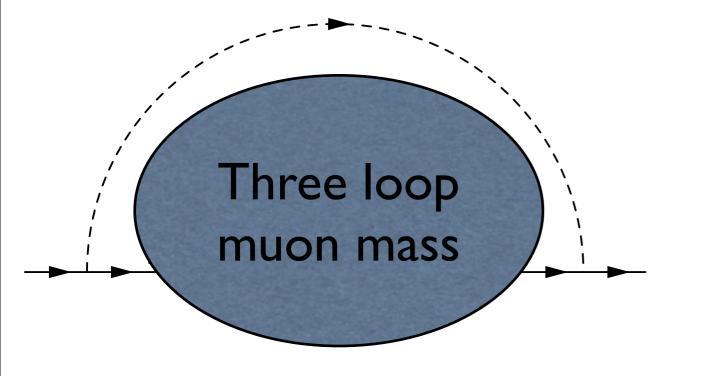
Four loop up quark mass



+4 other diagrams

Muon mass implies: $\#\lambda_{12}\lambda'_{12} \approx (0.6)^2$

Four loop up quark mass



+4 other diagrams

Muon mass implies: $\#\lambda_{12}\lambda'_{12} \approx (0.6)^2$

Five loop electron mass

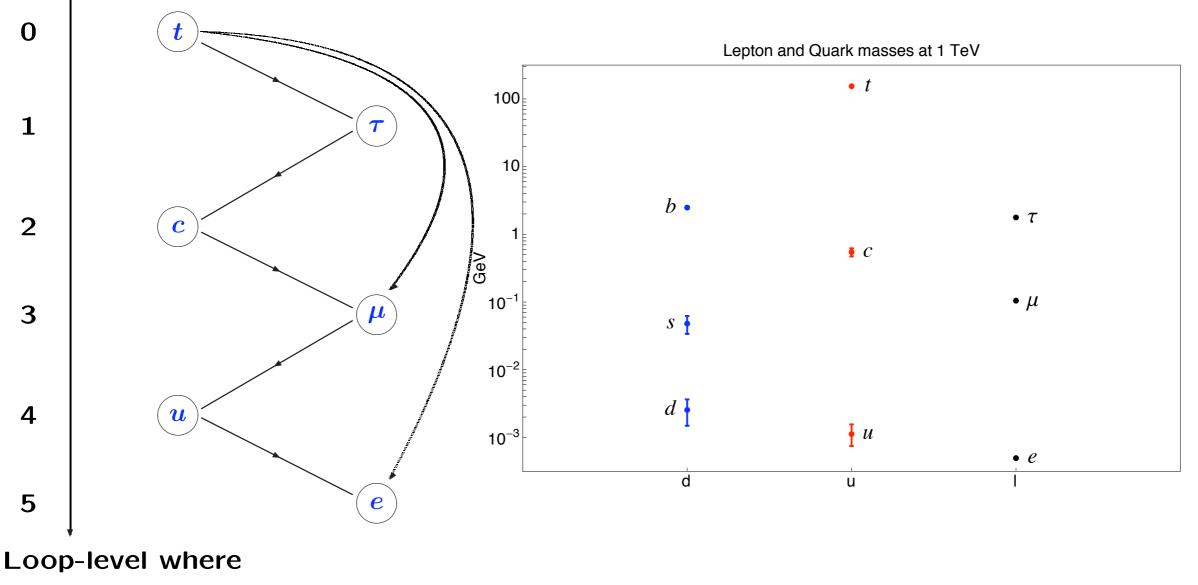
If only source of electron mass will determine $\lambda_{11}\lambda'_{11}$

Only input:

$$r: (3, 2, +7/6)$$

 $\lambda_{ij} r \overline{u}_R^i L_L^j + \lambda'_{ij} r \overline{Q}_L^i e_R^j + \text{H.c.}$

൷ Fermilab



mass is generated

Down quark masses

Need to break the remaining chiral symmetries

$$U(3)_d \times U(1)_u \times U(1)_L$$

Have choices diquarks, leptoquarks...

New field content

	ϕ	ψ_L,ψ_R	Н	r	r'	Φ_8	Φ_8'	Φ_3
SU(3)	1	3	1	3	3	8	8	$\overline{3}$
SU(2)	1	2	2	2	2	2	2	2
$U(1)_Y$	0	1/6	1/2	7/6	7/6	1/2	-1/2	-1/6
$U(1)_H$	-1	-1	1	0	2	1	1	0

Up quarks and leptons Down quarks

Most general couplings

$$\kappa_i \Phi_8 \,\overline{u}_R^i \Psi_L + \kappa' \Phi_8' \,\overline{d}_R^3 \Psi_L$$

$$\eta_{ij} \Phi_3 \overline{d}_R^i L_L^j + \text{h.c.}$$

break the remaining chiral symmetries

$$U(3)_d \times U(1)_u \times U(1)_L \to U(1)_L \times U(1)_Q$$

Most general couplings

$$\kappa_i \, \Phi_8 \, \overline{u}_R^i \Psi_L + \kappa' \, \Phi_8' \, \overline{d}_R^3 \Psi_L$$
Only couples to b

$$\eta_{ij} \Phi_3 \overline{d}_R^i L_L^j + \text{h.c.}$$

break the remaining chiral symmetries

$$U(3)_d \times U(1)_u \times U(1)_L \to U(1)_L \times U(1)_Q$$

Without altering up type and leptons have the freedom to rotate such that,

$$\eta = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ 0 & \eta_{32} & \eta_{33} \end{pmatrix}$$

$$\kappa = (\kappa_1, \kappa_2, \kappa_3)$$

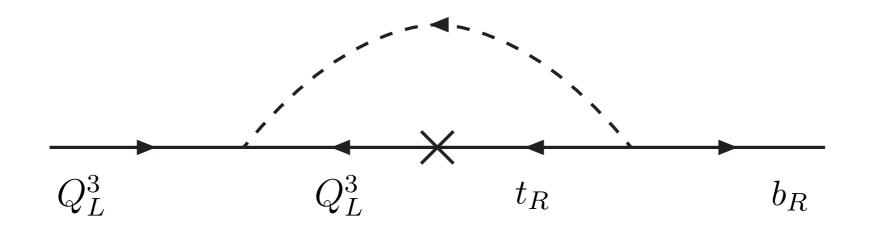
Without altering up type and leptons have the freedom to rotate such that,

$$\eta = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ 0 & \eta_{32} & \eta_{33} \end{pmatrix}$$

Diagonal entries can be made real and positive

$$\kappa = (\kappa_1, \kappa_2, \kappa_3)$$

One loop bottom mass

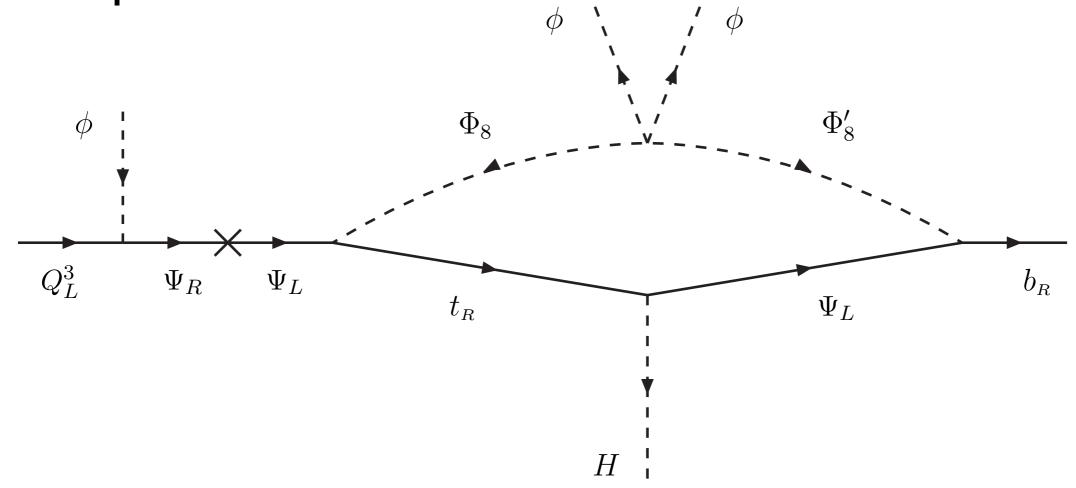


 $m_b \approx N_c \kappa_3 \kappa' c \, m_t \left(\frac{\langle \phi \rangle}{M_{\Psi}}\right)^2 \frac{1}{16\pi^2} \log\left(\frac{M_{\Psi}^2}{M_{\varrho}^2}\right)$

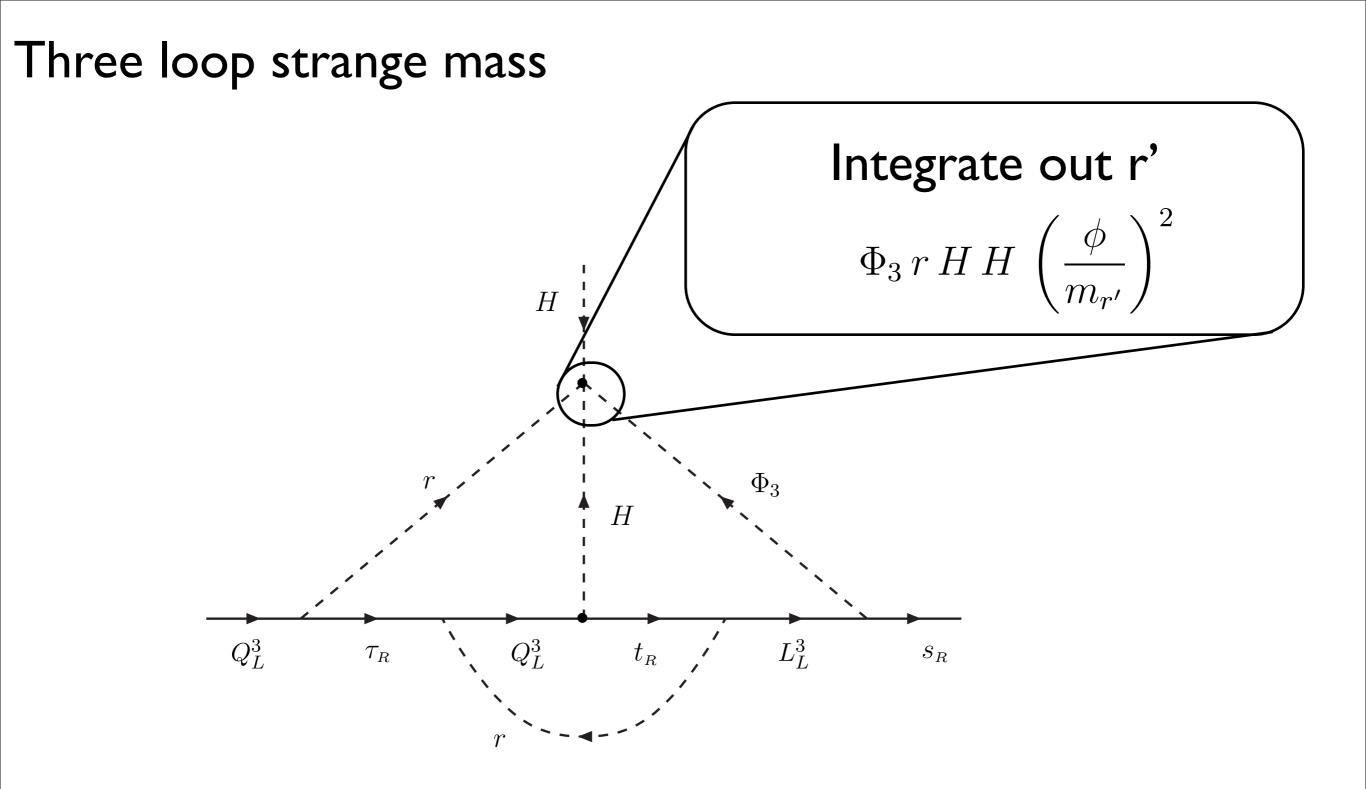
One loop bottom mass

 $m_b \approx N_c \kappa_3 \kappa' c \, m_t \left(\frac{\langle \phi \rangle}{M_{\Psi}}\right)^2 \frac{1}{16\pi^2} \log\left(\frac{M_{\Psi}^2}{M_{\Re}^2}\right)$

One loop bottom mass

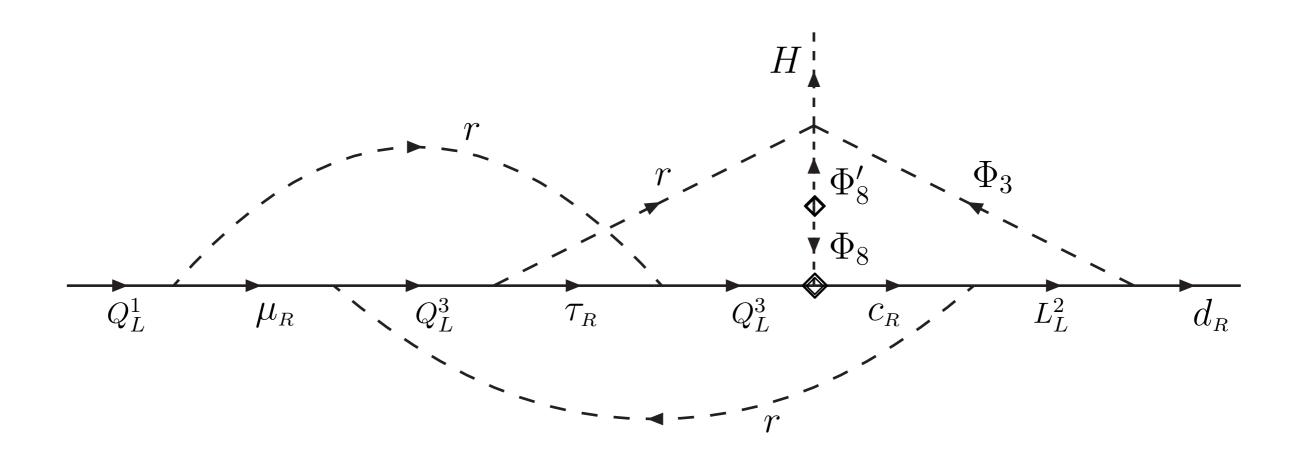


$$m_b \approx N_c \kappa_3 \kappa' c \, m_t \left(\frac{\langle \phi \rangle}{M_\Psi}\right)^2 \frac{1}{16\pi^2} \log\left(\frac{M_\Psi^2}{M_8^2}\right)$$



Four loop down masses

The down has a 4 loop mixed diagram (exercise for reader)



"Cross Talk"

There are also corrections to some of the states that have mass:

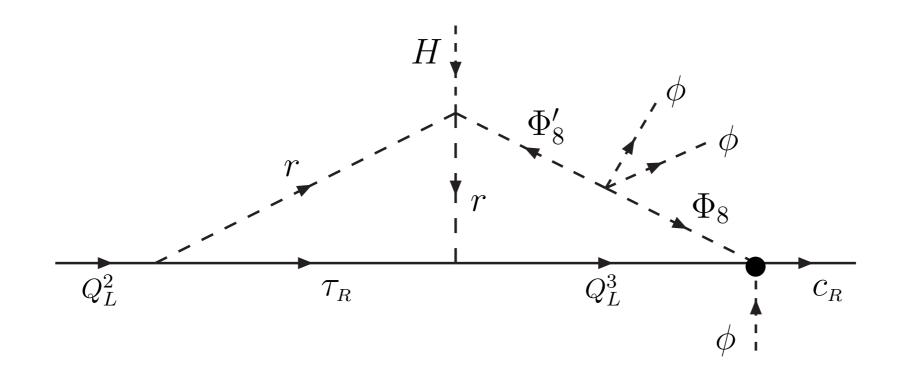
Charm gets a two loop correction

Up gets a four loop correction

Muon gets a three loop correction

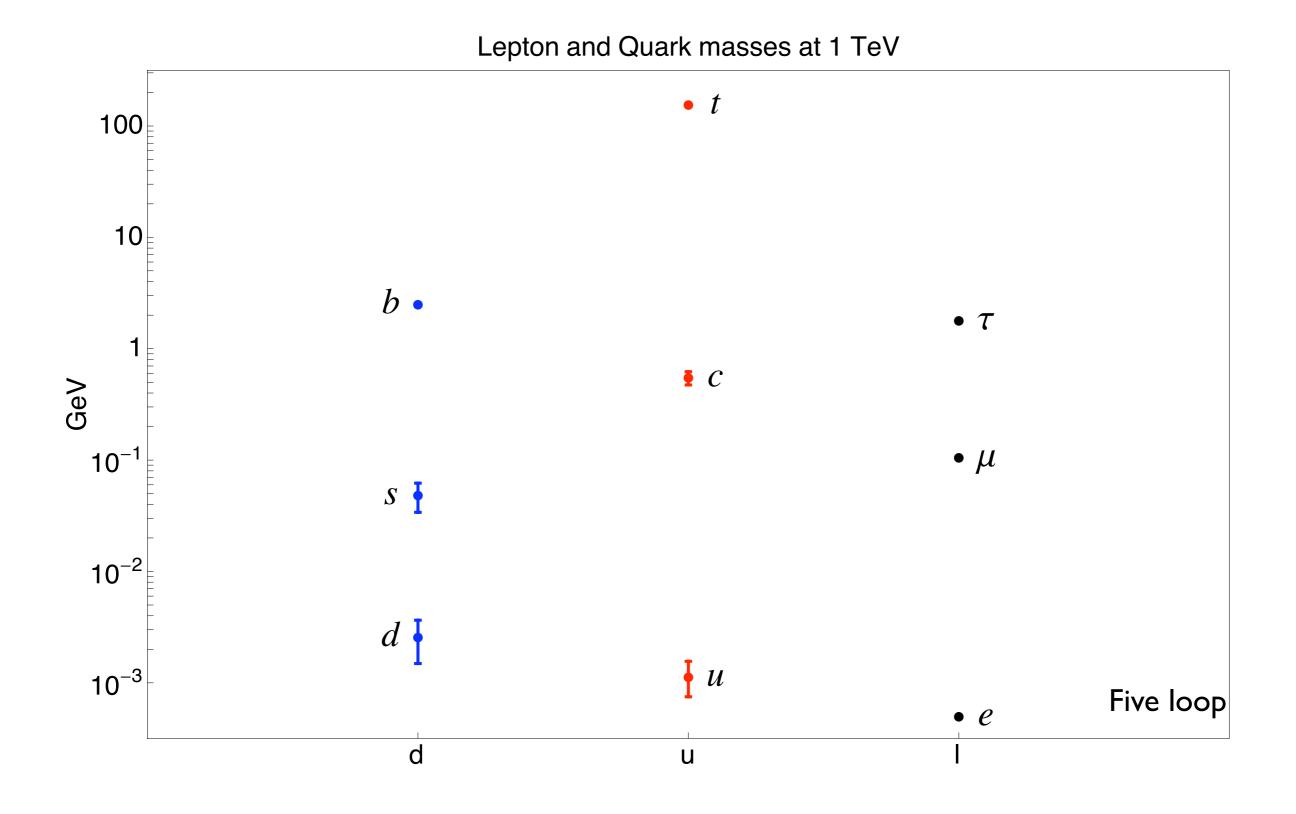
Electron gets a five loop correction

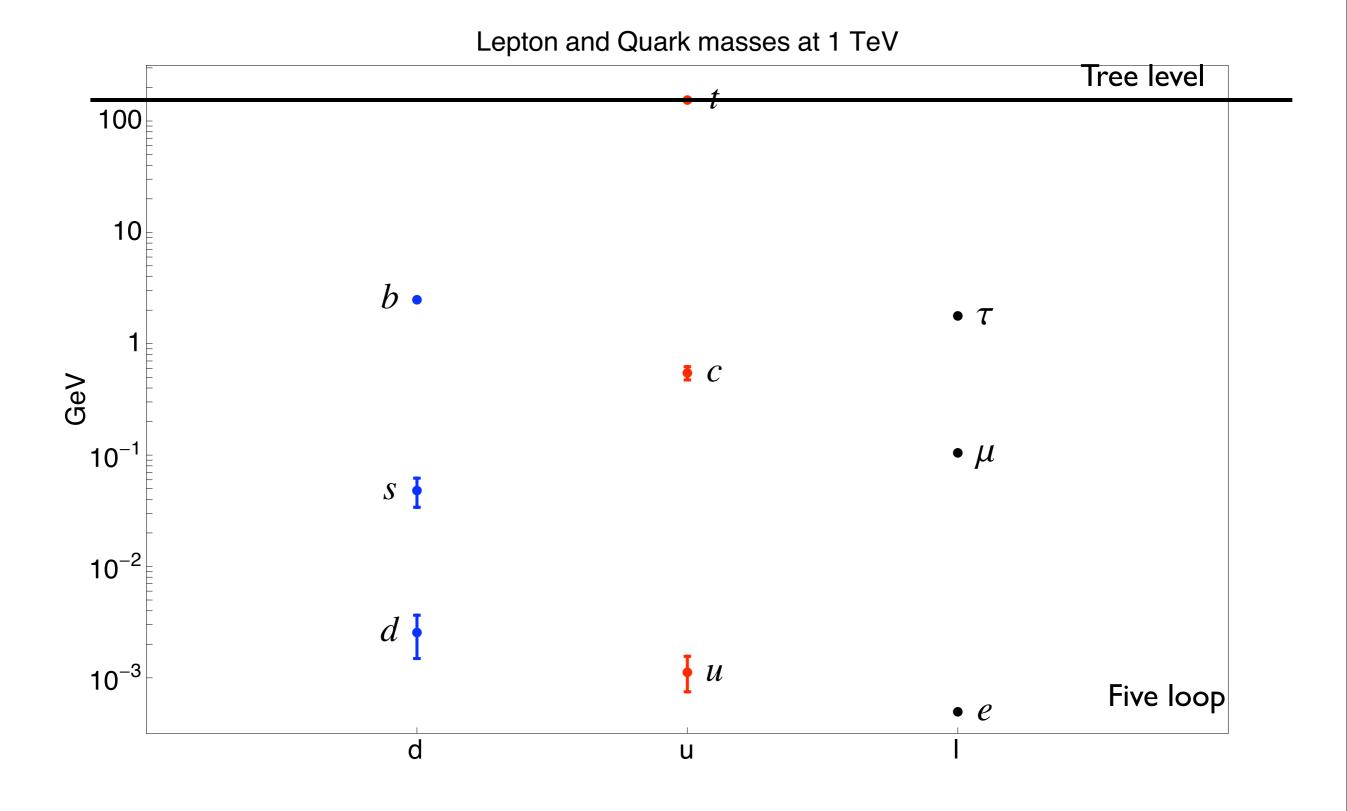
Charm gets a two loop correction

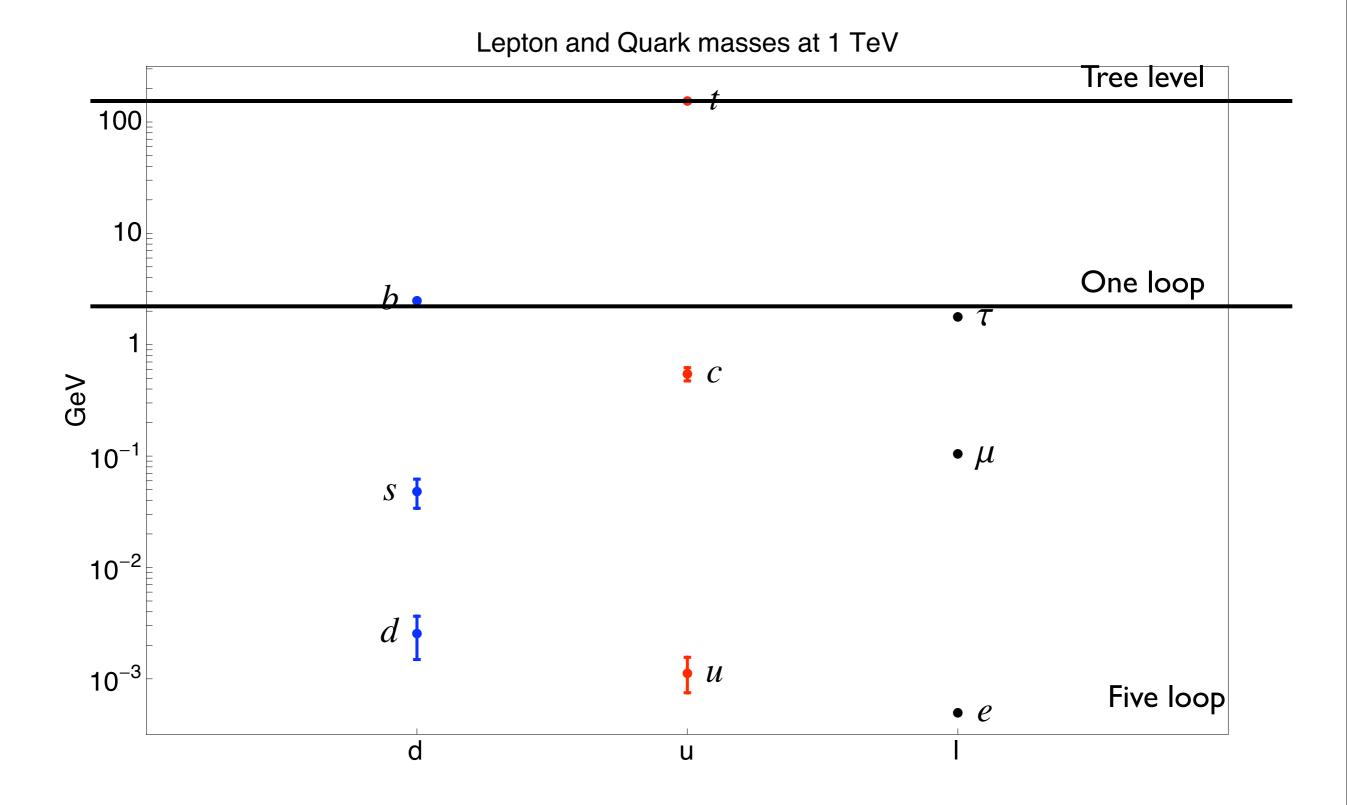


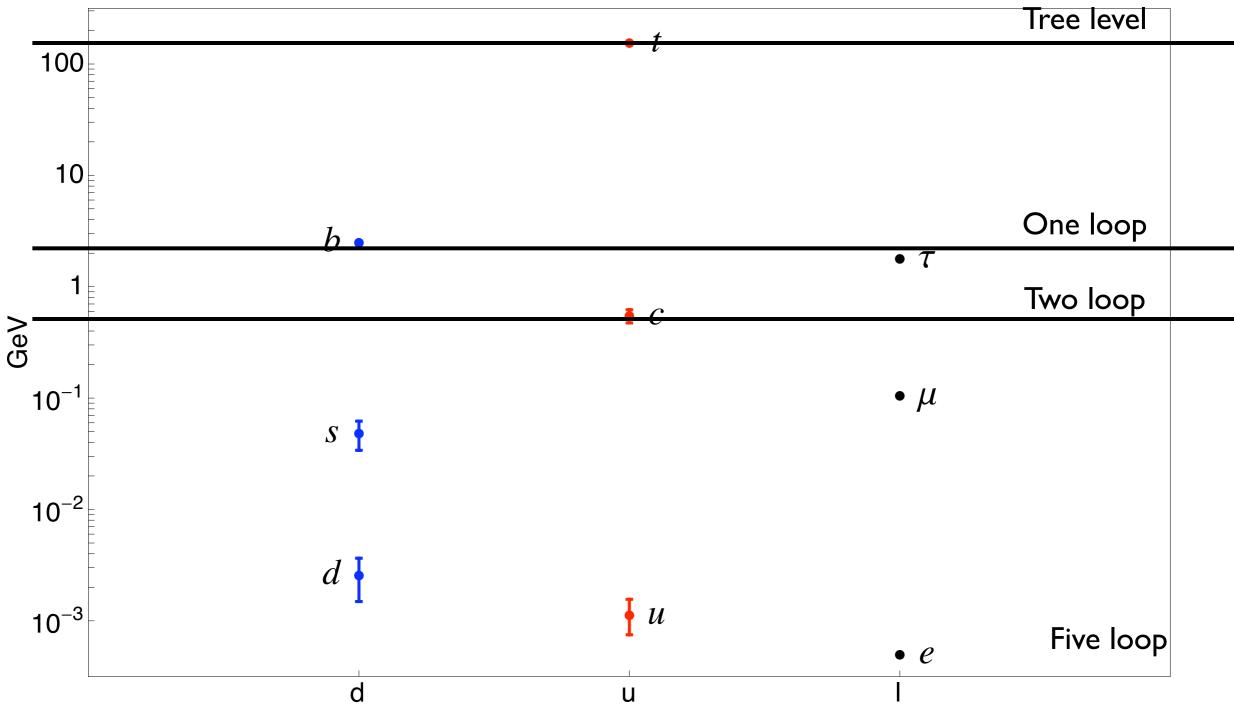
Different parameter dependence
Different number of logs
Changes (lowers) certain couplings λ₂₃λ'₂₃ ≈ (3.3)²

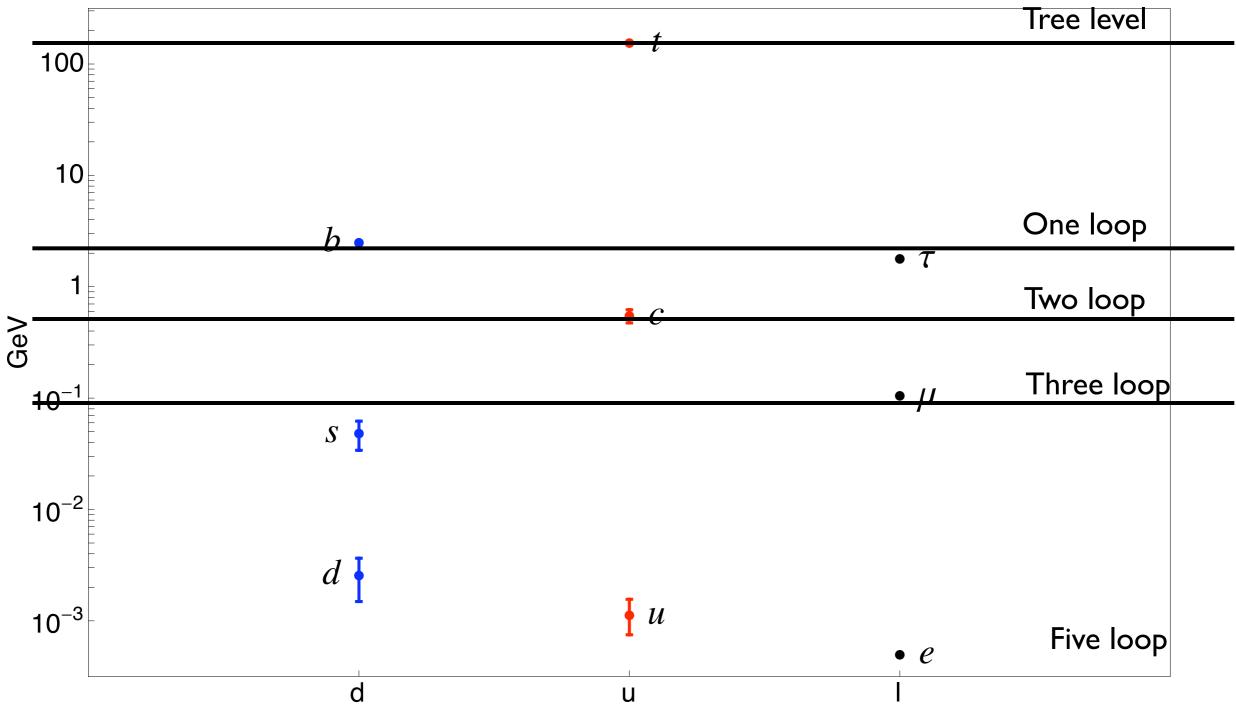
Doesn't change loop counting

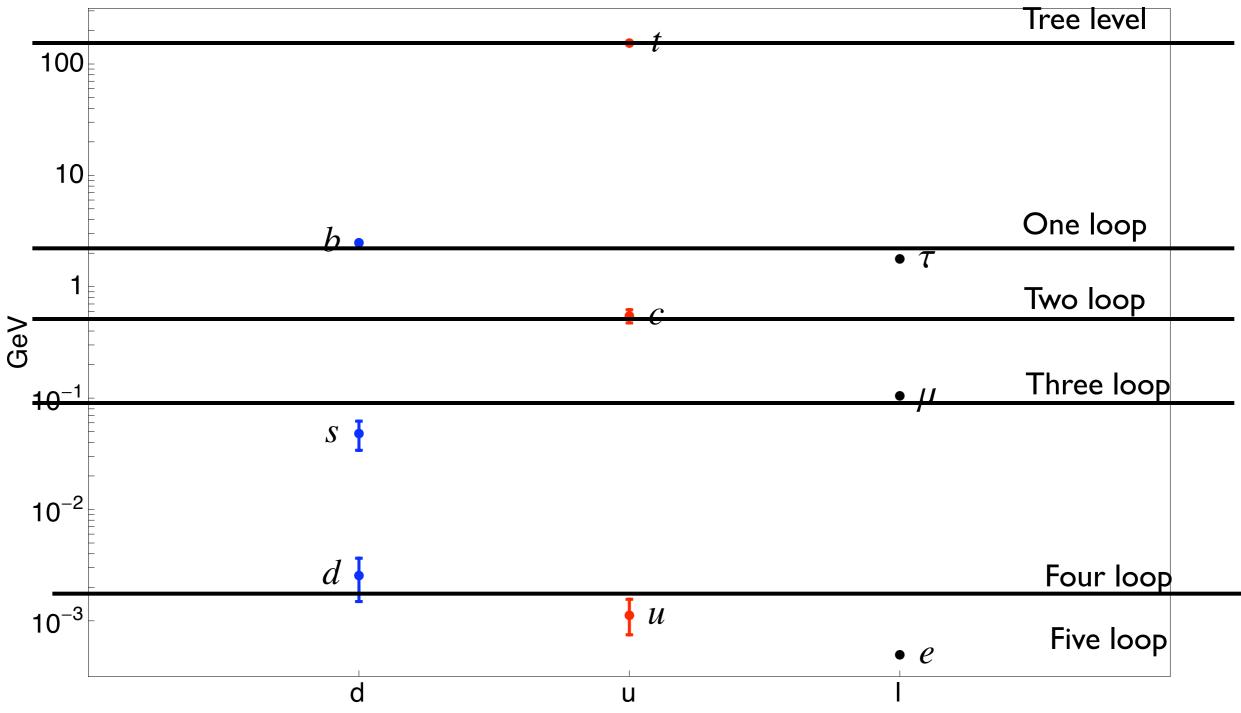


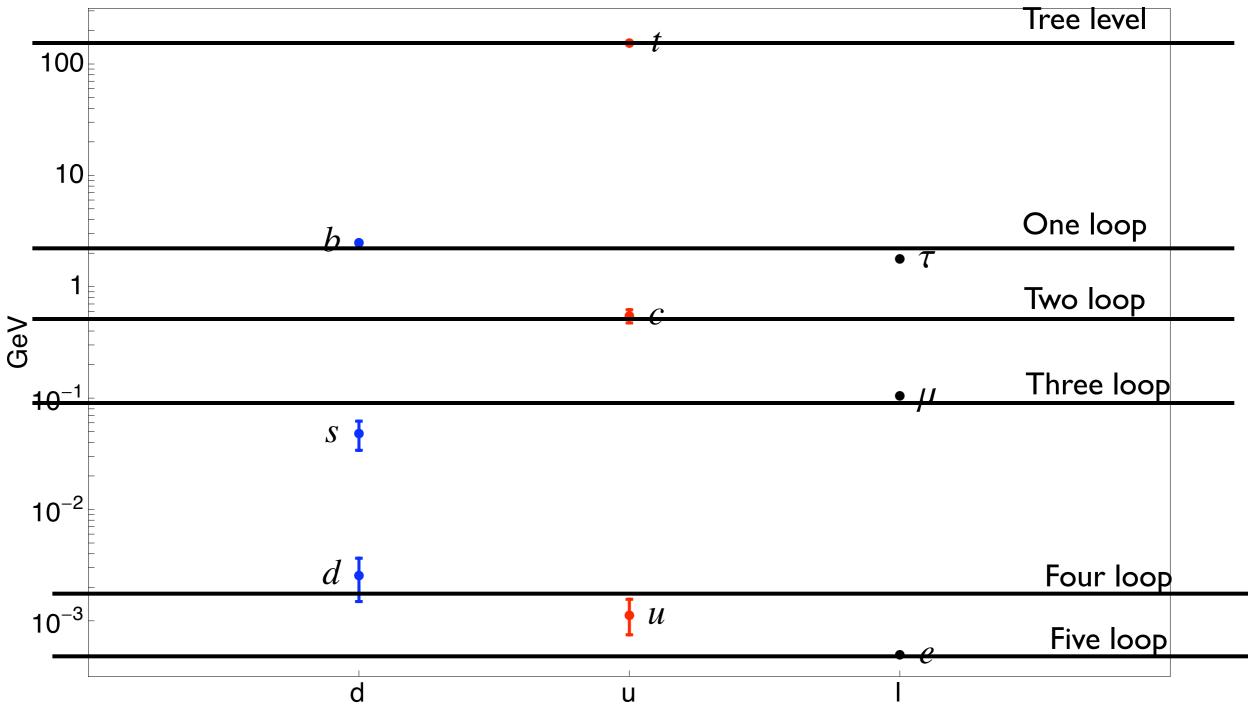












CKM

$$m_u \approx m_t \begin{pmatrix} \epsilon^4 & \epsilon^2 & \epsilon^2 \\ \epsilon^4 & \epsilon^2 & \epsilon^2 \\ \epsilon^4 & \epsilon^2 & 1 \end{pmatrix} \qquad m_d \approx m_t \begin{pmatrix} \epsilon^4 & \epsilon^4 & \epsilon^4 \\ \epsilon^4 & \epsilon^3 & \epsilon^3 \\ \epsilon^4 & \epsilon^3 & \epsilon \end{pmatrix}$$

Resulting in

$$V_{CKM} \approx \begin{pmatrix} 1 - \epsilon^2 & \epsilon & \epsilon^3 \\ -\epsilon & 1 - \epsilon^2 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix}$$

Still to think about phases...

The model contains extra fermions and scalar Leptoquarks

(Alternative realisation contains diquarks - easier to see at LHC than TeVatron)

Mass scales

 $m_f \approx \text{ parameters } \times m_t \times \left| \frac{1}{16\pi^2} \log \left(\frac{M^2}{M'^2} \right) \right|^n$

Only determines ratio of masses

Works at all scales, what is the lowest?

Constraints

1

Tree level exchange of leptoquark can lead to flavour changing processes e.g.

$$K^{+} \to \mu^{+} e^{-} \pi^{+} \qquad BR < 10^{-11}$$

$$\tau^{+} \to K^{0} e^{+}$$

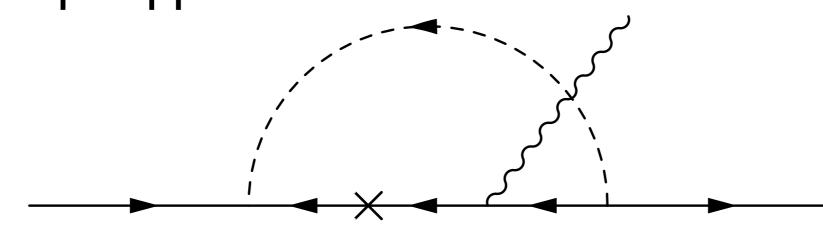
$$\pi^{+} \to e^{+} \nu \text{ versus } \pi^{+} \to \mu^{+} \nu$$

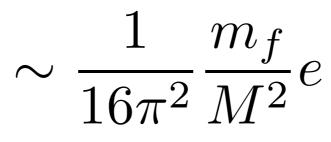
$$\mu \to e \text{ conversion}$$

$$M \gtrsim 5-50 \text{ TeV}$$

Dipole moments

Usually loop suppressed



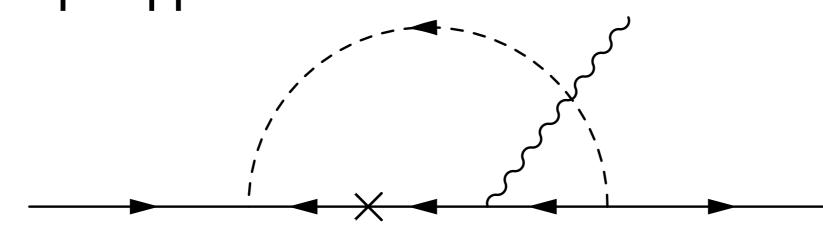


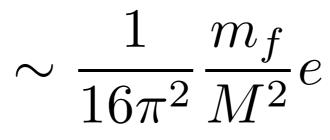
But for us mass is already a loop effect so no additional loop suppression

$$\sim \frac{m_f}{M^2} e$$

Dipole moments

Usually loop suppressed





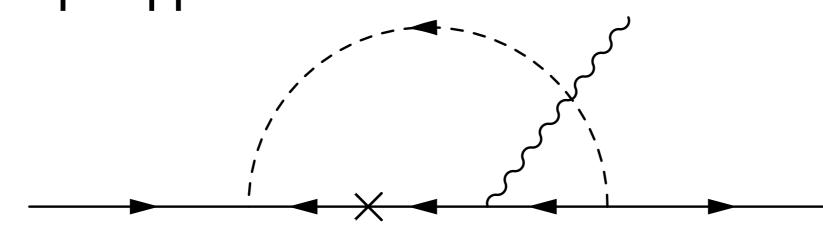
But for us mass is already a loop effect so no additional loop suppression

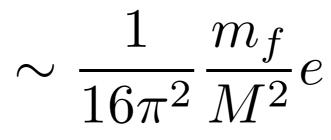
$$\sim \frac{m_f}{M^2} e$$

M > a few TeV

Dipole moments

Usually loop suppressed





But for us mass is already a loop effect so no additional loop suppression

$$\sim \frac{m_f}{M^2} e$$

$$M > a$$
 few TeV

Conclusions

- •Fermions have complicated mass hierarchy
- •Many attempts exist to explain it
- •Top is probably special, perhaps only top mass has a tree level Yukawa
- •With extra scalars coupling to fermions top mass is communicated at loop level
- •Interesting structure of fermion mass spectrum arises
- •Predicts flavour changing processes

Conclusions

- •Fermions have complicated mass hierarchy
- •Many attempts exist to explain it
- •Top is probably special, perhaps only top mass has a tree level Yukawa
- •With extra scalars coupling to fermions top mass is communicated at loop level
- •Interesting structure of fermion mass spectrum arises
- •Predicts flavour changing processes
- •Project X?

