Motivation The Model Dark Matter

Minimal Little Higgs Model and Dark Matter

Yang Bai

Theoretical Physics Department, Fermilab

High Energy Seminar, UC Davis

[arXiv:0801:1662]

June 10, 2008

Yang Bai High Energy Seminar, UC Davis, June 10, 2008

ヘロト ヘアト ヘビト ヘビト

Motivation The Model Dark Matter

Outline

Motivation

- Little Hierarchy Problem
- Little Higgs Model
- One Example

2 The Model

- Bosonic Sector
- Fermionic Sector: Z₂ broken
- Fermionic Sector: Z₂ unbroken

3 Dark Matter

- Dark Matter
- Relic Abundance
- Direct Detection

.⊒...>

Explore New Physics beyond the Standard Model

- The Electroweak Symmetry Breaking:
 - Higgs Mechanism: described in the standard model and predicts the Higgs Boson.
 - Dynamical Symmetry Breaking: Technicolor, Topcolor or Walking Technicolor model.
- The Dark Matter:
 - What is the particle content of it? Scalars, Fermions or Gauge Bosons?
 - How does it couple to ordinary particles?
- Other Puzzles:
 - Hierarchies of fermion masses and their mixings?
 - The large mixings in the lepton sector versus the small mixings in the quark sector?
 - • • • •

・ロト ・ 同ト ・ ヨト ・ ヨト

Radiative Corrections to the Higgs Boson Mass

• The mass of the Higgs field is not stable against radiative corrections:

- Large hierarchy problem: SUSY, Technicolor, RS, ADD, ...
- Little hierarchy problem [LEP paradox] [Barbieri and Strumia, 2000]:
 - The mass of Higgs boson is less than 250 GeV.
 - The cutoff Λ of relevant higher-dimensional operators must be greater than 5-10 TeV.

- Identify the Higgs doublet as a pseudo-Nambu-Goldstone boson (PNGB) of a spontaneously broken global symmetry.
- Collective Symmetry Breaking: two or more couplings are needed to explicitly break the global symmetry.
- Consequence: only logarithmically divergent potentials of the Higgs doublet are generated at one-loop level. The weak scale can be protected up to 5-10 TeV.

ヘロト ヘアト ヘビト ヘビト

Little Hierarchy Probler
Little Higgs Model
One Example

One Example

• The VEV of a triplet spontaneously breaks *U*(3) to *U*(2):

$$U(3) \xrightarrow{\langle \phi \rangle = (0,0,f)^T} U(2)$$
.

• 5 Goldstone Bosons: one doublet and one singlet of *U*(2):

$$\phi = \exp\left[\frac{i}{f}\begin{pmatrix} h \\ h^{\dagger} \end{pmatrix}\right] \begin{pmatrix} 0 \\ 0 \\ f \end{pmatrix} = \begin{pmatrix} h \\ f - \frac{h^{2}}{2f} \end{pmatrix} + \cdots$$

• Using Yukawa couplings to explicitly break the global symmetry:

$$y_{1}\bar{Q}_{L}\phi t_{R} + y_{2}f\bar{\psi}_{L}\psi_{R} + h.c.$$

$$= y_{1}\bar{q}_{L}ht_{R} - \frac{y_{1}}{2f}\bar{\psi}_{L}h^{2}t_{R} + y_{1}f\bar{\psi}_{L}t_{R} + y_{2}f\bar{\psi}_{L}\psi_{R} + h.c.$$

with $\bar{Q}_L \equiv (\bar{q}_L, \bar{\psi}_L)$, a triplet of U(3).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation	Little Hierarchy Problem
The Model	Little Higgs Model
Dark Matter	One Example

• The cutoff-squared terms are cancelled:

• One-Loop Effective Potential [Coleman and Weinberg, 1973]

$$m_{f}^{2} = m_{f} m_{f}^{\dagger} = \begin{pmatrix} y_{1}^{2} f^{2} \sin^{2} \frac{h}{f} & y_{1}^{2} f^{2} \sin \frac{h}{f} \cos \frac{h}{f} \\ y_{1}^{2} f^{2} \sin \frac{h}{f} \cos \frac{h}{f} & y_{1}^{2} f^{2} \cos^{2} \frac{h}{f} + y_{2}^{2} f^{2} \end{pmatrix}$$

$$V_{CW} = -\frac{3}{16\pi^2} \Lambda^2 \operatorname{Tr}[m_f^2] + \frac{3}{16\pi^2} \operatorname{Tr}[m_f^4 \log{(\frac{\Lambda^2}{m_f^2} + \frac{3}{2})}]$$

æ

• Cancellations in the gauge sector:

- Gauge symmetries in various little Higgs models [*SU*(3)_c is not included]:
 - The minimal moose model: $SU(3) \times SU(2) \times U(1)$.
 - The littlest Higgs model: $[SU(2) \times U(1)]^2$.
 - The simplest little Higgs model: $SU(3) \times U(1)$.
- Predict Z', W'; t' and partners of other light quarks; extra scalars including triplets and singlets.

イロト イポト イヨト イヨト 三日

Motivation	Little Hierarchy Problem
The Model	Little Higgs Model
Dark Matter	One Example

 How about the most minimal extension of the standard model gauge group: SU(2) × U(1) × U(1)?

• What is the symmetry for this cancellation?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation	Bosonic Sector
he Model	Fermionic Sector: Z ₂ broken
ark Matter	

Linear Realization

The field content under the gauge symmetry:

$$\begin{array}{c|cccc} SU(2)_{W} & U(1)_{1} & U(1)_{2} \\ \hline H & 2 & 1/2 & 1/2 \\ S & 1 & 5/3 & -5/3 \end{array}$$

The kinetic terms of scalars:

$$|(\partial_{\mu} + ig t^{a} W_{\mu}^{a} + i \frac{g'}{2\sqrt{2}} (B_{1\mu} + B_{2\mu}))H|^{2} + |(\partial_{\mu} + i \frac{5g'}{3\sqrt{2}} (B_{1\mu} - B_{2\mu}))S|^{2}$$

• A Z_2 interchanging symmetry: $g_1 = g_2 = \sqrt{2}g'$

g' is the gauge coupling of $U(1)_Y$; g is the gauge coupling of $SU(2)_W$.

• The Λ^2 contributions to scalar masses from gauge bosons are:

Yang Bai

$$V_{g} = \frac{3\Lambda^{2}}{64\pi^{2}} \left[(3g^{2} + g'^{2})HH^{\dagger} + \frac{100}{9}g'^{2}SS^{\dagger} \right] + \cdots,$$

$$\approx \frac{25g'^{2}\Lambda^{2}}{48\pi^{2}} \left[HH^{\dagger} + SS^{\dagger} \right] \propto \phi \phi^{\dagger} \Rightarrow \text{Approximate } U(3) \text{ global symmetry}$$

$$\sin^{2}\theta_{w} = g'^{2}/(g^{2} + g'^{2}) \approx 0.23 \qquad \text{[Chacko, Goh and Harnik, 2005]} \Rightarrow = 3$$

$$\text{Yang Bat}$$

Nonlinear Realization

- Write *H* and *S* together as a triplet of U(3): $\phi = (H, S)^T$
- $\langle \phi \rangle = (0, 0, f)^T$ from underlying dynamics

 $\begin{array}{ll} \mbox{global symmetry:} & U(3) \rightarrow U(2) \\ \mbox{gauge symmetry:} & SU(2)_W \times U(1)_1 \times U(1)_2 \rightarrow SU(2)_W \times U(1)_Y \\ \end{array}$

- Below the cutoff $\Lambda \approx 4\pi f$, the EFT contains 9-4=5 GB's.
 - One is eaten by the massive neutral gauge boson: $B' \equiv (B_1 B_2)/\sqrt{2}$
 - The other 4 become PNGB's and identified as the Higgs doublet: h

$$\phi^{T} = f(\frac{i\hbar}{\langle h \rangle} \sin \frac{\langle h \rangle}{f}, \cos \frac{\langle h \rangle}{f}) = (i\hbar, f - \frac{\langle h \rangle^{2}}{2f}) + \cdots$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

• The field dependent masses of gauge bosons are:

 $M_W^2(h) = c_w^2 M_Z^2(h) = \frac{1}{2}g^2 f^2 \sin^2 \frac{\langle h \rangle}{f} \quad M_{B'}^2(h) = \frac{50}{9}g'^2 f^2 \cos^2 \frac{\langle h \rangle}{f}$

Calculate the one-loop effective potential

$$V_{CW} = rac{3}{32\pi^2} \Lambda^2 \operatorname{Tr}[M_g^2] - rac{3}{64\pi^2} \operatorname{Tr}[M_g^4 \log{(rac{\Lambda^2}{M_g^2} + rac{3}{2})}]$$

The Higgs mass contributions from the gauge sector:

$$\begin{split} m_h^2|_g &= \frac{3g'^2\Lambda^2}{32\pi^2} \left(\frac{27-118s_w^2}{9s_w^2}\right) + \frac{3M_{B'}^4}{32\pi^2f^2} \left(\log\frac{\Lambda^2}{M_{B'}^2} + 1\right) \\ M_{B'} &= 5\sqrt{2}g'f/3 \approx 0.8f \end{split}$$

• For s_w^2 around 0.23, the Λ^2 term is even smaller than log Λ term.

$$m_h^2|_g pprox -(87 \; GeV)^2 \, + \, (116 \; GeV)^2 \, ,$$

for f = 800 Gev, $\Lambda = 10 \text{ TeV}$, $s_w^2 = 0.23$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Motivation	
he Model	Fermionic Sector: Z ₂ broken
ark Matter	

Z₂ Broken Model

• The field content under the gauge symmetry:

	$SU(3)_c$	$SU(2)_W$	$U(1)_{1}$	$U(1)_{2}$
Н	1	2	1/2	1/2
S	1	1	5/3	-5/3
q_L	3	2	1/6	1/6
t _R	3	1	2/3	2/3
b _R	3	1	-1/3	-1/3
ψ_L	3	1	7/3	-1
ψ_{B}	3	1	7/3	-1

Only a colored vector-like quark added; gauge anomalies are still cancelled.

• The Yukawa couplings in the top sector are:

$$\mathcal{L}_{t} = y_{1}(\bar{q}_{L}, \bar{\psi}_{L}) \phi t_{R} + y_{2} f \bar{\psi}_{L} \psi_{R} = y_{1}(\bar{q}_{L} \tilde{H} + \bar{\psi}_{L} S) t_{R} + y_{2} f \bar{\psi}_{L} \psi_{R} + h.c.$$

$$Z_{2} \text{ symmetry is manifestly broken}$$

ヘロト ヘアト ヘビト ヘビト

2

 Motivation
 Bosonic Sector

 The Model
 Fermionic Sector: Z2 broken

 Dark Matter
 Fermionic Sector: Z2 unbroken

Z₂ Broken Model

• Higgs boson masses from the top sector:

$$m_h^2|_t = -rac{3}{8\pi^2}y_t^2 m_{t'}^2 (\log rac{\Lambda^2}{m_{t'}^2} + 1)$$

No Λ^2 contribution: collective breaking mechanism protects it.

• Spontaneously electroweak symmetry breaking:

$$m_h^2 = m_h^2|_g + m_h^2|_t < 0$$

Minimizing the full potential, we get a light Higgs boson below 200 GeV.

• Spectrum:
$$m_t = y_t \langle h \rangle$$
 $y_t = \frac{y_1 y_2}{\sqrt{y_1^2 + y_2^2}}$ $m_{t'} = \sqrt{y_1^2 + y_2^2} f$
 $t_{L,m} \approx t_L$ $t_{R,m} \approx (y_2 t_R - y_1 \psi_R) / \sqrt{y_1^2 + y_2^2}$
 $t'_L \approx \psi_L$ $t'_R \approx (y_1 t_R + y_2 \psi_R) / \sqrt{y_1^2 + y_2^2}$

• Large mixing between the right-handed parts of *t* and *t'* quarks.

• Both Z and B' couple to t_R and t'_R with order one couplings.

 Motivation
 Bosonic Sector

 The Model
 Fermionic Sector: Z₂ broken

 Dark Matter
 Fermionic Sector: Z₂ unbroke

Electroweak Precision Test

- At tree level, only the experimentally unmeasured top quark couplings to *W* and *Z* bosons are changed.
- At one-loop level, the strongest constraint comes from the *T* parameter:

$$\alpha T = \frac{3y_t^2 y_1^2 m_t^2}{16\pi^2 y_2^2 m_{t'}^2} (\log \frac{m_{t'}^2}{m_t^2} - 1 + \frac{y_1^2}{2y_2^2})$$

[From PDG, $\alpha T < 1.2 \times 10^{-3}$ at 95% confidence level for $m_h <$ 300 GeV.]

For y₁/y₂ < 3/4, there is no bound on the symmetry breaking scale *f*. Hence, *f* can be as low as 400 GeV (to have the cutoff Λ above 5 TeV).

イロト イポト イヨト イヨト 一座

Signatures of the Z₂ Broken Model

- Two new parameters: y₂ and f (y₁ is determined by y₂ and y_t).
- Predicts two new particles: B' and t'.

$$M_{B'} = 5\sqrt{2}g'f/3 pprox 0.8f$$
 $m_{t'} = \sqrt{y_1^2 + y_2^2}f \ge 2f$

- For *f* ≥ 400 GeV, *M*_{B'} ≥ 300 GeV. This possible light neutral gauge boson only couples to top quarks (nonuniversal).
- *B'* can mainly be produced through loop diagrams at Hadron Colliders like:

• B' decays to two top quarks. Mainly look for $t\bar{t} + 1$ jet.

Notivation	
ne Model	Fermionic Sector: Z ₂ broken
ark Matter	Fermionic Sector: Z ₂ unbroker

Z₂ Unbroken Model

- To have a cold dark matter candidate, we need to keep this Z₂ to be unbroken to have stable particles. [Low and Cheng, 2003]
- Introduce two more vector-like quarks:

	$SU(3)_c$	$SU(2)_w$	$U(1)_{1}$	$U(1)_{2}$
Н	1	2	1/2	1/2
S	1	1	5/3	-5/3
q_{1_l}	3	2	1/6	1/6
t _R	3	1	2/3	2/3
b _R	3	1	-1/3	-1/3
ψ_{1_I}	3	1	7/3	-1
ψ_{1_B}	3	1	7/3	-1
ψ_{2_1}	3	1	-1	7/3
ψ_{2_B}	3	1	-1	7/3
q_{2_1}	3	2	1/6	1/6
q_B^{\prime}	3	2	1/6	1/6

Gauge anomalies are cancelled.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Motivation	
The Model	Fermionic Sector: Z ₂ broken
Dark Matter	Fermionic Sector: Z_2 unbroken

Z_2 invariant

$$\begin{aligned} \mathcal{L}_{t} &= \frac{y_{1}}{\sqrt{2}} \left(\bar{q}_{1_{L}} \, \tilde{H} + \bar{\psi}_{1_{L}} \, S \right) t_{R} + y_{2} \, f \, \bar{\psi}_{1_{L}} \, \psi_{1_{R}} \\ &+ \frac{y_{1}}{\sqrt{2}} \left(\bar{q}_{2_{L}} \, \tilde{H} + \bar{\psi}_{2_{L}} \, S^{\dagger} \right) t_{R} + y_{2} \, f \, \bar{\psi}_{2_{L}} \, \psi_{2_{R}} \\ &+ \frac{y_{3}}{\sqrt{2}} \, f \left(\bar{q}_{1_{L}} - \bar{q}_{2_{L}} \right) q_{R}' + h.c. \end{aligned}$$

Under the Z_2 transformation, we have

$$\begin{array}{ll} Z_2: & q_{1_L} \leftrightarrow q_{2_L}, & \psi_{1_{L,R}} \leftrightarrow \psi_{2_{L,R}}, & q'_R \rightarrow -q'_R, \\ & B_1 \leftrightarrow B_2, & S \leftrightarrow S^{\dagger} \end{array}$$

and all other fields are invariant

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation	
The Model	Fermionic Sector: Z ₂ broken
ark Matter	Fermionic Sector: Z ₂ unbroken

Mass Spectrum

 Z_2 is exact; all particles are Z_2 eigenstates.

• Z₂ even particles:

$$\begin{array}{ll} \text{t:} & t_{L,m} \approx t_L & t_{R,m} \approx \frac{y_2 t_R - y_1 \left(\psi_{1_R} + \psi_{2_R}\right)/\sqrt{2}}{\sqrt{y_1^2 + y_2^2}} & m_t = \frac{y_1 y_2}{y_1^2 + y_2^2} \langle h \rangle \\ \text{t}'_+ : & \text{t}'_{+_L} \approx \frac{\psi_{1_L} + \psi_{2_L}}{\sqrt{2}} & \text{t}'_{+_R} \approx \frac{y_1 t_R + y_2 \left(\psi_{1_R} + \psi_{2_R}\right)/\sqrt{2}}{\sqrt{y_1^2 + y_2^2}} & m_{t'_+} \approx \sqrt{y_1^2 + y_2^2} f \geq 2 f \end{array}$$

The Λ^2 contribution to the Higgs mass from *t* is cancelled by t'_+ .

All other standard model particles are also Z_2 even.

• Z₂ odd particles:

$$\begin{array}{ll} t'_{-}: & t'_{-_{L}} \approx \frac{\psi_{\mathbf{1}_{L}} - \psi_{\mathbf{2}_{L}}}{\sqrt{2}} & t'_{-_{R}} \approx \frac{\psi_{\mathbf{1}_{R}} - \psi_{\mathbf{2}_{R}}}{\sqrt{2}} & m_{t'_{-}} = y_{2} f \\ q'_{-}: & q'_{-_{L}} \approx \frac{q_{\mathbf{1}_{L}} - q_{\mathbf{2}_{L}}}{\sqrt{2}} & q'_{-_{R}} \approx q'_{R} & m_{q'_{-}} = y_{3} f \\ \mathbf{B}': & (\mathbf{B_{1}} - B_{2})/2 & \mathbf{M}_{B'} \approx 0.8 f \end{array}$$

For y₂, y₃ ≥ 1, B' is the lightest Z₂ odd particle and a potential dark matter candidate in this model.

• From WMAP, the relic abundance of the dark matter is:

 $0.098 < \Omega_{dm} h^2 < 0.122 \, (2\sigma)$

In the non-relativistic limit, Ω_{dm}h² is relating to sum of the quantities, a(X) = v_r σ(B'B' → X), as

$$\Omega_{dm} h^2 pprox rac{1.04 imes 10^9 \, {
m GeV}^{-1}}{M_{pl}} rac{x_F}{\sqrt{g^*}} rac{1}{a_{tot}}$$

• Approximately, only need to calculate *atot* and require:

 $a_{tot} \approx 0.81 \pm 0.09 \, pb$

Motivation Da The Model Re Dark Matter Dir

Dark Matter Relic Abundance Direct Detection

Couplings of B' to Higgs Boson

Minimal Little Higgs Model

$$\frac{50}{9} g'^2 v$$

Hypercharge-like Gauge Boson [LHT and UED]

 $\frac{1}{2}g'^2v$

イロト 不得 とくほ とくほとう

-20

Motivation	Dark Matter
he Model	Relic Abundance
ark Matter	Direct Detection

Relic Abundance

The leading processes for B' B' annihilation into SM particles:

100 1100 1200 1300 1400 1500 1600

 $[M_{B'} \approx 0.8 f m_{t'} = y_2 f] \qquad 0.098 < \Omega_{dm} h^2 < 0.122 (2\sigma) \Rightarrow a_{tot} \approx 0.81 \pm 0.09 pb$

Mp (GeV)

Yang Bai High Energy Seminar, UC Davis, June 10, 2008

	Motivation The Model Dark Matter	Dark Matter Relic Abundance Direct Detection	
Direct Detection			

 Measure the recoil energy in the elastic scattering of dark matter particles with nuclei.

Only contribute to spin-independent cross section

 Using the matrix element of quarks and gluons in a nucleon state: [Ellis, Olive, Santoso, Spanos, 2005]

$$\sigma_{SI} \approx \frac{0.35^2 \, g'^4}{16 \pi \, M_{B'}^2} \frac{10^4}{3^4} \frac{m_p^4}{m_h^4} \approx 1.6 \times 10^{-44} \text{cm}^2 \, (\frac{1 \, \text{TeV}}{M_{B'}})^2 (\frac{100 \, \text{GeV}}{m_h})^4$$

 Box diagrams with the top quark propagating in the the loop also contribute to spin-dependent cross section.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Motivation	Dark Matter	
The Model		
ark Matter	Direct Detection	

Direct Detection

Yang Bai High Energy Seminar, UC Davis, June 10, 2008

イロン イロン イヨン イヨン

æ

Dark Matter
Direct Detection

Summary

- A very simple little Higgs model has been constructed based on the SU(2)_w × U(1)² gauge symmetry.
- A Z₂ interchanging symmetry is introduced between these two U(1)'s.
- For Z₂ broken case: only B' and t' appears in the EFT. The mass of B' can be as light as 300 GeV.
- For Z₂ unbroken case:
 - B' is a stable particle and can serve as a dark matter candidate.
 - The direct detection of this *B*' dark matter is promising.
 - The σ_{SI}(B'N) is two order of magnitude larger than a hypercharge-like neutral gauge boson dark matter candidate.

・ロト ・ 同ト ・ ヨト ・ ヨト