The role of SUSY flat directions in reheating

Marco Peloso, Minnesota

- Reheating after inflation
- Thermalization with SUSY flat directions
- Nonperturbative decay
K.A. Olive, MP, PRD 74
A.E. Gumrukcuoglu, K.A. Olive, MP, M. Sexton '08

History of the Universe

Clear knowledge
from BBN on

$$
\Omega_{m}=0.249_{-0.031}^{+0.024}
$$

$$
w=-0.97_{-0.09}^{+0.07} \quad T_{\gamma} \simeq 2.7 K
$$

Dark energy $z \in[0,0.4]$
Dark matter $z \epsilon\left[0.4,10^{4}\right]$
Radiation

$$
z \epsilon\left[10^{4}, ?\right]
$$

$$
z_{\mathrm{BBN}} \simeq 10^{10}
$$

Good theoretical control \& data for inflation

Slow Roll: $\epsilon=\frac{M_{p}^{2}}{16 \pi}\left(\frac{V^{\prime}}{V}\right)^{2}, \eta=\frac{M_{p}^{2}}{8 \pi} \frac{V^{\prime \prime}}{V}, \ldots$

- COBE normalization $\left(\frac{V}{\epsilon}\right)^{1 / 4}=6.7 \cdot 10^{16} \mathrm{GeV}$
- Spectral index $\quad n_{s}-1=-6 \epsilon+2 \eta$
- Tensor mode
$P_{T}(k)=\frac{2}{M_{p}^{2}}\left(\frac{H_{k}}{2 \pi}\right)^{2} \quad, \quad r=16 \epsilon$

WMAP3

Uncertainty on N

$$
\Delta N \sim 4
$$

Inflation

Unknowns:
Scale of inflation
Inflaton ϕ
Coupling to matter

Require:

$T>\mathrm{MeV}$, for Nucleosynthesis No gravitinos, $T<10^{9} \mathrm{GeV}$
Baryon \& dark-matter

Here, assume coupling is small enough \rightarrow no preheating
Gravitational decay $\left\ulcorner\sim m_{\psi}^{3} / M_{p}^{2}\right.$

Perturbative inflaton decay and thermalization

(order of magnitude estimates)

- Inflaton ψ oscillations start at end of inflation, $a=a_{\psi}$

$$
\rho_{\psi}=m_{\psi}^{2} \psi^{2}=m_{\psi}^{2} M_{p}^{2}\left(a_{\psi} / a\right)^{3}
$$

- Decay at $a=a_{d \psi}$, when $\Gamma_{\psi} \sim m_{\psi}^{3} / M_{p}^{2}=H \sim \rho_{\psi}^{1 / 2} / M_{p}$

$$
\rho_{r \psi}=m_{\psi}^{2 / 3} M_{p}^{10 / 3}\left(a_{\psi} / a\right)^{4}
$$

- Inflaton \rightarrow relativistic quanta with

$$
\begin{aligned}
E & \sim m_{\psi}, \quad N=\frac{\rho}{E} \sim \frac{m_{\psi}^{5}}{M_{p}^{2}} \\
E & \gg N^{1 / 3} \rightarrow \text { particle dissociation }
\end{aligned}
$$

Assume inflaton decays into particles (fermions) with gauge interactions

Ellis, Enqvist, Nanopoulos, Olive '87

Davidson, Sarkar '00

$2 \rightarrow 3$ processes

- New particles must be produced to "absorb" the energy loss. $2 \rightarrow 2$ lead to kinetic equilibrium, but not to chemical equilibrium
$\sigma_{\text {inel }} \sim \alpha^{3} \int \frac{d t}{t^{2}} \int \frac{d p^{\prime 2}}{p^{\prime 2}} \sim \frac{\alpha^{3}}{\rho_{r \psi}^{1 / 2}} \ln \left(\frac{m_{\psi}^{2}}{\rho_{r \psi^{1 / 2}}}\right)$

At inflaton decay,$\frac{1}{\rho_{r \psi}^{1 / 2}}=\frac{1}{m_{\psi}^{2}} \frac{M_{p}}{m_{\psi}}$

$$
\Gamma_{2 \rightarrow 3} \simeq \sigma_{\text {inel }} N>H \sim \frac{\rho_{r \psi}^{1 / 2}}{M_{p}}
$$

MSSM flat directions

MSSM potential $\quad V=\sum_{i}|F|^{2}+\frac{1}{2} \sum_{a} g_{a}^{2} D^{a} D^{a}$
$F_{i} \equiv \frac{\partial W_{M S S M}}{\partial \phi_{i}}, \quad D^{a}=\phi^{\dagger} T^{a} \phi \quad W_{M S S M}=\lambda_{u} Q H_{u} \bar{u}+\lambda_{d} Q H_{d} \bar{d}+\lambda_{e} L H_{d} \bar{e}+\mu H_{u} H_{d}$
Plethora of flat directions, lifted by

	$B-L$		$B-L$
$H_{u} H_{d}$	0	$L H_{u}$	-1
$\bar{u} \bar{d} \bar{d}$	-1	$Q L \bar{d}$	-1
$L L \bar{e}$	-1	$Q Q \bar{u} \bar{d}$	0
$Q Q Q L$	0	$Q L \bar{u} \bar{e}$	0
$\bar{u} \bar{u} \bar{d} \bar{e}$	0	$Q Q Q Q \bar{u}$	1
$Q Q \bar{u} \bar{u} \bar{e}$	1	$L L \bar{d} \bar{d} \bar{d}$	-3
$\bar{u} \bar{u} \bar{u} \bar{e} \bar{e}$	1	$Q L Q L \bar{d} \bar{d}$	-2
$Q Q L L \bar{d} \bar{d}$	-2	$\bar{u} \bar{u} \bar{d} \bar{d} \bar{d} \bar{d}$	-2
$Q Q Q Q \bar{d} L L$	-1	$Q L Q L Q L \bar{e}$	-1
$Q L \bar{u} Q Q \bar{d} \bar{d}$	-1	$\bar{u} \bar{u} \bar{u} \bar{d} \bar{d} \bar{d} \bar{e} \bar{e}$	-1

- O (TeV) masses from μ - and soft SUSY-terms
- Nonrenormalizable interactions,

$$
W=\frac{\lambda}{d} \frac{\Phi^{d}}{M^{d-3}}
$$

- O(H) masses from SUGRA

Dine, Randall, Thomas '95

$$
V=\left(\phi_{1}^{2}-\phi_{2}^{2}\right)^{2}+m_{1}^{2} \phi_{1}^{2}+m_{2}^{2} \phi_{2}^{2}+\ldots
$$

Gherghetta, Kolda, Martin '95

Cosmological evolution of flat directions

Light fields, "build up" in a dS space

- Every $\Delta t \sim H^{-1}$, fluctuations $\delta \phi \sim H$ are generated on each domain $\Delta x \sim H^{-1}$
- Cosmological expansion streches $\phi+\delta \phi$ on super-horizon scales
\rightarrow new homogeneous background
- New fluctuations add up $\phi \rightarrow \phi+\delta \phi \rightarrow(\phi+\delta \phi)+\delta \phi \rightarrow \ldots$

Random walk, leading to a homogeneous $\langle\phi\rangle \neq 0$

If $m \ll H$, and if inflation lasts long enough, $\quad\left\langle\phi^{2}\right\rangle=\frac{3 H^{4}}{8 \pi^{2} m^{2}}$
In practice, flat direction pushed up to $\phi \lesssim M$, where the nonrenormalizable terms stop the growth

Many flat directions are mutually exclusive; if one is "switched on", many other acquire $\sim|\phi|$ masses. In general, we expect a set of non mutually exclusive flat directions to acquire a large VEV during inflation

- After inflation, flat direction frozen as long as $H>m_{\phi}$
- As H decreases, spiral motion towards origin

$$
V \sim m^{2}|\phi|^{2}+\frac{|\lambda|^{2}|\phi|^{2 d-2}}{M^{2 d-6}}+\left(A \frac{\lambda \phi^{d}}{d M^{d-3}}+\text { h.c. }\right)
$$

"angular momentum" from A-term

Claim: flat directions delay thermalization by providing a large effective mass to gauge bosons

$$
\frac{\alpha^{2}}{E^{2}}=\frac{\alpha^{2}}{m_{\psi}^{2}}\left(\frac{R}{R_{d \psi}}\right)^{2} \rightarrow \frac{\alpha^{2}}{\phi^{2}}
$$

Inflaton decays at $H \lesssim m_{\psi}^{3} / M_{p}^{2} \lesssim \mathrm{TeV}$. Flat direction starts evolving shortly before Amplitude: $\phi^{2}=\phi_{0}^{2} \frac{m_{\psi}^{2}}{m_{\phi}^{2}}\left(\frac{a_{\psi}}{a}\right)^{3} \quad$ Decay rate $\Gamma \sim m_{\phi}^{3} / \phi^{2} \quad$ Affleck, Dine '84

- Thermalization delayed if

$$
\phi_{0} \gtrsim \alpha^{3 / 2} \frac{M_{p}^{5 / 2} m_{\phi}}{m_{\psi}^{5 / 2}} \sim 10^{16} \mathrm{GeV}
$$

- It dominates if $\quad \phi_{0} \gtrsim \frac{M_{p}^{4 / 3} m_{\phi}^{5 / 12}}{m_{\psi}^{3 / 4}} \simeq 10^{15} \mathrm{GeV}$

$$
\Rightarrow T_{\mathrm{rh}} \simeq m_{\phi}^{5 / 6} M_{p}^{1 / 6} \simeq 10^{5} \mathrm{GeV}
$$

Nonperturbative decay of flat directions ?

$$
V=\frac{1}{2} m^{2}|\phi|^{2}+\frac{g^{2}}{2}|\phi|^{2}|\chi|^{2} \quad, \quad \omega_{\chi}^{2}=p^{2}+g^{2}|\phi|^{2} \simeq g^{2}|\phi|^{2}
$$

Nonperturbative production if

$$
\omega^{\prime} / \omega^{2}>1
$$

$\downarrow \in \phi_{0}$
$\omega^{\prime} \simeq g \epsilon \phi_{0} m_{\phi}$
$\omega^{2} \simeq g^{2} \epsilon^{2} \phi_{0}^{2}$$\quad \Rightarrow \frac{\omega^{\prime}}{\omega^{2}} \simeq \frac{m_{\phi}}{g \epsilon \phi_{0}} \simeq \frac{10^{-14}}{\epsilon}$

Typically, $\quad 10^{-3} \lesssim \epsilon \lesssim 10^{-1} \quad \Rightarrow$ only perturbative decay

Postma, Mazumdar '03
Allahverdi, Mazumdar '05

Realistic cases are more interesting

$$
H_{u}=\binom{h_{u}}{\phi+\xi_{u}} \quad H_{d}=\binom{\phi+\xi_{d}}{h_{d}}
$$

Quadratic potential in fluctuations:

$$
\phi=|\phi| \mathrm{e}^{i \sigma}
$$

$$
\begin{aligned}
V= & \frac{\lambda_{u}^{2}}{2}|\phi|^{2}\left(\left|Q_{u}\right|^{2}+|u|^{2}\right)+\frac{\lambda_{d}^{2}}{2}|\phi|^{2}\left(\left|Q_{d}\right|^{2}+|u|^{2}\right)+\frac{\lambda_{e}^{2}}{2}|\phi|^{2}\left(\left|L_{d}\right|^{2}+|e|^{2}\right) \\
& +\frac{g^{2}+g^{\prime 2}}{16}|\phi|^{2}\left(\xi_{u, r}-\xi_{d, r}, \xi_{u, i}-\xi_{d, i}\right) \mathcal{M}^{2}\binom{\xi_{u, r}-\xi_{d, r}}{\xi_{u, i}-\xi_{d, i}} \\
& +\frac{g^{2}}{8}|\phi|^{2}\left(h_{u, r}+h_{d, r}, h_{u, i}+h_{d, i}\right) \mathcal{M}^{2}\binom{h_{u, r}+h_{d, r}}{h_{u, i}+h_{d, i}} \\
& +\frac{g^{2}}{8}|\phi|^{2}\left(-h_{u, i}+h_{d, i}, h_{u, r}-h_{d, r}\right) \mathcal{M}^{2}\binom{-h_{u, i}+h_{d, i}}{h_{u, r}-h_{d, r}} \quad \text { (up to TeV masses) }
\end{aligned}
$$

Eigenvalues $\{1,0\}$

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
\cos ^{2} \sigma & \cos \sigma \sin \sigma \\
\cos \sigma \sin \sigma & \sin ^{2} \sigma
\end{array}\right) \quad \begin{array}{ll}
\text { Quick } t-\text { dependence } \\
& \\
& \text { through } \sigma(t)
\end{array}
$$

Quantized coupled system

Non-diagonal mass matrix

$$
\phi^{T} M^{2} \phi=\underbrace{\phi^{T} C}_{\tilde{\phi}^{T}} \underbrace{C^{T} M^{2}}_{\mu_{d}^{2}} \underbrace{C}_{\tilde{\phi}}
$$

If C constant (M constant) no physical effect.

Otherwise

$$
\phi^{T} \phi^{\prime}=\tilde{\phi}^{T} \tilde{\phi}^{\prime}+\underbrace{}_{\Gamma=C^{T} C^{\prime} \quad \tilde{\phi}^{\prime T} \Gamma \tilde{\phi}+\tilde{\phi}^{T} \Gamma^{T} \tilde{\phi}^{\prime}}+\tilde{\phi}^{T} C^{\prime T} C^{\prime} \tilde{\phi}
$$

$$
\begin{aligned}
& \tilde{\phi}_{i}=\int \frac{d^{3} \mathrm{k}}{(2 \pi)^{3 / 2}}\{\mathrm{e}^{i \mathbf{k x}}[\underbrace{\frac{\mathrm{e}^{-i} \int^{t} \omega d t}{\sqrt{2 \omega}}}_{\alpha} A+\underbrace{\frac{\mathrm{e}^{i \int^{t} \omega d t}}{\sqrt{2 \omega}} B}_{\beta}]_{i j} a_{j}+\mathrm{e}^{-i \mathrm{kx}}[\ldots]_{i j}^{a_{j}^{\dagger}}\} \\
& \omega=\sqrt{k^{2}+\mu_{d}^{2}} \text { diagonal }
\end{aligned}
$$

$$
\mathcal{H}=\frac{1}{2}\left(a^{\dagger}, a\right)\left(\begin{array}{cc}
\alpha^{\dagger} & \beta^{\dagger} \\
\beta^{T} & \alpha^{T}
\end{array}\right)\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta^{*} \\
\beta & \alpha^{*}
\end{array}\right)\binom{a}{a^{\dagger}}
$$

t-dependent annihilation $/$ creation $\binom{\hat{a}}{\hat{a}^{\dagger}} \Rightarrow: \mathcal{H}:=\omega_{i} \hat{a}_{i}^{\dagger} \widehat{a}_{i}$

Occupation numbers $\quad N_{i}(t)=\left\langle\hat{a}_{i}^{\dagger} \widehat{a}_{i}\right\rangle=\left(\beta^{*} \beta^{T}\right)_{i i}$
Equations of motion:

$$
\begin{array}{ll}
\alpha^{\prime}=-i \omega \alpha+\frac{\omega^{\prime}}{2 \omega} \beta-I \alpha-J \beta & I=\frac{1}{2}\left(\sqrt{\omega} \Gamma \frac{1}{\sqrt{\omega}}+\frac{1}{\sqrt{\omega}} \Gamma \sqrt{\omega}\right) \\
\beta^{\prime}=i \omega \beta+\frac{\omega^{\prime}}{2 \omega} \alpha-I \beta-J \alpha & J=\frac{1}{2}\left(\sqrt{\omega} \Gamma \frac{1}{\sqrt{\omega}}-\frac{1}{\sqrt{\omega}} \Gamma \sqrt{\omega}\right) \\
\begin{array}{l}
\text { Plane wave } \\
(\omega \text { const. })
\end{array} & \begin{array}{c}
\text { Production from mixing } \\
\text { Standard nonadiabatic }
\end{array}
\end{array}
$$

$$
M^{2}=2 g^{2}|\phi|^{2}\left(\begin{array}{cc}
\cos ^{2} \sigma & \cos \sigma \sin \sigma \\
\cos \sigma \sin \sigma & \sin ^{2} \sigma
\end{array}\right)
$$

Analytic solution if $|\phi|$ and $\sigma^{\prime} \equiv m_{\phi}$ constant $\left\{\begin{array}{l}\text { Minkowski space } \\ \text { circular orbit }\end{array}\right.$

Resonant band

$$
k<\sigma^{\prime}
$$

Toy model \rightarrow Complete gauge computation

$U(1)$ flat direction $\quad V_{D}=\frac{e^{2}}{8}\left(\left|\Phi_{1}\right|^{2}-\left|\Phi_{2}\right|^{2}\right)^{2}$

$$
\begin{aligned}
& \Phi_{1}=|\phi| \mathrm{e}^{i \sigma}+(\xi+\chi) \\
& \Phi_{2}=|\phi| \mathrm{e}^{i \sigma}+(\xi-\chi)
\end{aligned}
$$

$V_{D} \rightarrow\left(\chi_{r}, \chi_{i}\right) \mathcal{M}^{2}\binom{\chi_{r}}{\chi_{i}}$

Decay (fragmentation) into their own fluctuations

However, light eigenstate \equiv goldstone boson
$\left\{\Phi_{1}, \Phi_{2}, A_{\mu}\right\}$
$4+2$ degrees of freedom $\equiv 1$ Massive gauge field 1 Flat direction
1 Higgs

Actual MSSM Flat directions

- If a single flat direction excited, no "rotation" in unitary gauge
- If more flat directions excited, more fields involved in rotation

Eg. LLddd-QQQL

$$
\begin{aligned}
& \left\langle\nu_{e}\right\rangle=\langle\mu\rangle=\left\langle d_{1}^{c}\right\rangle=\left\langle s_{2}^{c}\right\rangle=\left\langle b_{3}^{c}\right\rangle=\phi \mathrm{e}^{i \sigma} \\
& \left\langle t_{2}\right\rangle=\left\langle d_{3}\right\rangle=\left\langle c_{1}\right\rangle=\langle\tau\rangle=\bar{\phi} \mathrm{e}^{i \bar{\sigma}}
\end{aligned}
$$

54 real fields obtain mass from D-terms: 12 goldstone bosons,
12 heavy fields, 22 light fields coupled in the mass matrix,
8 decoupled mass fields
E.g. QLd-udd $\left\langle s_{1}\right\rangle=\left\langle\nu_{e}\right\rangle=\left\langle d_{1}^{c}\right\rangle=\phi \mathrm{e}^{i \sigma}$

$$
\left\langle u_{1}^{c}\right\rangle=\left\langle s_{2}^{c}\right\rangle=\left\langle b_{3}^{c}\right\rangle=\bar{\phi} \mathrm{e}^{i \bar{\sigma}}
$$

40 fields ... 8 coupled light fields

Eg. LLe-QLd-udd

	$B-L$		$B-L$
$H_{u} H_{d}$	0	$L H_{u}$	-1
$\bar{u} \bar{d} \bar{d}$	-1	$Q L \bar{d}$	-1
$L L \bar{e}$	-1	$Q Q \bar{u} \bar{d}$	0
$Q Q Q L$	0	$Q L \bar{u} \bar{e}$	0
$\bar{u} \bar{u} \bar{d} \bar{e}$	0	$Q Q Q Q \bar{u}$	1
$Q Q \bar{u} \bar{u} \bar{e}$	1	$L L \bar{d} \bar{d} \bar{d}$	-3
$\bar{u} \bar{u} \bar{u} \bar{e} \bar{e}$	1	$Q L Q L \bar{d} \bar{d}$	-2
$Q Q L L \bar{d} \bar{d}$	-2	$\bar{u} \bar{u} \bar{d} \bar{d} \bar{d} \bar{d}$	-2
$Q Q Q Q \bar{d} L L$	-1	$Q L Q L Q L \bar{e}$	-1
$Q L \bar{u} Q Q \bar{d} \bar{d}$	-1	$\bar{u} \bar{u} \bar{u} \bar{d} \bar{d} \bar{d} \bar{e}$	-1

Simplest example: two $U(1)$ flat directions

$$
\begin{aligned}
V_{D}=\left(q\left|\Phi_{1}\right|^{2}-q\left|\Phi_{2}\right|^{2}+q^{\prime}\left|\Phi_{3}\right|^{2}-q^{\prime}\left|\Phi_{4}\right|^{2}\right)^{2} & \left\langle\Phi_{1}\right\rangle=\left\langle\Phi_{2}\right\rangle=F \mathrm{e}^{i \Sigma / 2} \\
& \left\langle\Phi_{3}\right\rangle=\left\langle\Phi_{4}\right\rangle=G \mathrm{e}^{i \tilde{\Sigma} / 2}
\end{aligned}
$$

$\left\{\Phi_{i}, A_{\mu}\right\}$

$$
\left.\begin{array}{ll}
\qquad 8+2 \text { degrees of freedom } \equiv & 1 \text { Massive gauge field (3) } \\
& 2 \text { Flat directions } \\
& 1 \text { Highs } \\
\text { Eigenmasses }^{2} & 2 \text { Light fields }
\end{array}\right\} \text { Mix }
$$

$$
\begin{aligned}
& m_{1}^{2}=e^{2}\left(F^{2}+G^{2}\right) \\
& m_{2}^{2}=\frac{\left(F^{2} \tilde{m}^{2}+G^{2} m^{2}\right) R^{2}}{F^{2}+G^{2}}+\frac{3\left(F G^{\prime}-F^{\prime} G\right)}{\left(F^{2}+G^{2}\right)^{2}}+\frac{3 F^{2} G^{2}\left(\Sigma^{\prime}-\tilde{\Sigma}^{\prime}\right)^{2}}{4\left(F^{2}+G^{2}\right)^{2}} \\
& m_{3}^{2}=\frac{\left(F^{2} \tilde{m}^{2}+G^{2} m^{2}\right) R^{2}}{F^{2}+G^{2}} \\
& m_{1} \sim M_{\mathrm{GUT}}-M_{p} \quad, \quad m_{2}, m_{3} \sim \mathrm{TeV}
\end{aligned}
$$

Need to control both scales in simulations.

Nonlinear interactions

After chaotic inflation, for $V=m^{2} \phi^{2}+g^{2} \phi^{2} \chi^{2}+\lambda \chi^{4}$
a large quartic term strongly contrasts parametric resonance (large energy in $\lambda\left\langle\chi^{2}\right\rangle^{2}$)

Large (gauge) self-interactions for MSSM fields

$$
V_{D} \propto D^{a} D^{a}=\left(\phi^{*} \sum_{i} c_{i}^{a} \delta X_{i}+\text { h.c. }+\sum_{i j} d_{i j}^{a} \delta \chi_{i} \delta \chi_{j}\right)^{2}
$$

- Do the large quartic terms prevent preheating, or do we excite combinations of terms for which D^{a} remains small ?
- Quicker depletion of the zero mode ? (diagrams involving ϕ_{0})
- Combinations of cubic and quartic terms. Do some other fields develop vevs ?

Conclusions

- Reheating $=$ most unknown stage in cosmology
- Coupled systems \rightarrow new production mechanism
- Flat directions naturally present in MSSM; can affect reheating through their VEVS
- Slow perturbative decay often assumed; $\Gamma_{\phi} \sim m_{\phi}^{3} / \phi^{2}$ gives decay after 10^{11} rotations !
- Need to study nonlinear effects (Iattice simulations)

