
resonance counterbalances

the tachyonic instability

Reheating and thermalization

after inflation

Marco Peloso, Minnesota

The role of SUSY flat directions in reheating

• 6d models: the gravity side

• localization of matter on codimension 2 branes ?

• a suitable regularization

MP, L. Sorbo, G. Tasinato

hep-th/0603026, PRD

The role of SUSY flat directions in reheating

• 6d models: the gravity side

• localization of matter on codimension 2 branes ?

• a suitable regularization

MP, L. Sorbo, G. Tasinato

hep-th/0603026, PRD

The role of SUSY flat directions in reheating

• Reheating after inflation

• Perturbative vs. nonperturbative inflaton decay

• Thermalization with SUSY flat directions

K.A. Olive, MP, PRD 74

A.E. Gumrukcuoglu, K.A. Olive, MP, M. Sexton ’08

The role of SUSY flat directions in reheating

• Reheating after inflation

• Perturbative vs. nonperturbative inflaton decay

• Thermalization with SUSY flat directions

K.A. Olive, MP, PRD 74

A.E. Gumrukcuoglu, K.A. Olive, MP, M. Sexton ’08

The role of SUSY flat directions in reheating

• Reheating after inflation

• Perturbative vs. nonperturbative inflaton decay

• Thermalization with SUSY flat directions

K. A. Olive, M.P., in progress

The role of SUSY flat directions in reheating

• Reheating after inflation

• Perturbative vs. nonperturbative inflaton decay

• Thermalization with SUSY flat directions

K. A. Olive, M.P., in progress

A.E. Gumrukcuoglu, K.A. Olive, MP, M. Sexton ’08

, r = 16 ε

Baryon, dark matter generation

Why don’t we know N ?

Fast (nonperturbative decay) within O (10) oscillations.

Thermalization on a much longer timescale

Slow (perturbative) decay, up to O
(

1010
)

oscillations.

Quick thermalization (?)

• Nonperturbative decay
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Fig. 15.— Constraints on w, the equation of state of dark energy, in a flat universe

model based on the combination of WMAP data and other astronomical data.
We assume that w is independent of time, and ignore density or pressure fluc-

tuations in dark energy. In all of the figures, WMAP data only constraints are
shown in blue and WMAP + astronomical data set in red. The contours show
the joint 2-d marginalized contours (68% and 95% confidence levels) for Ωm and

w. (Upper left) WMAP only and WMAP + SDSS. (Upper right) WMAP only and
WMAP + 2dFGRS. (Lower left) WMAP only and WMAP+SN(HST/GOODS).

(Lower right) WMAP only and WMAP+SN(SNLS). In the absence of dark en-
ergy fluctuations, the excessive amount of ISW effect at ! < 10 places significant

constraints on the models with w < −1.
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Fig. 14.— Joint two-dimensional marginalized contours (68% and 95% confidence
levels) for inflationary parameters (r0.002, ns). We assume a power-law primor-

dial power spectrum, dns/d ln k = 0, as these models predict a negligible amount
of running index, dns/d lnk ≈ −10−3. (Upper left) WMAP only. (Upper right)
WMAP+SDSS. (Lower left) WMAP+2dFGRS. (Lower right) WMAP+CBI+VSA.

The dashed and solid lines show the range of values predicted for monomial in-
flaton models with 50 and 60 e-folds of inflation (equation (13)), respectively.

The open and filled circles show the predictions of m2φ2 and λφ4 models for 50
and 60 e-folds of inflation. The rectangle denotes the scale-invariant Harrison-

Zel’dovich-Peebles (HZ) spectrum (ns = 1, r = 0). Note that the current data
prefers the m2φ2 model over both the HZ spectrum and the λφ4 model by likeli-
hood ratios greater than 12. (δχ2 > 5)
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WMAP3

Figure 10: The forecasts of WMAP4 (green), Planck1 (blue) and WMAP4 + ground-based

ACT/SPT-like data (red) are shown compared with the target value (black dot). Projected one-

sigma error bars are shown, and the one and two sigma ellipses which illustrate the correlations.

The (magenta) cross shows the precision of the Jun03 data when the scalar spectral index is al-

lowed to run, as it is for the simulations as well. The bigger (cyan) cross shows the state with

the pre-WMAP Jan03 data. Large dedicated ground-based telescopes targeting high ! with huge

arrays of bolometers (e.g., ACT and SPT) or of HEMTs (QUIET), when combined with WMAP,

should greatly increase parameter precision in the leadup to Planck. For this simulation, ACT/SPT

experimental parameters were adopted, and the bolometers were assumed to be polarization sensi-

tive to show their powerful impact on EE mode detection. The assumed coverage was 2.4% of the

sky, 1000 square degrees. Increasing this would further improve the parameter estimates given in

Table 2 since errors on many bands are sample-variance limited. Planck does so well because of its

all-sky coverage, and will have a large impact on constraining multi-parameter deviations from the

simple uniform-acceleration inflation models.
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=
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E $ N1/3 → particle dissociation

54 real fields obtain mass from D−terms: 12 goldstone bosons,

12 heavy fields, 22 light fields coupled in the mass matrix,

8 decoupled mass fields

Nonperturbative production if
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After the χs are produced, their energy redshifts. A χ produced at time τ1 with
energy mφ/2 will have energy E2 = (mφ/2)(a1/a2) = (mφ/2)(τ1/τ2)2/3 at time τ2, so

the comoving distribution in energy space is
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where N(τ) = n(τ)(a(τ)/ain)3. For τ1 <∼ Γ−1, we can use Nφ(τ1) " Nφ(ain). The

energy density in χs at some time τ < Γ−1
φ will be
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The maximum χ energy density (which occurs at τ " 2τin) is defined to be g∗π2T 4
max/30.

It is easy to see that between Tmax and Treh ρχ ∼ a−3/2, T ∼ a−3/8, and (Tmax/Treh)4

" αφ.

We assume that the χs have SU(Nc) gauge interactions among themselves with
coupling α ∼ 1/30. We would like to know how soon the χ distribution will have the

equilibrium form f(k) ∼ (eE/T +1)−1. We can get a qualitative answer by comparing
the expansion rate H to interaction rates, in which we make some attempt to include
factors of π and Nc in sections 2 and 3. We drop them in sections 4 and 5, where

the discussion is more approximate. A more accurate result could be obtained by
solving Boltzman equations, or perhaps other more appropriate equations [9], for the

particle phase space distributions.
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Figure 1: χ scattering. Time runs from left to right

There are various 2 → 2 rates that could be compared to H , such as the anni-

hilation rate, which is slow, or the scattering rate, which is fast. In the comoving
rest frame, 2 → 2 processes redistribute energy because they do not take place in

the centre-of-mass frame. They can bring a group of particles into kinetic (but not
chemical) equilibrium.

The annihilation cross section for χs of energy " mφ/2 is

σann "
16Ncα2
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, (2.6)
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After the χs are produced, their energy redshifts. A χ produced at time τ1 with
energy mφ/2 will have energy E2 = (mφ/2)(a1/a2) = (mφ/2)(τ1/τ2)2/3 at time τ2, so
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We assume that the χs have SU(Nc) gauge interactions among themselves with
coupling α ∼ 1/30. We would like to know how soon the χ distribution will have the

equilibrium form f(k) ∼ (eE/T +1)−1. We can get a qualitative answer by comparing
the expansion rate H to interaction rates, in which we make some attempt to include
factors of π and Nc in sections 2 and 3. We drop them in sections 4 and 5, where

the discussion is more approximate. A more accurate result could be obtained by
solving Boltzman equations, or perhaps other more appropriate equations [9], for the

particle phase space distributions.

p p′

q

k k′

Figure 1: χ scattering. Time runs from left to right

There are various 2 → 2 rates that could be compared to H , such as the anni-

hilation rate, which is slow, or the scattering rate, which is fast. In the comoving
rest frame, 2 → 2 processes redistribute energy because they do not take place in

the centre-of-mass frame. They can bring a group of particles into kinetic (but not
chemical) equilibrium.

The annihilation cross section for χs of energy " mφ/2 is

σann "
16Ncα2

m2
φ

, (2.6)

4

Γelas ∼
α2

E2
Nrψ ∼ α2

m3
ψ

M2
p

adψ

a
, H ∼

ρ1/2
rψ

Mp
∼

m3
ψ

M2
p

(
adψ

a

)2

⇒ Γelas # H at inflaton decay. Thermalization only at Trh ∼ 105 GeV

2→ 3 processes

• New particles must be produced to “absorb” the energy loss.

2→ 2 lead to kinetic equilibrium, but not to chemical equilibrium

• Soft scatterings are so inefficient that 2→ 3 processes dominate,

although higher order in α

σinel ∼ α3

∫
dt

t

∫
dp

′2

p′2
∼

α3

ρ1/2
rψ

ln

(
m2

ψ

ρrψ1/2

)

At inflaton decay ,
1

ρ1/2
rψ

=
1

m2
ψ

Mp

mψ

⇒ σinel ∼
α3

m2
ψ

Mp

mψ
∼ σelas × α

Mp

mψ
' σelas

Instantaneous thermalization

Davidson, Sarkar ’00

Γelas ∼
α2

E2
Nrψ ∼ α2

m3
ψ

M2
p

adψ

a
, H ∼

ρ1/2
rψ

Mp
∼

m3
ψ

M2
p

(
adψ

a

)2

⇒ Γelas # H at inflaton decay. Thermalization only at Trh ∼ 105 GeV

2→ 3 processes

• New particles must be produced to “absorb” the energy loss.

2→ 2 lead to kinetic equilibrium, but not to chemical equilibrium

• Soft scatterings are so inefficient that 2→ 3 processes dominate,

although higher order in α

σinel ∼ α3

∫
dt

t2

∫
dp

′2

p′2
∼

α3

ρ1/2
rψ

ln

(
m2

ψ

ρrψ1/2

)

At inflaton decay ,
1

ρ1/2
rψ

=
1

m2
ψ

Mp

mψ

⇒ σinel ∼
α3

m2
ψ

Mp

mψ
∼ σelas × α

Mp

mψ
' σelas

Instantaneous thermalization

Davidson, Sarkar ’00

2→ 2 processes
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MSSM flat directions

4.2 MSSM and its potential

Let us remind the reader that the matter fields of MSSM are chiral superfields Φ =

φ +
√

2θψ̄ + θθ̄F , which describe a scalar φ, a fermion ψ and a scalar auxiliary field

F. In addition to the usual quark and lepton superfields, MSSM has two Higgs fields,

Hu and Hd. Two Higgses are needed because H†, which in the Standard Model gives

masses to the u-quarks, is forbidden in the superpotential.

The superpotential for the MSSM is given by [34]

WMSSM = λuQHuū + λdQHdd̄ + λeLHdē + µHuHd , (155)

where Hu, Hd, Q, L, ū, d̄, ē in Eq. (155) are chiral superfields, and the dimensionless

Yukawa couplings λu, λd, λe are 3 × 3 matrices in the family space. We have sup-

pressed the gauge and family indices. Unbarred fields are SU(2) doublets, barred

fields SU(2) singlets. The last term is the µ term, which is a supersymmetric version

of the SM Higgs boson mass. Terms proportional to H∗
uHu or H∗

dHd are forbidden in

the superpotential, since WMSSM must be analytic in the chiral fields. Hu and Hd are

required not only because they give masses to all the quarks and leptons, but also for

the cancellation of gauge anomalies. The Yukawa matrices determine the masses and

CKM mixing angles of the ordinary quarks and leptons through the neutral compo-

nents of Hu = (H+
u , H0

u) and Hd = (H0
dH−

d ). Since the top quark, bottom quark and

tau lepton are the heaviest fermions in the SM, we assume that only the (3, 3) element

of the matrices λu, λd, λe are important. In this limit only the third family and the

Higgs fields contribute to the MSSM superpotential.

The SUSY scalar potential V is the sum of the F- and D-terms and reads

V =
∑

i

|Fi|2 +
1

2

∑

a

g2
aD

aDa (156)

where

Fi ≡
∂WMSSM

∂φi
, Da = φ†T aφ . (157)

Here we have assumed that φi transforms under a gauge group G with the generators

of the Lie algebra given by T a.
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a
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B − L B − L

HuHd 0 LHu -1

ūd̄d̄ -1 QLd̄ -1

LLē -1 QQūd̄ 0

QQQL 0 QLūē 0

ūūd̄ē 0 QQQQū 1

QQūūē 1 LLd̄d̄d̄ -3

ūūūēē 1 QLQLd̄d̄ -2

QQLLd̄d̄ -2 ūūd̄d̄d̄d̄ -2

QQQQd̄LL -1 QLQLQLē -1

QLūQQd̄d̄ -1 ūūūd̄d̄d̄ē -1

Table 1: Renormalizable F and D flat directions in the MSSM

Therefore the LHu direction is also D-flat.

The only other direction involving the Higgs fields and thus soft terms of the order

of µ is HuHd. The rest are purely leptonic, such as LLē, or baryonic, such as ūd̄d̄, or

mixtures of leptons and baryons, such as QLd̄. These combinations give rise to several

independent flat directions that can be obtained by permuting the flavor indices. For

instance, LLē contains the directions L1L2ē3, L2L3ē1, and L1L3ē2.

Along a flat direction gauge symmetries get broken, with the gauge supermultiplets

gaining mass by super-Higgs mechanism with mg = g〈φ〉. Several chiral supermulti-

plets typically become massive by virtue of Yukawa couplings in the superpotential; for

example, in the LHu direction one finds the mass terms Wmass = λu〈φ〉Qū+λe〈φ〉Hdē.

Of course, there may simultaneously exist several flat directions. For the purpose

of AD mechanism it is the lowest dimensional operator which determines the baryonic

charge of the eventual condensate. In what follows we will therefore mostly consider

a single flat direction.
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After the χs are produced, their energy redshifts. A χ produced at time τ1 with
energy mφ/2 will have energy E2 = (mφ/2)(a1/a2) = (mφ/2)(τ1/τ2)2/3 at time τ2, so

the comoving distribution in energy space is

dN

dE2
=

dN

dτ1

dτ1

dE2
= 6

√

2E2

mφ

Γτ2

mφ
Nφ(τ1) (τ2 < Γ−1

φ ), (2.4)

where N(τ) = n(τ)(a(τ)/ain)3. For τ1 <∼ Γ−1, we can use Nφ(τ1) " Nφ(ain). The

energy density in χs at some time τ < Γ−1
φ will be

ρχ(a) =
∫ mφ/2

dEE
dn

dE
"

3

5
Γφ(τ − τin)ρφ(ain)

(

ain

a

)3

≡
g∗π2

30
T 4. (2.5)

The maximum χ energy density (which occurs at τ " 2τin) is defined to be g∗π2T 4
max/30.

It is easy to see that between Tmax and Treh ρχ ∼ a−3/2, T ∼ a−3/8, and (Tmax/Treh)4

" αφ.

We assume that the χs have SU(Nc) gauge interactions among themselves with
coupling α ∼ 1/30. We would like to know how soon the χ distribution will have the

equilibrium form f(k) ∼ (eE/T +1)−1. We can get a qualitative answer by comparing
the expansion rate H to interaction rates, in which we make some attempt to include
factors of π and Nc in sections 2 and 3. We drop them in sections 4 and 5, where

the discussion is more approximate. A more accurate result could be obtained by
solving Boltzman equations, or perhaps other more appropriate equations [9], for the

particle phase space distributions.

p p′

q

k k′

Figure 1: χ scattering. Time runs from left to right

There are various 2 → 2 rates that could be compared to H , such as the anni-

hilation rate, which is slow, or the scattering rate, which is fast. In the comoving
rest frame, 2 → 2 processes redistribute energy because they do not take place in

the centre-of-mass frame. They can bring a group of particles into kinetic (but not
chemical) equilibrium.

The annihilation cross section for χs of energy " mφ/2 is

σann "
16Ncα2

m2
φ

, (2.6)
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Typically,

The general picture was originally discussed in [1], where the “angular” motion of φ is

associated to a baryon number charge. The nonrenormalizable operator is responsible for an

initial σ̇ != 0 , and then the field moves to a lower amplitude, where the dominant potential

term m2
φ|φ|2 is σ independent. This results in an approximately elliptical motion of the flat

direction in its complex plane (the amplitude slowly decreases due to the expansion of the

universe, so that φ is actually spiraling down towards the origin). For the following estimates,

we can assume that the amplitude of φ oscillates between the maximum φ0 and the minimal

value εφ0 in a timescale m−1
φ . The value ε = 0 correspond to a straight line radial motion

of φ in the complex plane (σ̇ = 0); in this case the phase σ can be rotated away, and φ

oscillates as a real field.In the supersymmetric case, the value of ε depends on the actual

potential, and on the initial conditions for φ. Values 10−3 <∼ ε <∼ 10−1 are typically found.

Analogously to what done for preheating, the works [37, 38] considered the excitation of

a single (complex) field χ, due to the coupling

∆V = g2|φ|2|χ|2 (4)

This interaction leads to a time dependent effective mass for the real and imaginary compo-

nents of χ,

m2
eff,χ = m2

χ + g2|φ (t) |2 (5)

(the “actual” mass mχ is at the electroweak scale, and can be neglected for these considera-

tions). The nonperturbative decay of the flat direction takes place whenever the frequency

of quanta of χ varies nonadiabatically, ω̇ >∼ ω2 . For relatively small momenta p, one finds

ω2 = p2 + m2
eff,χ # g2|φ (t) |2 . The ratio ω̇/ω2 is maximized when the amplitude of φ is

minimal. When this occur, we can estimate ω̇/ω2 # gεφ0mφ/g2ε2φ2
0 . Therefore, φ decays

nonperturbatively only if

ε <∼
mφ

gφ0
(6)

Since, mφ is at the electroweak scale, while φ0 is close to Planckian, even a very small angular

motion invalidates this inequality. Based on this consideration [37, 38], ref. [8] concluded

that the flat direction decays only perturbatively.

However, this conclusion strongly depends on the coupling (4) assumed in these analyses,

and in the resulting mass term (5). In the actual cases, the coupling is typically more

complicated. For instance, the interaction may result in a coupling between the real and

imaginary components of χ, or between different fields. In addition, the coefficients of this

couplings may depend also on the phase σ of the flat direction, and not just on its amplitude.
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φ̃T µ2
d φ̃

If C constant (M constant) no physical effect.

Otherwise

φ′T φ′ = φ̃′ T φ̃′+φ̃′ T Γ φ̃+φ̃T ΓT φ̃′+φ̃T C′ T C′ φ̃

Preheating from mixing: Even if the eigenvalues evolve adiabatically, quick

time dependence in the mass matrix → particle production

Nontrivial extension of the standard formalism (single field)

Nilles, M.P., Sorbo ’01

Toy situation: Minkowski, |φ| = const.,

M2 =

(

cos2 σ cosσ sinσ
cosσ sinσ sin2 σ

)

µ ≡
mφ√
2g|φ|

, p ≡
k

√
2g|φ|

ρprod

ρφ
$

2πµ2 sinh (2µτ)

2µτ

For µ = 10−14 (realistic)

complete decay after 5 rotations !

A.E. Gumrukcuoglu, K.A. Olive, MP, M. Sexton ’08

, r = 16 ε

Baryon, dark matter generation

Why don’t we know N ?

Fast (nonperturbative decay) within O (10) oscillations.

Thermalization on a much longer timescale

Slow (perturbative) decay, up to O
(

1010
)

oscillations.

Quick thermalization (?)

• Nonperturbative decay

Quantized coupled system

Mixing effects

Standard nonadiabaticity

preheating / gravitational production
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⇒ : H := ωi â†i âi

Occupation numbers Ni (t) = 〈â†i âi〉 =
(

β∗ βT
)

ii

Equations of motion:

α′ = −i ω α +
ω′

2ω
β − I α − J β

β′ = i ω β +
ω′

2ω
α − I β − J α

Plane wave (ω const.)

⇒ : H := ωi â†i âi

Occupation numbers Ni (t) = 〈â†i âi〉 =
(

β∗ βT
)

ii

Equations of motion:

α′ = −i ω α +
ω′

2ω
β − I α − J β

β′ = i ω β +
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α − I β − J α

Plane wave (ω const.)

⇒ : H := ωi â†i âi

Occupation numbers Ni (t) = 〈â†i âi〉 =
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)

ii

Equations of motion:

⇒ : H := ωi â†i âi

Occupation numbers Ni (t) = 〈â†i âi〉 =
(

β∗ βT
)
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Equations of motion:

α′ = −i ω α +
ω′

2ω
β − I α − J β

β′ = i ω β +
ω′

2ω
α − I β − J α

J
H
E
P
0
4
(
2
0
0
1
)
0
0
4

density operator H (see eq. (2.4)) in the basis of annihilation and creation operators

H =
(

a†
i , aj

)

(

Eil F †
jl

Fim ET
jm

) (

al

a†
m

)

. (2.22)

From eqs. (2.6), one sees that the N × N matrices E and F which enter in this

decomposition are given by

E =
1

2

(

h̃† h̃ + h† ω2 h
)

,

F =
1

2

(

h̃T h̃ + hT ω2 h
)

. (2.23)

We can now generalize the procedure adopted in the one field case. The matrix
that appears in eq. (2.22) can be put in diagonal form in a basis of new (time

dependent) annihilation/creation operators. Only when the hamiltonian is diagonal,
each pair of (redefined) operators can be associated to a physical particle, and used

to compute the corresponding occupation number. The explicit computation gives

E =
1

2

(

α† ω α + β† ω β
)

,

F =
1

2

(

αT ω β + βT ω α
)

, (2.24)

so that we found that expression (2.22) evaluates to

H =
1

2

(

a†, a
)

(

α† β†

βT αT

) (

ω 0

0 ω

) (

α β∗

β α∗

) (

a

a†

)

. (2.25)

In terms of the redefined annihilation/creation operators7

(

â

â†

)

≡
(

α β∗

β α∗

) (

a

a†

)

(2.28)

the hamiltonian is thus diagonal (remember that in eq. (2.5) ω was defined to be

diagonal), and, after normal ordering, it simply reads

H =

∫

d3 k ωi â
†
i âi . (2.29)

7The relation (2.28) is inverted through the matrix

(

α† −β†

−βT αT

)

, (2.26)

as can be easily checked from conditions (2.15). We thus see that also the relations

α† α − β† β = 1 , α† β∗ − β† α∗ = 0 (2.27)

hold for the whole evolution.
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α† α − β† β = 1 , α† β∗ − β† α∗ = 0 (2.27)

hold for the whole evolution.
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density operator H (see eq. (2.4)) in the basis of annihilation and creation operators

H =
(

a†
i , aj

)

(

Eil F †
jl

Fim ET
jm

) (

al

a†
m

)

. (2.22)
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1

2
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)

. (2.25)

In terms of the redefined annihilation/creation operators7
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(2.28)
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i âi . (2.29)
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, (2.26)

as can be easily checked from conditions (2.15). We thus see that also the relations

α† α − β† β = 1 , α† β∗ − β† α∗ = 0 (2.27)
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As we have said, the evolution of the system can be described by two sets of first
order differential equations. The first set is obtained by inserting eqs. (2.6) into the

definition of the conjugate momenta, eq. (2.3)

ḣ = h̃ − Γ h , (2.16)

where we have defined the matrix

Γ = CT Ċ , ΓT = −Γ . (2.17)

The second set of equations is obtained by rewriting eqs. (2.10) in terms of ϕi and Πi

˙̃h = −Γ h̃ − ω2 h . (2.18)

We can now use relations (2.13) and decouple the terms proportional to α̇ and

β̇, so to arrive to the final result

α̇ = −i ω α +
ω̇

2 ω
β − I α − J β ,

β̇ =
ω̇

2 ω
α + i ω β − J α − I β , (2.19)

where we have defined the matrices

I =
1

2

(√
ω Γ

1√
ω

+
1√
ω

Γ
√

ω

)

, IT = −I ,

J =
1

2

(√
ω Γ

1√
ω
−

1√
ω

Γ
√

ω

)

, JT = J . (2.20)

In the one field case, I = J = Γ = 0, and the above system reduces to the

equations for the two Bogolyubov coefficients

Ȧ =
ω̇

2 ω
e2 i

∫ η ω dη′

B , Ḃ =
ω̇

2 ω
e−2 i

∫ η ω dη′

A , (2.21)

already discussed in the previous literature (see i.e. [10]). In the one field case the
only source of nonadiabaticity is related to a rapid change of the only frequency ω(η),

so that the system is said to evolve adiabatically whenever the condition ω̇ # ω2

is fulfilled. In the present case, there are more sources of nonadiabaticity, related

to the fact that now the frequency Ωij is a N × N matrix. This is associated with
the presence of non-vanishing matrices I and J in the equations of motion for the

matrices α and β.
It is a straightforward exercise to show that the above equations (2.19) preserve

the normalization conditions (2.15), due to the properties IT = −I and JT = J .

In the one field case, the number of particles is given by the modulus square of
the second Bogolyubov coefficient, |B|2. We now show that also in the multi-field

case it is generally related to the matrix β. To see this, we decompose also the energy
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late times as seen in the figure. In contrast, the occupation number of the massive eigenstate

is initially growing, but it eventually decreases as the flat direction comes to a rest. We found

that n1 continues to decrease for larger values of x0. Since the mass of the massive eigenstate

is much greater than that of the flat direction, we are tempted to argue that the production

observed in the figure is an artifact of not having a perfectly adiabatic initial and final

state, so that n1 should be vanishing in the limit of x0 → ∞ . This issue, although very

interesting per se, does not affect our estimate of the decay time of the flat direction. For

any finite value of x0 , the numerical results give an upper bound on the amount of massive

quanta produced. We verified that even for x0 = 5 , the energy density produced in the

massless quanta is several orders of magnitude greater then one obtained for the massive

state. Therefore, we simply concentrate on the massless quanta, for which the result is

reliable (since n2 has saturated to a constant value).
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Figure 2: Spectra of massless quanta produced after N rotations of the flat direction.

In fig. 2, we show the spectra of massless quanta produced after N rotations of the

flat direction. The spectra are characterized by an exponentially growing resonance band
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Actual MSSM Flat directions

• If a single flat direction excited, no “rotation” in unitary gauge

• If more flat directions excited, more fields involved in rotation

Eg. LLddd-QQQL

Flat potential for (among other combinations)

〈νe〉 = 〈µ〉 = 〈dc
1〉 = 〈sc

2〉 = 〈bc
3〉 = φ eiσ

〈t2〉 = 〈d3〉 = 〈c1〉 = 〈τ〉 = φ′ eiσ′

54 real fields obtain mass from D−terms (5 mass matrices, M (σ, σ′))

• 12 Goldstone bosons (al gauge symmetries broken)

• 12 Massive fields

• 22 Massless fields coupled in the mass matrix

• 8 Decoupled massless fields (do not enter in M)
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B − L B − L

HuHd 0 LHu -1

ūd̄d̄ -1 QLd̄ -1

LLē -1 QQūd̄ 0

QQQL 0 QLūē 0

ūūd̄ē 0 QQQQū 1

QQūūē 1 LLd̄d̄d̄ -3

ūūūēē 1 QLQLd̄d̄ -2

QQLLd̄d̄ -2 ūūd̄d̄d̄d̄ -2

QQQQd̄LL -1 QLQLQLē -1

QLūQQd̄d̄ -1 ūūūd̄d̄d̄ē -1

Table 1: Renormalizable F and D flat directions in the MSSM

Therefore the LHu direction is also D-flat.

The only other direction involving the Higgs fields and thus soft terms of the order

of µ is HuHd. The rest are purely leptonic, such as LLē, or baryonic, such as ūd̄d̄, or

mixtures of leptons and baryons, such as QLd̄. These combinations give rise to several

independent flat directions that can be obtained by permuting the flavor indices. For

instance, LLē contains the directions L1L2ē3, L2L3ē1, and L1L3ē2.

Along a flat direction gauge symmetries get broken, with the gauge supermultiplets

gaining mass by super-Higgs mechanism with mg = g〈φ〉. Several chiral supermulti-

plets typically become massive by virtue of Yukawa couplings in the superpotential; for

example, in the LHu direction one finds the mass terms Wmass = λu〈φ〉Qū+λe〈φ〉Hdē.

Of course, there may simultaneously exist several flat directions. For the purpose

of AD mechanism it is the lowest dimensional operator which determines the baryonic

charge of the eventual condensate. In what follows we will therefore mostly consider

a single flat direction.
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Actual MSSM Flat directions

• If a single flat direction excited, no “rotation” in unitary gauge

• If more flat directions excited, more fields involved in rotation

Eg. LLddd-QQQL

Flat potential for (among other combinations)
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3〉 = φ eiσ

〈t2〉 = 〈d3〉 = 〈c1〉 = 〈τ〉 = φ′ eiσ′
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Γφ ∼ m3
φ/φ2 gives decay after 1011 rotations !

• Need to study nonlinear effects (lattice simulations)
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Simplest example: two U (1) flat directions
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〈Φ1〉 = 〈Φ2〉 = F eiΣ/2

〈Φ3〉 = 〈Φ4〉 = G eiΣ̃/2

{Φi, Aµ}

8 + 2 degrees of freedom ≡ 1 Massive gauge field (3)
2 Flat directions (4)
1 Higgs

2 Light fields
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• Do the large quartic terms prevent preheating, or do we excite
combinations of terms for which Da remains small ?

• Quicker depletion of the zero mode ? (diagrams involving φ0)

• Combinations of cubic and quartic terms. Do some other
fields develop vevs ?
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Conclusions

• Several open problems in reheating. In particular, thermalization after

nonperturbative inflaton decay

• Ongoing effort to study reheating in particle physics motivated models

• MSSM flat directions deserve study. Generally present, and naturally

excited during inflation. Nonperturbative decay seems dominant,
due to mixing effects
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