## Chern-Simons theory: That obscure object of desire

## University of California <br> @ Davis <br> Davis, April 14, 2008

```
J. Zanelli
CECS - Valdivia (Chile)
```



1977 film about a neurotic relationship between a middle aged man and a beautiful young woman who drives him crazy.

She seduces and promises but never yields to the guy's wishes.
The situation repeats itself endlessly, but with a new surprising twist every time.

It is frustrating and nerve-wracking, but it's also addictive.

## Chern-Simons theory: That obscure object of desire

## University of California <br> @ Davis <br> Davis, April 14, 2008

```
J. Zanelli
CECS - Valdivia (Chile)
```

A typical Yang-Mills action is something like this:

$$
I[A]=\frac{1}{4 g} \int_{M^{4}} \sqrt{g^{\mu}} g^{\mu c} g^{\nu / \beta} \gamma_{a b} F^{a}{ }_{\mu \nu} F^{b}{ }_{\alpha \beta} d^{4} x
$$

A typical Chern-Simons action is something like this:

$$
I[A]=\kappa \iint_{M^{3}} A \wedge d A+{ }_{3}^{2} A \wedge A \wedge A
$$

or this...

$$
I[A]=\circledast \int_{M^{2 n+1}}\left\langle A \wedge(d A)^{n}+c_{1} A^{3} \wedge(d A)^{n-1}+\cdots c_{n} y^{2 n+1}\right\rangle
$$

Chern-Simons lagrangians define gauge field theories in a different class:

- They are explicit functions of the connection $(A)$, not local functions of the curvature $(F)$.
- Yet, they yield gauge-invariant field equations.
- Related to homotopic/topological invariants on fiber bundles: characteristic classes.
- They require no metric; just a Lie algebra (not necessarily semisimple); no adjustable parameters, conformally invariant. More fundamental(?)
- They are very sensitive to the dimension.
- They naturally couple to branes.
- Their quantization corresponds to sum over holonomies in an embedding space.
- CS theories are not exotic but a rather common occurrence in nature: Anomalies, quantum Hall effect, 11 D supergravity (CJS), superconductivity, $2+1$ gravity, $2 n+1$ gravity, all of classical mechanics,...


## 1. CS action in $0+1$ dimensions

## E-M coupling



Gauge invariance $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \Omega(x)$, is ensured by current conservation, $\partial_{\mu} j^{\mu}=0$, provided $\Omega(z(+\infty))=\Omega(z(-$ $\infty)$ ).

Not quite gauge invariant, but quasi-invariant.

$$
I[z]=\int j^{\mu} A_{\mu} d^{4} x
$$

This expression is invariant under

- Lorentz transformations, $\left(\Lambda^{\mu}{ }_{v}\right)$
- Gauge transformations $A \longrightarrow A+d \Omega(\mathrm{x})$
$\bullet$ Gen. coordinate transf. $z^{\mu} \longrightarrow z^{\prime \mu}(z)$
This coupling is consistent with the minimal derivative substitution

$$
p_{\mu} \rightarrow p_{\mu}-e A_{\mu}(z), \quad \partial_{\mu} \rightarrow \partial_{\mu}+i e A_{\mu}(z)
$$

Good for quantization:

$$
\partial_{\mu} \Psi \rightarrow\left(\partial_{\mu}+i e A_{\mu}(z)\right) \Psi
$$

## The simplest Chern-Simons action

Take

$$
I[A]=\kappa \int_{M^{2 n+1}} A \wedge(d A)^{n}+c_{1} A^{3} \wedge(d A)^{n-1}+\cdots+c_{n} A^{2 n+1}
$$

for an abelian connection and set $n=0$ :

$$
I[A]=e \int_{\Gamma} A(z) \quad \underline{0}+\mathbf{1} \text { CS theory }
$$

Is this a sensible action?

$$
1=0 ? ? ?
$$ not exactly...

Varying the action,

$$
\delta I[A]=e \int_{\Gamma} \delta A(z)=0
$$

This only means $\delta A=d \Omega$ with $\Omega(-\infty)=\Omega(\infty)$, or $\partial \Gamma=0$.

The classical configurations are arbitrary $U(1)$ connections with PBC or living in a periodic $1 d$ spacetime

Alternatively, $I$ can also be viewed as an action for the embedding coordinates $z^{\mu}, I[z]=e \int_{\Gamma} A(z)$

## Varying the action,

$$
\begin{aligned}
& \delta I[z]=e \int_{\Gamma} \delta z^{\mu}\left(\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}\right) z^{v}+e A_{\mu} \delta z^{\mu} \\
& \delta I=0 \Rightarrow F_{\mu \nu}(z) \dot{z}^{v}=0
\end{aligned}
$$

The classical orbits are those with zero Lorentz force: $\dot{E}+\stackrel{\rho}{\mathrm{V}} \times \vec{B}=0$ the electric and magnetic forces cancel each other out.
$N . B .:$ In order to obtain the equation of motion, $z$ must satisfy periodic boundary conditions.

$$
A_{\mu}(z) \delta z^{\mu}{ }_{\partial \Gamma}=0
$$

A bit about the quantum theory

$$
Z[z]=\int_{P B C}[\mu(z)] \exp \left(\frac{i}{\eta} I[z]\right)=\int_{P B C}[\mu(z)] \exp \left(\frac{i e}{\eta} \oint A(z)\right)
$$

Thus, the integral is dominated by those orbits for which the holonomies are quantized:

$$
\frac{e}{\eta} \oint_{S^{1}} A(z)=2 n \pi \Rightarrow e \int_{D^{2}} F=2 n \pi \eta
$$

Does this describe a physically sensible system?
What are the degrees of freedom?

$$
I[z]=e \int_{\Gamma} A_{\mu}(z) \frac{\mathbf{c}^{2}}{} d \tau
$$

Let, $z^{\mu}=\left(z^{0}=t, z^{i}\right), i=1,2, \cdots, 2 s$.

$$
I[z]=e \int A(z)=e \int_{\Gamma}\left[A_{0}(z)+A_{i}(z) \bar{z}\right] d t,
$$

This action describes a mechanical system:

$$
I[z]=\int_{\Gamma}\left[p_{i} q^{q}-H(z)\right] d t,
$$



- Any mechanical system with $s$ degrees of freedom can be described by a $0+1 \mathrm{C}-\mathrm{S}$ action in a $(2 s+1)$-dimensional target space. (Jackiw-Percacci '87)

What is the meaning of the flux quantization?

$$
e \oint_{S^{1}} A(z)=2 n \pi \eta
$$

Substituting $e A_{0}(z)=-H$ and $e A_{i}(z)=p_{i}$,

$$
\oint_{S^{1}}\left[p_{i} d q^{i}-H d t\right]=2 n \pi \eta
$$

Bohr-Sommerfeld quantization rule

$$
\uparrow z^{0}=t
$$

## 0+1Chern-Simons

## Classical mechanics

Vanishing Lorentz force
 Hamilton's equations

## Gauge invariance

## Invariance under canonical transf.

Gen. coordinate transformations

Invariance under time reparametrizations

Flux/holonomy quantization

Bohr-Sommerfeld quantization

## More dimensions...



A CS action in 2+1 dimensions can be viewed as a coupling between a brane and an external gauge field

$$
\begin{aligned}
I[z] & =\int j^{\mu \nu \lambda}\left(A_{\mu} \partial_{\nu} A_{\lambda}\right) d^{n} x \\
& =\kappa \int_{\Gamma^{3}} A(z) d A(z)
\end{aligned}
$$

Invariant under:

- Gen. coord. transf. on the worldvolume $z^{\mu} \rightarrow z^{\mu \mu}(z)$
- Lorentz transformations on the target space ( $\Lambda^{\mu}{ }_{v}$ )
- Gauge transformations $A \rightarrow A+d \Omega$ [quasi-invariant]

For $D=3,5,7, \ldots$ New possibilities arise:


- Quantization? (open problem)


## 2. CS action in $2 n+1$ dimensions

## Non abelian CS action in $2 n+1$ dimensions

$$
I[A]=\kappa \int_{M^{2 n+1}} A \wedge(d A)^{n}+c_{1} A^{3} \wedge(d A)^{n-1}+\cdots+c_{n} A^{2 n+1}
$$

The coefficients $c_{1}, \ldots c_{n}$ are fixed rational numbers,

$$
L_{2 n+1}^{C S}(A)=(n+1) \kappa \int_{0}^{1} d t A \wedge F_{t}^{n+1}
$$

where

$$
F_{t}=t d A+t^{2} A^{2}
$$

Invariant under gauge transformations (up to boundary terms)

$$
A^{\prime}=g^{-1} A g+g^{-1} d g, \quad g(x) \in G
$$

## Classical CS dynamics <br> $$
I[A]=\int_{\Gamma^{2 n+1}} L(A)
$$

| $L$ | $\delta L=0$ | $A$ |
| :---: | :---: | :---: |
| $\underline{0+1} \mathrm{eA}$ | $\delta A=d \Omega$ | Arbitrary <br> connection |
| $\kappa A d A+{ }_{3}^{2} A \wedge A \wedge A$ | $F=0$ | Pure gauge, <br> nonpropagating, <br> nondegenerate |
| $\frac{2 n+1}{\kappa A(d A)^{n}+c_{1} A^{3}(d A)^{n-1}+\cdots+c_{n} A^{2 n+1}}$ | $F^{n+1}=0 \quad$Nontrivial, <br> propagating, <br> degenerate |  |

## Degeneracy of CS theories $(D=2 n+1 \geq 5)$

The problem arises from the fact that for $D=2 n+1$ with $n \geq 2$, the field equations are nonlinear in the curvature,

$$
G_{k} F^{n}=0
$$

where $G_{k}$ are the generators of the Lie algebra.
The linearized perturbations around a given classical configuration $F_{0}$, obey

$$
\left.G_{k} F_{0}^{n-1} \delta F\right)=0
$$

The dynamics depends on the form of $F_{0}$.

## Consequences of the degeneracy

- Unpredictability of evolution

Freezing out of degrees of freedom

- Loss of information about the initial data
- Irreversibility of evolution
$0+1 \quad e \int A=e \iint F=2 k \pi \eta$
point particle (0-brane)

$$
e \int A=e \iint F=2 k \pi \eta
$$

Dirac quant. condition Bohr-Sommerfeld rule
$\stackrel{2 n+1}{2 n-b r a n e}$

Finite, power- counting renormalizable
$2+1 \quad A=g_{k}^{-1} d g_{k}, \quad g \in$ Top. class membrane

## 3. CS Gravity actions in $2 n+1$ dimensions

## 1. Equivalence Principle:

- Spacetime is locally approximated by Minkowski space and has the same (local) Lorentz symmetry.
- GR is the oldest known nonabelian gauge theory; gauge group $S O(3,1)$.

2. Gravitation should be a theory whose output is the spacetime geometry. Therefore, it is best to start with a theory that makes no assumptions about the local geometry.
$1 \& 2 \rightarrow$ Chern-Simons theory is probably a better choice

There are two characteristic classes associated to the rotation groups $S O(s, t)$ : the Euler and the Pontryagin classes. Associated with each of them there are the corresponding CS actions

Action (first order formalism ):

$$
\left.\begin{array}{rl}
I[e, \omega]= & \kappa \int_{M^{D}} L_{D}(e, d e, \omega, d \omega) \\
& \begin{array}{c}
\text { Vielbein } \\
\text { (metricity) }
\end{array}
\end{array} \begin{array}{c}
\text { Connection } \\
\text { (parallelism) }
\end{array}\right)
$$

$$
R^{a b}=d \omega^{a b}+\omega_{c}^{a} \wedge \omega^{c b}=\text { Curvature 2-form }
$$

$$
T^{a}=d e^{a}+\omega^{a}{ }_{b} \wedge e^{b}=\text { Torsion 2-form }
$$

## Steps for constructing CS gravities:

1. Combine the vielbein and spin connection into a connection for the $d S, A d S$, or Poincaré group:

$$
A=l^{-1} e^{a} \mathrm{~J}_{a}+\frac{1}{2} \omega^{a b} \mathrm{~J}_{a b}
$$

2. Select the bracket that corresponds to the invariant characteristic class to be used (Euler or Pontryagin), e.g.,

$$
\mathrm{J}_{a_{1}} \mathrm{~J}_{a_{2} a_{3}} \cdots \mathrm{~J}_{a_{D-1} a_{D}} \stackrel{V}{=} \varepsilon_{a_{1} \cdots a_{D}}
$$

3. Write down the lagrangian

$$
L(e, \omega)=(n+1) \int_{0}^{1} d t A \wedge F_{t}^{n}
$$

## CS gravities ( $D=2 n-1$ ) (summary)

- No dimensionful constants (scale invariant)
- No arbitrary adjustable/renormalizable constants
- Possess black hole solutions $\Lambda=-\# l^{-D / 2}<0$
- Admit $\Lambda \neq 0$ and $\Lambda \rightarrow 0(l \rightarrow \infty)$ limit
- Admit SUSY extensions for $\Lambda \leq 0$ and any odd $D$, and yield field theories with spins $\leq 2$ only
- Give rise to acceptable $D=4$ effective theories


## 4. Coupling to matter sources

It is a beautiful feature of CS theories the fact that they possess no free adjustable coupling constants.
...and it is also one of the difficulties when trying to make sense of them


Quantized
Fixed rational numbers $\sim O(1)$
But doesn't mean one cannot have interactions

Nothing prevents putting together CS actions of different dimensions,

$$
I[A]=\sum_{r=0} \kappa_{r} \int_{M^{r r+1}}\left\langle A \wedge(d A)^{r}+c_{1} A^{3} \wedge(d A)^{r-1}+\cdots+c_{n} A^{2 r+1}\right\rangle
$$

But, what would this mean?
Consider the simplest case:

$$
I[A]=\kappa_{3} \int_{M^{2+1}}\left\langle A \wedge d A+\frac{2}{3} A^{3}\right\rangle+\kappa_{1} \int_{M^{0+1}} \bar{A}
$$

## $A \in G$

where $\bar{A}$ is the restriction of $A$ to an abelian subalgebra

$$
\bar{A} \in G_{0} \subset G
$$

The effects of coupling to this 0 -brane are

1. Breaking the symmetry: $G \rightarrow G_{0}$
2. Introducing a topological defect.


For example, if $\mathcal{G}=S O(2,2)$ the 3 d part describes $2+1$ gravity, and the defect is a sort of 'conical' singularity...

Under closer scrutiny, it can be seen that the defect is the result of an identification by an abelian subgroup of the $A d S_{3}$ group: a $2+1$ black hole!

The mass and angular momentum are related to the strength of the coupling constant $\left(\kappa_{l}\right)$ and the particular subgroup of $S O(2,2)$ that is used.

Coupling more $2 n$-branes in this way, more complex structures can be produced (black holes, branes, ...?)

## 5. Summary

- CS actions have been used in physics much longer than one usually thinks: e-m coupling, all of classical mechanics!
- CS theories can be viewed as boundary theories coming from topological field theories in even $D=2 n$ manifolds.
- They have no free adjustable parameters and require no metric structure.
- Degeneracy for $D \geq 5$ : limited predictability, irreversible loss
- fheferees of (reedom, dynamical dimensional reduction. couplings, all fields have spins $\leq 2$ and the metric is not a fundamental field but a condensate...
- The natural way to couple CS theories is to $2 n$-branes.
- The different branes produce topological defects of codimension $2,4, \ldots$
- They break supersymmetry down to $1 / 2,1 / 4, \ldots$ of the one in the highest dimensional CS form.

CS theories are so exceptional, it's not only worth studying them. It is also understandable if one looses his mind because of them...

Thanks!

