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Why Unparticles? 

• Be prepared for all signatures at the LHC!

• A scheme discussed by Georgi* to motivate 
unusual collider signatures at the LHC.

• Centerpiece of the scheme involves a 
decoupled scale invariant sector.

• Our work centers on distinguishing Unparticle 
collider signatures from the SM and beyond.

*Georgi: hep-ph/0703260 and 0704.2457



The Gist

• In this talk we will present kinematic variables 
and cuts to distinguish scale invariance in 
            signals at the LHC.

• Key point:  Unparticles do not have a mass scale 
associated with the missing energy.  The SM and 
BSMs do.  We exploit this to provide clean 
signatures.

• First a quick review on the theory behind 
Unparticles. 
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Paper Title: Mass Scales and Unparticle Physics at the LHC

Abstract

We show how to distinguish signatures of Unparticle physics at the LHC from
the Standard Model and beyond. The key point is models with Unparticle
physics do not have a definitive mass scale associated with the missing energy.
The Standard Model and models of new physics (such as SUSY, LH, etc.)
each have such a scale. To clarify the collider signatures, we provide a set of
kinematic variables and cuts useful in distinguishing scale invariance in l+l−ET/
signals at the LHC. We also show how Unparticle physics can potentially be
seen with as little as 10 fb−1 of data at the LHC. Finally, we also provide
stringent bounds on Unparticle physics from LEP and the TeVatron.

Outline of Notes

These notes are organized in the following way:

• Unparticle Theoretical Background

• Appropriate Collider Signature/Relevant Effective Operators

• Standard Model/Beyond the Standard Model processes from which to
discriminate Unparticles

• Search of Unparticle Physics

– Plots

– Kinematic Variables

– Signal to Background Ratio of LHC Signatures

– Final Plots with Detector/Acceptance Cuts

• Comments about Scale Invariance at the ILC

• Appendices

– Unparticle Feynman Rules/Amplitudes

– Bounds for LEP and the TeVatron

– Notes on Monte-Carlo Implementation

– Phase Space Equivalence Proof
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Scale Invariant Scheme
SM and theory with a non-
trivial IR fixed point (Banks-
Zaks fields) interact through 

heavy particles of mass 
scale,       .

Below       interactions 
have the form:                

say are well understood by many experts in scale invariant field theories.5 I hope to make
it common knowledge among phenomenologists and experimenters. My goal here is not to
do serious phenomenology myself, but rather to describe very clearly a physical situation
in which phenomenology is possible in spite of the essential strangeness of unparticle theo-
ries. And while my motivation is primarily just theoretical curiosity, the scheme I discuss
could very well be a component of the physics above the TeV scale that will show up at
the LHC. To my mind, this would be a much more striking discovery than the more talked
about possibilities of SUSY or extra dimensions. SUSY is more new particles. From our
4-dimensional point of view until we see black holes or otherwise manipulate gravity, finite
extra dimensions are just a metaphor.6 Again what we see is just more new particles. We
would be overjoyed and fascinated to see these new particles and eventually patterns might
emerge that show the beautiful theoretical structures they portend. But I will argue that
unparticle stuff with nontrivial scaling would astonish us immediately.

Here is the scheme. The very high energy theory contains the fields of the standard
model and the fields of a theory with a nontrivial IR fixed point, which we will call BZ
(for Banks-Zaks) fields. The two sets interact through the exchange of particles with a large
mass scale MU . Below the scale MU , there are nonrenormalizable couplings involving both
standard model fields and Banks-Zaks fields suppressed by powers of MU . These have the
generic form

1

Mk
U

OsmOBZ (1)

where Osm is an operator with mass dimension dsm built out of standard model fields and OBZ

is an operator with mass dimension dBZ built out of BZ fields. The renormalizable couplings
of the BZ fields then cause dimensional transmutation as scale-invariance in the BZ sector
emerges at an energy scale ΛU . In the effective theory below the scale ΛU the BZ operators
match onto unparticle operators, and the interactions of (1) match onto interactions of the
form

CU ΛdBZ−dU
U

Mk
U

OsmOU (2)

where dU is the scaling dimension of the unparticle operator OU .7 The constant CU is a
coefficient function. We are interested in the operators of the lowest possible dimension,
which have the largest effect in the low energy theory, so we will assume that OU is one
such. The effective field theory interaction (2) is a good starting point in our search for
unparticle stuff, for two reasons. Because the BZ fields decouple from ordinary matter at
low energies, the interaction (1) should not effect the IR scale invariance of the unparticle.
And (1) seems likely to be allowed experimentally for sufficiently large MU . If MU is large
enough, the unparticle stuff just doesn’t couple strongly enough to ordinary stuff to have

5See, for example, [4]. But note that one reason that it is difficult to extract unparticle physics from the
beautiful formal works on conformal theory is that these papers often have in mind the scheme described in
footnote 2.

6Infinite extra dimensions, however, can have unparticle-like behavior. See [6].
7For now we assume for simplicity of presentation that OU is a Lorentz scalar. See (22).
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Relevant couplings of the BZ 
fields cause dimensional 

transmutation.  Scale-invariance 
emerges at      .
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Additional Points:
• Because the BZ fields are decoupled from the SM, 

the IR scale invariance of the Unparticles should 
not be effected.  (For a large enough       the 
Unparticles should be suppressed enough not to 
be seen in experiment.)

• Unparticle effects on the SM can given with a 
single insertion of                .               
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coefficient function. We are interested in the operators of the lowest possible dimension,
which have the largest effect in the low energy theory, so we will assume that OU is one
such. The effective field theory interaction (2) is a good starting point in our search for
unparticle stuff, for two reasons. Because the BZ fields decouple from ordinary matter at
low energies, the interaction (1) should not effect the IR scale invariance of the unparticle.
And (1) seems likely to be allowed experimentally for sufficiently large MU . If MU is large
enough, the unparticle stuff just doesn’t couple strongly enough to ordinary stuff to have

5See, for example, [4]. But note that one reason that it is difficult to extract unparticle physics from the
beautiful formal works on conformal theory is that these papers often have in mind the scheme described in
footnote 2.

6Infinite extra dimensions, however, can have unparticle-like behavior. See [6].
7For now we assume for simplicity of presentation that OU is a Lorentz scalar. See (22).
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been seen. What happens as we lower MU or raise our machine energy and this peculiar
stuff can be produced by interactions of ordinary particles?

If the IR fixed point is perturbative, we may be able to calculate the dUs and CUs. But
typically the matching from the BZ physics to the unparticle physics will be a complicated
strong interaction problem, like the matching from the physics of high-energy QCD onto the
physics of the low-energy hadron states. In that case, we should be able to estimate these
constants very roughly by including the appropriate geometrical factors (powers of 4π and
that sort of thing - we will return to this below), but detailed calculation will be impossible.

Now we can ask what physics this produces in the low energy theory below ΛU . We expect
that the virtual effects of fields with nontrivial scaling will produce odd forces. But here
I consider what it looks like to actually produce the unparticle stuff. The most important
effects will be those that involve only one factor (in the amplitude) of the small parameter
in (2),

CU ΛdBZ−dU
U

Mk
U

(3)

from a single insertion of the interaction (2) in some standard model process. The result will
be the production of unparticle stuff, which will contribute to missing energy and momentum.
To calculate the probability distribution for such a process, we need to know the density of
final states for unparticle stuff. In the low energy theory described above, this is constrained
by the scale invariance. Consider the vacuum matrix element

〈0|OU(x) O†
U(0) |0〉 =

∫

e−ipx |〈0|OU(0) |P 〉|2 ρ
(

P 2
) d4P

(2π)4
(4)

where |P 〉 is the unparticle state with 4-momentum P µ produced from the vacuum by OU .
Because of scale invariance, the matrix element (4) scales with dimension 2dU , which requires
that

|〈0|OU(0) |P 〉|2 ρ
(

P 2
)

= AdU θ
(

P 0
)

θ
(

P 2
) (

P 2
)dU−2

(5)

This is the appropriate phase space for unparticle stuff. (5) should remind you of the phase
space for n massless particles,8

(2π)4δ4

(

P −
n

∑

j=1

pj

)

n
∏

j=1

δ
(

p2
j

)

θ
(

p0
j

) d4pj

(2π)3
= An θ

(

P 0
)

θ
(

P 2
) (

P 2
)n−2

(6)

where

An =
16π5/2

(2π)2n

Γ(n + 1/2)

Γ(n − 1) Γ(2n)
(7)

The zero in An for n = 1 together with the pole in P 2 reproduce the δ(P 2) in 1-particle
phase space if the limit n → 1 is approached from above

lim
ε→0+

ε θ(x)

x1−ε
= δ(x) (8)

8The left hand side has an extra (2π)4 compared to the definition in the particle date book.
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Thus we can describe the situation concisely as follows:

Unparticle stuff with scale dimension dU looks like a

non-integral number dU of invisible particles.
(9)

In fact, we may as well identify the A in (5) with the A in (7), and thus adopt (7) for
non-integral n as the normalization for AdU . This is purely conventional because a different
definition could be absorbed in the coefficient function CU in (2), but this choice fixes the
normalization of the field OU in a way that incorporates the geometrical factors that go with
dimensional analysis, although the combinatoric factors may be wildly wrong.

To illustrate the procedure in a realistic situation consider the decay t → u + U of a t
quark into a u quark plus unparticles of scale dimension dU from the coupling9

i
λ

ΛdU
u γµ(1 − γ5) t ∂µOU + h.c. (10)

where the constant λ

λ =
CU ΛdBZ

U

Mk
U

(11)

(which in this particular case is dimensionless) contains most of the factors from the matching
onto the low energy theory. We can ignore the mass of the u quark, so the final state densities
are

dΦu(pu) = 2π θ
(

p0
u

)

δ
(

p2
u

)

(12)

dΦU(pU) = AdU θ
(

p0
U

)

θ
(

p2
U

) (

p2
U

)dU−2
(13)

The way the phase space factors compose in my normalization is

dΦ(P ) =

∫

(2π)4δ4

(

P −
∑

j

pj

)

∏

j

dΦ(pj)
d4pj

(2π)4
(14)

and the differential decay rate is

dΓ =
|M|2

2M
dΦ(P ) (15)

where M is the invariant matrix element. Suitably averaged over initial spin and summed
over final spin this gives

dΓ

dEu
=

AdUm2
t E2

u |λ|
2

2π2 Λ2dU
U

θ (mt − 2Eu)

(m2
t − 2mtEu)

2−dU
(16)

We are primarily interested in the shape as a function of Eu, so we will plot d lnΓ/dEu which
has the simple form

1

Γ

dΓ

dEu
= 4 dU(d2

U − 1) (1 − 2Eu/mt)
dU−2E2

u/m
2
t (17)
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Devin Walker Unparticle Analysis 3

For these notes with integer dU , n′, we will use the following differential cross
section for p1 + p2 → n final state SM particles + n′ Unparticles.

dσ =
1

2λ1/2(s, m2
1, m

2
2) (2π)3n−4

∑

|M|2δ4(p1 + p2 − PU −
n

∑

i=1

pi)
n

∏

i=1

d3pi

(2Ei)

×
d4PU

(2π)4
(2π)4 δ4(PU −

n′

∑

j=1

lj)
n′

∏

j=1

δ(l2j ) θ(l0j )
d4lj

(2π)3
(5)

Thus, when considering “fractional” unparticles (dU , n′ is a fraction), we use
the following phase space

dσ =
1

2λ1/2(s, m2
1, m

2
2) (2π)3n−4

∑

|M|2δ4(p1 + p2 − PU −
n

∑

i=1

pi)
n

∏

i=1

d3pi

(2Ei)

× AdU θ(P 2
U)θ(P 0

U)(P 2
U)dU−2 d4PU

(2π)4
(6)

where

AdU =
16π2√π

(2π)2dU

Γ(dU + 1
2)

Γ(dU − 1)Γ(2dU)
(7)

Under relation ?? the two phase spaces are exact.

Appropriate Collider Signatures

In this section, I outline the reasoning involved for selecting the collider sig-
natures and effective operators studied.

In these notes we focus on distinct Unparticle signals at the LHC. In gen-
eral, at the LHC QCD events dominate and inherently yield to jet mis-
measurement. Since Unparticles are effectively n-massless, invisible particles,
the missing energy can be small. Suppose we assume a reasonable 10% jet
energy mismeasurement. Unparticle signals can be potentially be obscured.2

Thus, we consider cleaner electroweak processes whose energy and momen-
tum can be measured more accurately. Specfically, we choose l+l−ET/ final
states.

2For some of the work that has appeared in the literature, full detector/event hadroniza-
tion simulations are needed to see if the Unparticle signals can be seen.
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The Plan
• To suggest kinematic variables and cuts useful in 

elucidating scale invariance at the LHC. 

• Searching for Unparticles:

• Constrain Unparticles with LEP.  Will find highly 
suppressed couplings to the SM.   

• Because of this, consider only Unparticles in the final 
state.  Searching for Unparticles is similar to searching 
for      massless, invisible particles.

• Emphasize:  Unparticles do not have a mass scale 
associated with the missing energy.  All SM/BSM 
processes have such a scale.  This will provide clean 
Unparticle signatures. 

I. INTRODUCTION

Place a short review of the theoretical aspects of Unparticles

There have been many papers on this subject. Papers XYZ looked at ABC, etc. Here we

make the simple point that Unparticle physics, or even sectors decoupled from the standard model

with...., generate scale invariance at LHC signatures. We make the simple point that the missing

energy does not have a mass scale. All other form of new physics beyond the SM does. Such is

exotic.

In the forthcoming section, we detail our strategy to search for signatures of Unparticles at the

LHC. Next, in Section III, we constrain Unparticles with LEP and the TeVatron. We will find

our bounds to be the most stringent as compared to the literature. In Section IV we discuss at

length the relevant mass scales associated with the Standard Model backgrounds. By definition,

Unparticles do not have such a scale. We use this in the following section to clearly distinguish

Unparticles from the Standard Model in Section V. The same fact can be used to distinguish

Unparticles from models of new physics. For definiteness, we differentiate Unparticle signals from

the MSSM in Section VI. In Section VII, we use the kinematic variables and cuts developed in the

previous two sections to show how to discover Unparticles early in the LHC’s run. We close out

with a note on ILC in Section VIII. A summary of our results follows.

II. SEARCH FOR UNPARTICLE PHYSICS

Our goal is to suggest kinematic variables and cuts useful in elucidating signatures of Unparticle

physics at the LHC. For definiteness, we use the Unparticle scenario of [1]. Kinematically, observing

Unparticles is akin to searching for dU massless, invisible particles. Since the coupling of Unparticles

to the Standard Model is highly suppressed (see the Appendix), we only consider Unparticles in

the final state. Thus, we look for signatures of missing transverse energy, ET/ , without a definitive

mass scale. Now, having dU Unparticles with n-final state jets can be potentially problematic. If

we assume a reasonable 10% mismeasurement of each jet momentum, [2] the scale invariant nature

of the missing energy, especially for dU ∼ 1, could be potentially obscured. Instead we consider the

easier to identify l+l−ET/ final states. Such processes have electroweak couplings and are relatively

suppressed to processes with n-jets and QCD couplings. We will see that this will not be a problem.

In addition, the backgrounds for this final state are extremely well known and calculable.

The simplest way to generate l+l− final states is with a virtual photon or Z boson. We couple

2



More Plans...
• We only consider only              final states.  Why?

•      Unparticles + n jets is potentially problematic.  
Assume a reasonable 10% jet mismeasurement.   The 
scale invariant nature for           (single massless 
Unparticle) can be potentially obscured.  

•  Processes are suppressed by electroweak couplings.  
(Not a problem... coming soon.)

• Generate              final states by coupling to the virtual 
photon/Z.
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we assume a reasonable 10% mismeasurement of each jet momentum, [2] the scale invariant nature

of the missing energy, especially for dU ∼ 1, could be potentially obscured. Instead we consider the
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The simplest way to generate l+l− final states is with a virtual photon or Z boson. We couple
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More Plans
• Important Operators

• Representative Feynman Graph

the Unparticles directly to the virtual boson so the full center-of-mass energy can be enjoyed by the

novel states. Such a scenario allows the LHC to maximally probe Unparticle effective operators.

For simplicity, without loss of generalization, we consider only scalar Unparticle operators. The

relevant operators [1] are,

O1 =
CU ΛdBZ−dU

U

Mk
ZµνZµν OU (1)

O2 =
C′
U

ΛdBZ−dU
U

Mk
AµνAµν OU (2)

O3 =
C′′
U

ΛdBZ−dU
U

Mk
m2

Z ZµZµ OU (3)

Here we have defined Vµν ≡ ∂µVν −∂νVµ where Vµ = (Aµ, Zµ). From [1], dBZ , dU and k are defined

as: (More on the BZ and k indices) For simplicity, we assume CU = C′
U

= C′′
U
. We can visually

represent our scenario with the following Feynman graph:

q q̄ → l+l−ET/ via virtual Z*/γ∗ with a scalar dU Unparticle operator. Here the Unparticle

operator is represented by the solid line without an arrowhead.

In the next section, we quantify the bounds on Unparticles from LEP and the TeVatron.

III. LEP AND TEVATRON CONSTRAINTS

In this section we give an overview of our application of LEP and TeVatron constraints on the

Unparticle sector. All the details with the relevant plots are in Appendix A.

New physics that produces dilepton final states is highly constrained by measuring the properties

of the Z boson at LEP. (Cite LEP summary papers) We use LEP results in two ways to provide

bounds on the couplings in equation 3. To begin, we take the constrained Unparticle signal plus the

e+e− → l+l− background and ensure the result is indistinguishable from the measured Z lineshape.

(cite LEP) Additionally, we consider invisible higgs decay measurements at LEP.(cite LEP) In this
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l+l− final states are highly constrained by Z-resonances at LEP.3 At the
LHC, these processes have well known backgrounds. For our LHC studies,
we couple the Unparticles to the virtual Z∗/γ∗ for the process q q̄ → l+l−.

qq̄ → l+l−ET/ via virtual Z*/γ∗

Now we could have coupled the Unparticles to the initial q̄ q or final state l+l−

particles. However, one can better probe the Unparticle effects by coupling
to the virtual Z∗/γ∗ which enjoy the full center of mass energy available to
the event. The relevant operators:

O1 =
CU ΛdBZ−dU

U

Mk
ZµνZµν OU (8)

O2 =
C′
U ΛdBZ−dU

U

Mk
AµνAµν OU (9)

O3 =
C′′
U ΛdBZ−dU

U

Mk
m2

Z ZµZµ OU (10)

Here, all factors of the weak mixing angle and coefficients from other oper-
ators are accounted for in CU , C′

U and C′′
U . We ignore the triple gauge boson

coupling terms to define here

Zµν = ∂µZν − ∂νZµ. (11)

Even though these operators could have been generated by a neutral scalar,
we will find the collider signatures are distinct. The remainder of these notes
explore these operators.

3Additionally, LEP I and II constrained missing higgs (l+l−ET/ ) signals.
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Remainder of the Talk

•

Part I:    LEP and TeVatron Constraints
    (more on the special kinematics)

Part II:   Distinguishing Unparticles from the SM backgrounds.

Part III:  Distinguishing Unparticles from the BSMs.
    (Here, without loss of generality, BSM means the

 canonical MSSM.)

Part IV:  Potential to discover Unparticles early in the 
 LHC’s run.  (Time permitting.)

Conclusions follow.



LEP and TeVatron 
Constraints



Lineshape Bounds from LEP
• Z lineshape is extremely well measured.

• Number of Z events precisely known

• Tune Unparticle coupling so S + B 
reproduces the lineshape.

Devin Walker Unparticle Analysis 27

e+e− → q̄q, µ+µ− and γγ (From ALEPH website).

Simulated Monte-Carlo of e+e− → µ+µ− via virtual Z/γ∗.

Our scheme is simply to take the cross section of the SM background and
add it to the Unparticle signal. We can adjust the Aunparticle coefficient, so
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LEP Unparticle Signal

• Just to illustrate the Unparticle signal, set 
the Unparticle coefficients to
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e+e− → e+e− (From ALEPH website).

Our scheme is simply to take the cross section of the SM background and add
it to the Unparticle signal. We can adjust the Unparticle coefficient, so the
sum of the two cross sections looks identical to the SM Z lineshape. (We note
the largest contribution to the Unparticle signal comes from the Unparticle +
γ∗/Z∗ diagrams in which the Unparticles force the second virtual photon/Z
to go on shell. This fact forces the Unparticle coefficient to be small to
compensate.) To begin, we plot the the Unparticle signal for dU = 1, 2 and
3 with the Unparticle coefficient unity. Specifically,

CU ΛdBZ−dU
U

Mk
=

CU ΛdBZ

U

MdSM+dBZ−4

1

ΛdU
U

→ CU
(

ΛU

M

)BZ 1

ΛdU
U

(28)

28
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And, we set

CU
(

ΛU

M

)BZ

→ 1 (29)

and
1

ΛdU
U

→
1

(1 GeV)dU
(30)

for the photon and Z boson, respectively. The plots feature muon final states:
e+e− → µ+µ−.
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LEP Unparticle Signal

• Upper panels - muon final states 

• Lower panels - electron final states
(left panels      = 1, 2, 3; right panels     = 1.5, 2.5, 3.5)
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The Unparticle signal for dU = 1, 2 and 3 (respectively, green solid, blue
dot-dashed and red dashed below) for γ∗ and Z∗ virtual states, respectively.
Aunp = 1. It is clear, because of the increased phase space available to the
Unparticles, the cross section for the photon diagrams are dominant. For
completeness we display dU = 1, 2 and 3 for both virtual Z and photons.
Again, dU = 1, 2 and 3 are green solid, blue dot-dashed and red dashed. The
plots feature muon final states: e+e− → µ+µ−.

Now we plot dU = 1.5, 2.5 and 3.5 (green solid, blue dot-dashed and red
dashed, respectively) for γ∗ and Z∗ virtual states, respectively.
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This seems like the correct behavior as the cross section goes as σ ∼ E2n−6

with n is the number of final body states. We now plot the Unparticle signal
for dU = 1, 2 and 3 (respectively, green solid, blue dot-dashed and red dashed
below) for γ∗ and Z∗ virtual states, respectively, for e+e− → e+e− final state.
Aunp = 1. For completeness we display dU = 1, 2 and 3 for both virtual Z
and photons. Again, dU = 1, 2 and 3 are green solid, blue dot-dashed and
red dashed. Again, the plots feature muon final states: e+e− → e+e−.

Now we plot dU = 1.5, 2.5 and 3.5 (green solid, blue dot-dashed and red
dashed, respectively) for γ∗ and Z∗ virtual states, respectively.
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Special Kinematics
• The diagrams with virtual photons dominate.  More 

Unparticle phase space.

• Besides the chosen Unparticle coupling, the signal is large 
because  

• The Unparticles can force the virtual photon that 
decay to the final state leptons (almost) on shell.  This 
enhancement is key to seeing LHC signatures.

• The final state lepton mass prevents this photon from 
going exactly on shell.  (Hence the diagrams with final
state electrons dominate.)  The order of magnitude 
difference in the muon and electron signals is a key 
effect.



Special Kinematics Cont’d...
• Even though the Unparticles force the second virtual 

photon on shell, the final state leptons are still highly 
boosted.  (all of the final states are massless)

• Unparticles simply force a scan over the virtual photon 
momentum.  Recall theta function in the phase space: 

Devin Walker Unparticle Analysis 4
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For these notes with integer dU , n′, we will use the following differential cross
section for p1 + p2 → n final state SM particles + n′ Unparticles.

dσ =
1

2λ1/2(s, m2
1, m

2
2) (2π)3n−4

∑

|M|2δ4(p1 + p2 − PU −
n

∑

i=1

pi)
n

∏

i=1

d3pi

(2Ei)

×
d4PU

(2π)4
(2π)4 δ4(PU −

n′

∑

j=1

lj)
n′

∏

j=1

δ(l2j ) θ(l0j )
d4lj

(2π)3
(5)

Thus, when considering “fractional” unparticles (dU , n′ is a fraction), we use
the following phase space

dσ =
1

2λ1/2(s, m2
1, m

2
2) (2π)3n−4

∑

|M|2δ4(p1 + p2 − PU −
n

∑

i=1

pi)
n

∏

i=1

d3pi

(2Ei)

× AdU θ(P 2
U)θ(P 0

U)(P 2
U)dU−2 d4PU

(2π)4
(6)

where

AdU =
16π2√π

(2π)2dU

Γ(dU + 1
2)

Γ(dU − 1)Γ(2dU)
(7)

Under relation ?? the two phase spaces are exact.

Appropriate Collider Signatures

In this section, I outline the reasoning involved for selecting the collider sig-
natures and effective operators studied.

In these notes we focus on distinct Unparticle signals at the LHC. In gen-
eral, at the LHC QCD events dominate and inherently yield to jet mis-
measurement. Since Unparticles are effectively n-massless, invisible particles,
the missing energy can be small. Suppose we assume a reasonable 10% jet
energy mismeasurement. Unparticle signals can be potentially be obscured.2

Thus, we consider cleaner electroweak processes whose energy and momen-
tum can be measured more accurately. Specfically, we choose l+l−ET/ final
states.

2For some of the work that has appeared in the literature, full detector/event hadroniza-
tion simulations are needed to see if the Unparticle signals can be seen.
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Special Kinematics Cont’d...

• Final point:  Cross section scales like                  .  Scaling 
is dominated by the unique phase space.  This is similar to 
Fermi theory where the cross section scales like powers 
of E.

• This enhancement is also key for seeing the Unparticle 
signal the LHC.
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M2
virtual photon =

e4A2
unparticle

S2 k4
2

(

4 S2 k4
2 + . . .

)

(26)

M2
virtual Z boson =

g4A2
unparticle

(k2
1 − M2

Z)2 + Γ2
ZM2

Z

1

(k2
2 − M2

Z)2 + Γ2
ZM2

Z

(

4 S2 k4
2

+ 16(k1 · k2)S
2M2

Z + . . .

)

(27)

The point here is the leading terms for the photon squared amplitude has
little dependence on dimensionful parameters. If k2

1,2 > M2
Z then the same

is true for the Z boson amplitude. Thus, major contributions to the cross
section comes from the dimensionful parameters in the multi-particle phase
space. We expect the cross section to have the following dependence on E:
σ ∼ E2n−6. (n is the number final state bodies)

Bounds from LEP I, II and the TeVatron

In this section, we detail efforts to place order of magnitude bounds on the
Unparticle couplings from LEP and the TeVatron.

Typically with models of new physics, one calculates precision electroweak
parameters, e.g., the S and T, and compare their values to what is exper-
imentally determined. For Unparticles, this is complicated as there is no
direct way to quantify Unparticle effects in these parameters. Ultimately,
however, these precision electroweak parameters stem from the fact that the
Z line shape at the LEP is extremely well measured. Below we display the Z
lineshape as measured by ALEPH (for e+e− → q̄q, µ+µ− and γγ). We also
display a comparison plot for our MC. The first point we want to make here
is the monte-carlo does extremely well at reproducing the Z lineshape.
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Lineshape Bounds from LEP

• Can tune the Unparticle coefficients.  
Graphically, for          with final state electrons:

• The Unparticle coefficient is              and
                       , respectively.
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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We can now tune the unparticle coefficient to recover the LEP results to get
a preliminary bounds.

dU = 1 Benchmark

Signal plus background for the Unparticle coefficient squared = 5 × 10−11

and 5 × 10−12, respectively, for e+e− → e+e− at LEP I and II.

dU = 2 Benchmark

Signal plus background for the Unparticle coefficient squared = 1.3 × 10−12

and 1.3 × 10−13, respectively, for e+e− → e+e− at LEP I and II.
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Lineshape Bounds from LEP

The bounds are derived assuming final state electrons.  
They are more stringent than the literature.
Use these values in the following analysis.
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Invisible Higgs Constraints

• Kinematically our signal is similar to LEP invisible 
higgs searches.

• Process: 
 

• Delphi results for the invisible recoil mass:
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where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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The above distribution is the recoil mass expected for an 80 GeV higgs on
top of the background (hashed/filled blocks). The dots are the signal and
background as defined by the collaboration.[?] The expected background is
order(s) of magnitude less than the Unparticle signal.

Tevatron High Invariant Mass Searches

It is worth making sure these bounds are consistent with Tevatron measure-
ments. The cross sections are growing as powers of E. The Tevatron looked
for excesses in the high-invariant mass tail for Z/γ∗ → µ+µ−. Plot from:
http://www-cdf.fnal.gov/physics/exotic/r2a/20040916.dilepton zprime/note 7286.pdf
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Invisible Higgs Constraints

• Compare the Unparticle invisible recoil mass.  
(189 GeV COM energy.  50.6        of luminosity.  Same as Delphi.)

• Left panel      = 1 (black solid), 2 (green solid), 3 (blue dashed); 
Right panel      = 1.5 (black solid), 2.5 (green solid), 3.5 (blue dashed)
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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green and blue dashed as shown LH plot. The recoil mass for dU = 1.5, 2.5
and 3 is black, green and blue dashed as shown in the RH plot:

(dU = 1 is not seen because the Unparticle is on shell.) This is for 50.6 pb−1

at 189 COM energy. The coupling to the Unparticle sector is taken to be the
values in equations 32 and 32. Delphi’s result is follows. The relevant plot is
the lower one.
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TeVatron Constraints
• Want to ensure Unparticle bounds will not conflict with 

TeVatron measurements.  Look for excesses in the di-electron 
and muon invariant mass spectrum. 

• CDF results:
Devin Walker Unparticle Analysis 38
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Below we plot the di-muon invariant mass for 200 pb−1. The first panel
displays dU = 1, 2 and 3 (black solid, dashed red and dot-dashed green, re-
spectively). The second panel displays dU = 1.5, 2.5 and 3.5 (black solid,
dashed red and dot-dashed green, respectively). The coupling to the Un-
particle sector is taken to be the values in equations ?? and ??. Note: No
acceptance/detector cuts were taken on the Unparticle signal for this
rough estimate. The point here is even with no cuts taken, there are not
enough signal events for the TeVatron to observe.
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TeVatron Constraints

• Compare Unparticle di-muon (upper)/electron (lower) invariant 
masses.  (Strictly for comparison.  No acceptance/detector cuts.)

• Left panels      = 1 (black solid), 2 (green solid), 3 (blue dashed); 
Right panels      = 1.5 (black solid), 2.5 (green solid), 3.5 (blue dashed)
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as
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where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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And final state electrons:
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And final state electrons:
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A Note on Kinematic Variables
• Kinematic variables are needed to maximize signal-to-

background ratio.

• Not all kinematic variables, however, are useful in 
uncovering Unparticle kinematics.  Consider the (cluster) 
transverse mass variable used to reconstruct                 
(                 )

Artificial mass bias at          .  The effective mass 

and the       are suitable non-baised variables.
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.

For both pp → ZZ and pp → WW plots, note there is a kinematic edge/relative
maximum at the mass of the Z and W, respectively. The mass scale for the
missing energy is given by this edge. The Unparticle signal does not have
an edge/maximum around the respective Z and W masses to suggest a miss-
ing energy mass scale. The signal already has very different kinematics seen
clearly for the simple ET/ kinematic variable.

We should try a simple reconstruction of each event. We do this in order
to make optimal cuts to maximize the signal-to-background ratio. We note
most kinematic variables have a definite mass scale which introduces a mass
bias. The mass bias makes such variables useless for our purposes. An ex-
ample is the (cluster) transverse mass variable used to reconstruct pp → ZZ
(pp → WW ). It is defined as

M2
T =

(

√

p2
T,l+l− + m2

l+l− +
√

p2
T,l+l−/ + M2

Z(W )

)2

. (12)

It is clear the absolute minimum of the mass variable is M2
Z(W ). Any plot of

this variable, would have an “artificial” edge (representing the minimum) at
M2

Z(W ). A kinematic variable that does not have a mass bias is the effective
mass:

Meff =
∑

visible particles

pT + ET/. (13)

The effective mass for the dU = 1, 2, 3 (left panel) and dU = 1.5, 2.5, 3.5 (right
panel) signal:
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SM Backgrounds 

• SM backgrounds for              final state: 

• The hZ background is sub-dominant.  Not discussed

• In analysis, higgs mass in ZZ (hZ) decays is taken to be 
350 (120) GeV.

Devin Walker Unparticle Analysis 5

Processes

There are several Standard Model processes that give a l+l−ET/ final state:

1. pp → WW → l+ν l−ν̄.

The mass scale associated with the missing energy is the W mass. (Even
though each W decays to a lepton and neutrino, the missing energy of
the system is comprised of neutrinos “clustered” together. The missing
energy always has a relative maximum around the W mass.) Of these
three graphs, the third graph is suppressed by the mass of the light
quarks. It is ignored.

2. pp → ZZ → l+l−ν̄ν.
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Here we associate the mass scale of the the missing energy to be the Z
mass. In the forthcoming analysis we will always take the higgs mass to
be 350 GeV. Of these two graphs, the t-channel dominates. Of course,
because of the relative coupling, this diagram is about four orders of
magnitude than pp → WW .

3. pp → hZ. Here h → l+l− and Z → ν̄ν.

The mass scale associated with the missing energy is as above. For these
processes we will take the Higgs mass to be 120 GeV. Note: Generally,
process 1 is more dominant than this one at the LHC because the Z
bosons will be, on average, transversely polarized.

In addition, we also consider the common beyond-the-Standard Model sig-
nals:

1. Slepton decay to leptons and neutralinos: pp → l̃l̃ → l+l− ¯̃ZZ̃
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magnitude than pp → WW .

3. pp → hZ. Here h → l+l− and Z → ν̄ν.

The mass scale associated with the missing energy is as above. For these
processes we will take the Higgs mass to be 120 GeV. Note: Generally,
process 1 is more dominant than this one at the LHC because the Z
bosons will be, on average, transversely polarized.

In addition, we also consider the common beyond-the-Standard Model sig-
nals:

1. Slepton decay to leptons and neutralinos: pp → l̃l̃ → l+l− ¯̃ZZ̃
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The mass scale associated with the missing energy, in the limit where
the neutralino is massless, is the slepton mass. When the neutralino
mass is slightly less than the slepton mass, the relevant mass scale is
the mass difference between the slepton and neutralino. We discuss
this further in the forthcoming subsection.

Search for Unparticle Signals/Kinematic Variables

Unparticles do not have a mass scale associated with the missing energy. As
shown in the previous section, comparable Standard Model processes and
common BSM models do. For the Unparticle processes, we take the coeffi-
cient of the effective operators to be the ones bounded in the appendix. I
defer placing detector/acceptance cuts on the plots to the end of this sec-
tion so the physics can be better understood. Finalized plots as well as the
relevant signal-to-background calculations are at the end of the section.

Point 1: Distinguishing Standard Model Missing Energy

The Standard Model has processes that give l+l−ET/ final states.4 (Processes
1, 2 and 3 in the previous section.) A useful place to start in order to
characterize (and differentiate) the missing energy is simply plotting ET/ .
For the dU = 1, 2, 3 (left panel) and dU = 1.5, 2.5, 3.5 (right panel) signal:

Here is the same plot but for larger values of ET/ .

4Because of the similarities between pp → hZ and pp → ZZ and without loss of
generality, we draw conclusions only from pp → ZZ. Any differences will be noted.
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WW Background 

• Definitive missing energy/effective mass peak.  

• W mass sets the missing energy mass scale.

• No cuts applied to see physics.
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The pp → WW background:

.

WW backgrounds are substantial.

At this stage we can quantify how well we can see Unparticle signal with
these background. Implicit we take the Unparticle coupling to be that in
equations 32 and 32.
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Here we take the coupling to the Unparticle sector to be the bounds in equa-
tions 32 and 32. These two tiered bounds is the reason why dU = 2 seems to
have a larger contribution than dU = 2.5.

The pp → ZZ background:

The pp → WW background:

.
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ZZ Background 

• Definitive missing energy mass scale set by the Z 
mass.

• No cuts applied to see the physics.
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Here we take the coupling to the Unparticle sector to be the bounds in equa-
tions 32 and 32. These two tiered bounds is the reason why dU = 2 seems to
have a larger contribution than dU = 2.5.

The pp → ZZ background:

The pp → WW background:

.
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The pp → WW background:

.
WW backgrounds are substantial.

At this stage we can quantify how well we can see Unparticle signal with
these background. Implicit we take the Unparticle coupling to be that in
equations ?? and ??.

Process No Cuts (pb cross section)
signal d = 1 2.44

d = 2 263
d = 3 7899
d = 1.5 16.1
d = 2.5 522.8
d = 3.5 2.2 × 105

background pp → WW 127
pp → ZZ 0.344
pp → hZ

Total background 127

10



Unparticle Signal at LHC

• No associated mass scale or cuts applied.  Distribution is clearly 
different from background.  For electron final states. 

• Left panels      = 1 (black solid), 2 (green solid), 3 (blue dot-dashed); 
Right panels      = 1.5 (black solid), 2.5 (green solid), 3.5 (blue dot-dashed)

• Signal for muon final state is orders of magnitude smaller.
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Here we take the coupling to the Unparticle sector to be the bounds in equa-
tions 32 and 32. These two tiered bounds is the reason why dU = 2 seems to
have a larger contribution than dU = 2.5.

The pp → ZZ background:
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Unparticle Signal at LHC

• Again, no associated mass scale for the effective mass.   
(No cuts applied.)

• Left/right panels = 1 (black solid), 2 (green solid), 3 (blue dot-dashed)

• Distribution is clearly different from background.  

• Electron final states.
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For both pp → ZZ and pp → WW plots, note there is a kinematic edge/relative
maximum at the mass of the Z and W, respectively. The mass scale for the
missing energy is given by this edge. The Unparticle signal does not have
an edge/maximum around the respective Z and W masses to suggest a miss-
ing energy mass scale. The signal already has very different kinematics seen
clearly for the simple ET/ kinematic variable.

We should try a simple reconstruction of each event. We do this in order
to make optimal cuts to maximize the signal-to-background ratio. We note
most kinematic variables have a definite mass scale which introduces a mass
bias. The mass bias makes such variables useless for our purposes. An ex-
ample is the (cluster) transverse mass variable used to reconstruct pp → ZZ
(pp → WW ). It is defined as

M2
T =

(

√

p2
T,l+l− + m2

l+l− +
√

p2
T,l+l−/ + M2

Z(W )

)2

. (12)

It is clear the absolute minimum of the mass variable is M2
Z(W ). Any plot of

this variable, would have an “artificial” edge (representing the minimum) at
M2

Z(W ). A kinematic variable that does not have a mass bias is the effective
mass:

Meff =
∑

visible particles

pT + ET/. (13)

The effective mass for the dU = 1, 2, 3 (left panel) and dU = 1.5, 2.5, 3.5 (right
panel) signal:

The pp → ZZ background:

9



Clarify Signal
• We can clarify the signal by looking at the angle 

between the leptons.  Di-lepton          and 
for WW background.
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.

The relative maximum at larger ∆Rl+l− is due to the virtual Z diagrams.
The pp → WW di-lepton cosθ:

.

The pp → ZZ di-lepton cosθ:

.

It is clear the signal is mostly centered at cos θ = 1. The backgrounds are
not. We place a cut of ∆Rdilepton < 0.4. The effective mass plots for the
signal dU = 1, 2, 3 (right panel) and dU = 1.5, 2.5, 3.5 (left panel) is
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The effective mass for the background is now pp → WW (left panel) and
pp → ZZ (right panel)
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Clarify Signal

• Di-lepton          and            for ZZ background.
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The pp → ZZ di-lepton cosθ:
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It is clear the signal is mostly centered at cos θ = 1. The backgrounds are
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Clarify Signal

• Di-lepton          and             for signal.

• Left panels        = 1 (blue solid), 2 (green dashed), 3 (black dot-dashed); 
Right panels      = 1.5 (blue solid), 2.5 (green dashed), 3.5 (black dot-dashed)
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where φ and η are the transverse angle and rapidity, respectively. ∆Rl+l−

is very small when the leptons are highly boosted. We consider muon final
states. Even though the muons are very close together, they are far easier to
resolve than jet final states.

The lepton angle for the pp → WW background is inherently larger be-
cause the W bosons (and consequently the associated leptons) are produced
and decay in separate hemispheres. A ∆Rl+l− cut largely eliminates this
background. As for the pp → ZZ background, the angle between the leptons
is on average larger because the decaying virtual Z is often not as boosted
as the virtual photon associated with Unparticles. (As for the pp → hZ
background, because mh > mZ , the angle between the leptons is expected
to be, on average, larger for the pp → hZ background.) Finally, if we set
the coupling to the Unparticle sector to be the bounds in, equations ?? and
??, the cross section (as shown above) is comparable to the pp → ZZ back-
ground. Below we prove these assertions with plots:

The signal di-lepton cosθ for dU = 1, 2, 3 (left panel: blue, greeen dot-dashed
and black dashed, respectively) and dU = 1.5, 2.5, 3.5 (right panel: blue,
greeen dot-dashed and black dashed, respectively).

.

The plots have been normalized by the appropriate cross section. In addition,
∆Rl+l− for dU = 1, 2, 3 (left panel: blue solid, green dashed and black dot-
dashed, respectively) and dU = 1.5, 2.5, 3.5 (right panel: blue solid, green
dashed and black dot-dashed, respectively).
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,

35

Devin Walker Unparticle Analysis 35

dU = 1 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=1

> 5 × 10−12 GeV−2

dU = 1.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=1.5

> 6.4 × 10−13 GeV−3

dU = 2.0 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=2

> 1.3 × 10−13 GeV−4

dU = 2.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=2.5

> 2.8 × 10−14 GeV−5

dU = 3.0 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=3

> 3.2 × 10−15 GeV−6

dU = 3.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=3.5

> 5.3 × 10−17 GeV−7

Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Effect on Background

• Effectively a cut on the missing energy.  We could do a simple 
missing energy cut.  This cut will prove more useful when we look 
for early signatures of Unparticles at the LHC.

• WWs are produced in separate hemispheres.              cut 
reduces the signal to W pairs that are nearly on shell.  The 
daughter leptons will not be as boosted.  Note:  Restricting to 
the central detector region will eliminate the rest of this 
background.  No cuts are applied on the plots to see the physics.

• The              cut eliminates the ZZ pairs when they are produced 
nearly on shell. 
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.

The relative maximum at larger ∆Rl+l− is due to the virtual Z diagrams.
The pp → WW di-lepton cosθ:

.

The pp → ZZ di-lepton cosθ:

.

It is clear the signal is mostly centered at cos θ = 1. The backgrounds are
not. We place a cut of ∆Rdilepton < 0.4. The effective mass plots for the
signal dU = 1, 2, 3 (right panel) and dU = 1.5, 2.5, 3.5 (left panel) is
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.

The pp → ZZ background, which is kinematically closest in to our Unparticle
signal, is largely eliminated in the low di-lepton invariant mass region. The
reason is simple: Our cut selected di-lepton pairs that were highly boosted.
The low mass region corresponds to Z boson produced approximately on
shell. Those leptons, on average, should not be highly boosted. The cut on
the pp → WW background has a different effect. In the COM frame, the W
bosons (and the corresponding leptons) are back-to-back. Boosted to the lab
frame, the leptons are still in the different hemispheres. The signal seemingly
is coming from the events in which W bosons are on shell and boosted in the
central detector region. The leptons are subsequently not very boosted and
decay in a manner consistent with the cut. We can now quantify how well
the cut clarified the signal.

Process ∆R cut (pb cross section)
signal d = 1 2.37

d = 2 263
d = 3 7871
d = 1.5 16.1
d = 2.5 524
d = 3.5 2.2 × 105

background pp → WW 0.4
pp → ZZ 0.3 × 10−3

pp → hZ
Total background 0.4
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Kinematic Cuts
• Apply di-lepton cut:

• Apply also the detector cuts:

• Smearing parameters:

Devin Walker Unparticle Analysis 13

.

The relative maximum at larger ∆Rl+l− is due to the virtual Z diagrams.
The pp → WW di-lepton cosθ:

.

The pp → ZZ di-lepton cosθ:

.

It is clear the signal is mostly centered at cos θ = 1. The backgrounds are
not. We place a cut of ∆Rdilepton < 0.4. The effective mass plots for the
signal dU = 1, 2, 3 (right panel) and dU = 1.5, 2.5, 3.5 (left panel) is

13

Devin Walker Unparticle Analysis 15

Process ∆R cut (pb cross section)
signal d = 1 2.37

d = 2 263
d = 3 7871
d = 1.5 16.1
d = 2.5 524
d = 3.5 2.2 × 105

background pp → WW 0.4
pp → ZZ 0.3 × 10−3

pp → hZ
Total background 0.4

10 fb−1 S/
√

B + S S/B
d = 1 5+ 6
d = 2 5+ 6+
d = 3 5+ 6+
d = 1.5 5+ 6+
d = 2.5 5+ 6+
d = 3 5+ 6+

It is clear the signal wins over the background. We take the following as
realistic detector cuts for both ATLAS and CMS.

Minimum Lepton pT cut pT > 20 GeV
Minimum Lepton Rapidity cut |ηlepton| ≤ 2.5

For now, we will assume a minimum lepton isolation cut is not necessary.
We will assume muon final states with the gaussian smearing parameters:

pT ATLAS Resolution a = 3.6 × 10−4, b = 0.013
ATLAS ECAL Resolution a = 0.1, b = 0.007

pT CMS Resolution a = 1.5 × 10−4, b = 0.05
CMS ECAL Resolution a = 0.03, b = 0.005

We can now calculate the final signal-to-background quantities for 10 fb−1:

15

Devin Walker Unparticle Analysis 15

Process ∆R cut (pb cross section)
signal d = 1 2.37

d = 2 263
d = 3 7871
d = 1.5 16.1
d = 2.5 524
d = 3.5 2.2 × 105

background pp → WW 0.4
pp → ZZ 0.3 × 10−3

pp → hZ
Total background 0.4

10 fb−1 S/
√

B + S S/B
d = 1 5+ 6
d = 2 5+ 6+
d = 3 5+ 6+
d = 1.5 5+ 6+
d = 2.5 5+ 6+
d = 3 5+ 6+

It is clear the signal wins over the background. We take the following as
realistic detector cuts for both ATLAS and CMS.

Minimum Lepton pT cut pT > 20 GeV
Minimum Lepton Rapidity cut |ηlepton| ≤ 2.5

For now, we will assume a minimum lepton isolation cut is not necessary.
We will assume muon final states with the gaussian smearing parameters:

pT ATLAS Resolution a = 3.6 × 10−4, b = 0.013
ATLAS ECAL Resolution a = 0.1, b = 0.007

pT CMS Resolution a = 1.5 × 10−4, b = 0.05
CMS ECAL Resolution a = 0.03, b = 0.005

We can now calculate the final signal-to-background quantities for 10 fb−1:

15



Signal + Background

•      = 1 and 1.5 signal + background

•     = 2 and 2.5 signal + background
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
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mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Process ∆R and Detector cuts (pb cross section)
signal d = 1 2.0

d = 2 261
d = 3 7852
d = 1.5 15.4
d = 2.5 521
d = 3.5 0.22 × 106

background pp → WW 0.0
pp → ZZ 0.3 × 10−3

pp → hZ
Total background 0.3 × 10−3

10 fb−1 S/
√

B + S S/B
d = 1 1.4 × 102 6.7 × 103

d = 2 16.2 8.7 × 105

d = 3 88.6 7.9 × 108

d = 1.5 3.92 × 102 1.4 × 106

d = 2.5 2.28 × 103 4.7 × 107

d = 3.5 4.7 × 104 7.3 × 108

It is clear Unparticle physics can be cleanly seen. There is no more back-
ground from pp → WW because we have restricted for signal in the central
detector region. (Recall the first Unparticle cut gave us events with the WW
boosted in the forward region.) The final plots with all the cuts with sig-
nal + background are shown below. Background + dU = 1 (left panel) and
background + dU = 1.5 (right panel):

. .
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Background + dU = 2 (left panel) and background + dU = 2.5 (right panel):

. .

Background + dU = 3 (left panel) and background + dU = 3.5 (right panel):

. .

Point 2: Distinguishing Beyond the Standard Model Missing En-
ergy

l+l−ET/ Unparticle signatures are very unique. In this section, we differenti-
ate the signal from standard BSM signals. The canonical l+l−ET/ signature is
slepton decays in SUSY. We proceed as with sequential analysis of previous
section. We take the slepton mass is taken to be 500 GeV. The neutralino
mass is taken to be 150 GeV and 450 GeV.

To begin we plot the missing energy(right panel) and effective mass(left
panel) with a 150 GeV neutralino serving as the dark matter.

17
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The pp → WW background:

.
WW backgrounds are substantial.

At this stage we can quantify how well we can see Unparticle signal with
these background. Implicit we take the Unparticle coupling to be that in
equations 32 and 32.

Process No Cuts (pb cross section)
signal d = 1 2.44

d = 2 263
d = 3 7899
d = 1.5 16.1
d = 2.5 522.8
d = 3.5 2.2 × 105

background pp → WW 127
pp → ZZ 0.344
pp → hZ

Total background 127
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Signal + Background
•      = 3 and 3.5 signal + background

• All plots have electron final states.  Plots 
with muon final states have the same 
structure but are down an order of 
magnitude.

Devin Walker Unparticle Analysis 35

dU = 1 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=1

> 5 × 10−12 GeV−2

dU = 1.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=1.5

> 6.4 × 10−13 GeV−3

dU = 2.0 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=2

> 1.3 × 10−13 GeV−4

dU = 2.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=2.5

> 2.8 × 10−14 GeV−5

dU = 3.0 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=3

> 3.2 × 10−15 GeV−6

dU = 3.5 CU 2

(

ΛU

M

)2BZ 1

Λ2dU
U

∣

∣

∣

∣

dU=3.5

> 5.3 × 10−17 GeV−7

Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,

35

Devin Walker Unparticle Analysis 17
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l+l−ET/ Unparticle signatures are very unique. In this section, we differenti-
ate the signal from standard BSM signals. The canonical l+l−ET/ signature is
slepton decays in SUSY. We proceed as with sequential analysis of previous
section. We take the slepton mass is taken to be 500 GeV. The neutralino
mass is taken to be 150 GeV and 450 GeV.

To begin we plot the missing energy(right panel) and effective mass(left
panel) with a 150 GeV neutralino serving as the dark matter.
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Final Tally
• Muons:

Devin Walker Unparticle Analysis 15

Process ∆R cut (pb cross section)
signal d = 1 2.37

d = 2 263
d = 3 7871
d = 1.5 16.1
d = 2.5 524
d = 3.5 2.2 × 105

background pp → WW 0.4
pp → ZZ 0.3 × 10−3

pp → hZ
Total background 0.4

10 fb−1 S/
√

B + S S/B
d = 1 5+ 6
d = 2 5+ 6+
d = 3 5+ 6+
d = 1.5 5+ 6+
d = 2.5 5+ 6+
d = 3 5+ 6+

Muons final

Process All cuts (pb cross section)
signal d = 1 2.37

d = 1.5 0.3 × 10−2

d = 2 0.06
d = 2.5 0.4
d = 3 2.6
d = 3.5 2.9

background pp → WW 0.0
pp → ZZ 0.15 × 10−3

Total background 0.15 × 10−3

10 fb−1 S/
√

B + S S/B
d = 1 5+ 10+
d = 2 1.7 (5.8 S/

√
B) 10+

d = 3 5+ 10+
d = 1.5 5+ 10+
d = 2.5 5+ 10+
d = 3 5+ 10+
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Final Tally
• Electrons:

Devin Walker Unparticle Analysis 16

Electrons final

Process All cuts (pb cross section)
signal d = 1 2.37

d = 1.5 3.1
d = 2 16.2
d = 2.5 38.1
d = 3 100
d = 3.5 163

background pp → WW 0.0
pp → ZZ 0.15 × 10−3

Total background 0.15 × 10−3

10 fb−1 S/
√

B + S S/B
d = 1 5+ 10+
d = 2 5+ 10+
d = 3 5+ 10+
d = 1.5 5+ 10+
d = 2.5 5+ 10+
d = 3 5+ 10+

It is clear the signal wins over the background. We take the following as
realistic detector cuts for both ATLAS and CMS.

Minimum Lepton pT cut pT > 20 GeV
Minimum Lepton Rapidity cut |ηlepton| ≤ 2.5

For now, we will assume a minimum lepton isolation cut is not necessary.
We will assume muon final states with the gaussian smearing parameters:

pT ATLAS Resolution a = 3.6 × 10−4, b = 0.013
ATLAS ECAL Resolution a = 0.1, b = 0.007

pT CMS Resolution a = 1.5 × 10−4, b = 0.05
CMS ECAL Resolution a = 0.03, b = 0.005

We can now calculate the final signal-to-background quantities for 10 fb−1:
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Distinguishing Unparticles 
from other BSM Scenarios



Slepton Decays

• Choose the distinguish Unparticles from the MSSM.  
All BSMs have the same features:

• Large missing energy with a mass scale defined by 
the LSP.

• Mass difference between parent parity odd 
particle and LSP most important kinematic 
parameter.*    

•  Consider slepton decay:
 With difference parameter 

Devin Walker Unparticle Analysis 6

Here we associate the mass scale of the the missing energy to be the Z
mass. In the forthcoming analysis we will always take the higgs mass to
be 350 GeV. Of these two graphs, the t-channel dominates. Of course,
because of the relative coupling, this diagram is about four orders of
magnitude than pp → WW .

3. pp → hZ. Here h → l+l− and Z → ν̄ν.

The mass scale associated with the missing energy is as above. For these
processes we will take the Higgs mass to be 120 GeV. Note: Generally,
process 1 is more dominant than this one at the LHC because the Z
bosons will be, on average, transversely polarized.

In addition, we also consider the common beyond-the-Standard Model sig-
nals:

1. Slepton decay to leptons and neutralinos: pp → l̃l̃ → l+l− ¯̃ZZ̃

6

* Han, Mahbubani, Walker, and Wang to appear.
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.

As is well known [?], the effective mass fails to give an accurate mass scale.
With acceptance cuts, cosθ (left panel) and ∆Rdilepton (right panel) is plotted.

.

Note: there is clearly a twist here. As pointed out in [?], when searching for
Standard BSM DM signals the most important parameter is the mass differ-
ence between the parent parity odd particle and the dark matter particle.

∆Ml̃Z̃ = Ml̃ − MZ̃ (15)

When ∆Ml̃Z̃ is small the effective mass does not give a hint of a mass scale
associated with the missing energy. The distributions are, however, still
very different from the Unparticle distributions. Nevertheless, applying the
∆Rdilepton < 0.4 cut differentiates this signal from the Unparticle signal. This
is clearly seen in the following effective mass plots. The effective mass for
a 150 GeV and 450 GeV neutralino is shown in the left and right panels,
repectively.

19



Slepton Decays
• When           is large, the effective mass gives a general estimate 

of the neutralino mass scale.

• Consider 150 GeV neutralino mass with 500 GeV slepton 
mass. 
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.

For a 150 GeV neutralino, the kinematics is somewhat similar to the Standard
Model cases. In the case of a massless neutralino, the mass scale would be
the slepton mass. In the plots above, we can see the expected slight edge in
the missing ET/ plot. The effective mass gives the expected general overall
mass scale of twice the slepton mass. Now, we plot, with acceptance cuts,
cosθ (left panel) and ∆Rdilepton (right panel) with the same neutralino mass.

.

Because the mass difference between the slepton and the neutralino mass is
large, the final state leptons could be very (or slightly) energetic. This is
reflected in the cosθ and the ∆Rdilepton plot.

For a 450 GeV neutralino mass, the missing energy (left panel) and effec-
tive mass (right panel) is

18
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Here we take the coupling to the Unparticle sector to be the bounds in equa-
tions 32 and 32. These two tiered bounds is the reason why dU = 2 seems to
have a larger contribution than dU = 2.5.

The pp → ZZ background:

The pp → WW background:

.

8
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the slepton mass. In the plots above, we can see the expected slight edge in
the missing ET/ plot. The effective mass gives the expected general overall
mass scale of twice the slepton mass. Now, we plot, with acceptance cuts,
cosθ (left panel) and ∆Rdilepton (right panel) with the same neutralino mass.

.

Because the mass difference between the slepton and the neutralino mass is
large, the final state leptons could be very (or slightly) energetic. This is
reflected in the cosθ and the ∆Rdilepton plot.

For a 450 GeV neutralino mass, the missing energy (left panel) and effec-
tive mass (right panel) is

.

As is well known [13], the effective mass fails to give an accurate mass scale.
With acceptance cuts, cosθ (left panel) and ∆Rdilepton (right panel) is plotted.
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.

The pp → ZZ di-lepton cosθ:

.

It is clear the signal is mostly centered at cos θ = 1. The backgrounds are
not. We place a cut of ∆Rdilepton < 0.4. The effective mass plots for the
signal dU = 1, 2, 3 (right panel) and dU = 1.5, 2.5, 3.5 (left panel) is

. .

The effective mass for the background is now pp → WW (left panel) and
pp → ZZ (right panel)

13



Slepton Decays
• Consider 450 GeV neutralino mass with 500 GeV slepton mass. 

• The effective mass does not give the correct mass scale.
Devin Walker Unparticle Analysis 19

.

As is well known [?], the effective mass fails to give an accurate mass scale.
With acceptance cuts, cosθ (left panel) and ∆Rdilepton (right panel) is plotted.

.

Note: there is clearly a twist here. As pointed out in [?], when searching for
Standard BSM DM signals the most important parameter is the mass differ-
ence between the parent parity odd particle and the dark matter particle.

∆Ml̃Z̃ = Ml̃ − MZ̃ (15)

When ∆Ml̃Z̃ is small the effective mass does not give a hint of a mass scale
associated with the missing energy. The distributions are, however, still
very different from the Unparticle distributions. Nevertheless, applying the
∆Rdilepton < 0.4 cut differentiates this signal from the Unparticle signal. This
is clearly seen in the following effective mass plots. The effective mass for
a 150 GeV and 450 GeV neutralino is shown in the left and right panels,
repectively.
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.

The rate is down significantly. It is clear that such a cut provides a clean
signature for Unparticles. Compare the y-axis values in the above plots to
Background + dU = 1 signal below:
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The pp → ZZ di-lepton cosθ:
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. .

The effective mass for the background is now pp → WW (left panel) and
pp → ZZ (right panel)
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Here we take the coupling to the Unparticle sector to be the bounds in equa-
tions 32 and 32. These two tiered bounds is the reason why dU = 2 seems to
have a larger contribution than dU = 2.5.

The pp → ZZ background:

The pp → WW background:

.
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Slepton Decays
• Apply                     cut.  The effective mass for 

large          (left panel) and small           (right 
panel):  

• Rate is noticeably down.  Signal distribution is 
distinct from Unparticles.      
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.

The relative maximum at larger ∆Rl+l− is due to the virtual Z diagrams.
The pp → WW di-lepton cosθ:

.

The pp → ZZ di-lepton cosθ:

.
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.

The rate is down significantly. It is clear that such a cut provides a clean
signature for Unparticles. Compare the y-axis values in the above plots to
Background + dU = 1 signal below:

.

Point 3: Early Indication of Unparticles at the LHC

When the LHC starts running, the first thing experimentalists will do is mea-
sure certain Standard Model benchmarks. The Z resonance is among them
and provides an opportunity for early indication of Unparticle effects. As
shown in the appendix (equations 32 and 32), the couplings to the Unparticle
sector are taken to be those that are bounded by LEP and, as well, evaded
by the TeVatron measurement. Chiefly, early signals can be seen because
the Unparticle cross section grows like powers of E and can be potentially
seen at the LHC. This statement is crucial because LEP I and II already ex-
cluded invisible higgs decays up to 114 GeV.[2] Thus, it is unlikely any new
missing energy seen would come a light parity odd particle that can effect

20
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The pp → WW background:

.
WW backgrounds are substantial.

At this stage we can quantify how well we can see Unparticle signal with
these background. Implicit we take the Unparticle coupling to be that in
equations 32 and 32.

Process No Cuts (pb cross section)
signal d = 1 2.44

d = 2 263
d = 3 7899
d = 1.5 16.1
d = 2.5 522.8
d = 3.5 2.2 × 105

background pp → WW 127
pp → ZZ 0.344
pp → hZ

Total background 127
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Distribution Comparison
• Unparticle and Slepton signals + bkg
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The pp → ZZ background:

The pp → WW background:

.

WW backgrounds are substantial.
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Early Indications of 
Unparticles at the LHC



Z Lineshape Measurement

• An early benchmark for experimentalists to measure 
when the LHC turns on is the Z resonance.

• Reminder:  Unparticle signal grows like powers of E.

• LEP ruled out an invisible higgs at these energy 
scales.

• Unlikely a LSP will give a              signature for 
dilepton invariant masses ~ 100 GeV.

• Look for missing energy in this invariant mass range.

Devin Walker Unparticle Analysis 4

l+l− final states are highly constrained by Z-resonances at LEP.3 At the
LHC, these processes have well known backgrounds. For our LHC studies,
we couple the Unparticles to the virtual Z∗/γ∗ for the process q q̄ → l+l−.

qq̄ → l+l−ET/ via virtual Z*/γ∗

Now we could have coupled the Unparticles to the initial q̄ q or final state l+l−

particles. However, one can better probe the Unparticle effects by coupling
to the virtual Z∗/γ∗ which enjoy the full center of mass energy available to
the event. The relevant operators:

O1 =
CU ΛdBZ−dU

U

Mk
ZµνZµν OU (8)

O2 =
C′
U ΛdBZ−dU

U

Mk
AµνAµν OU (9)

O3 =
C′′
U ΛdBZ−dU

U

Mk
m2

Z ZµZµ OU (10)

Here, all factors of the weak mixing angle and coefficients from other oper-
ators are accounted for in CU , C′

U and C′′
U . We ignore the triple gauge boson

coupling terms to define here

Zµν = ∂µZν − ∂νZµ. (11)

Even though these operators could have been generated by a neutral scalar,
we will find the collider signatures are distinct. The remainder of these notes
explore these operators.

3Additionally, LEP I and II constrained missing higgs (l+l−ET/ ) signals.
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Missing Energy
• Electron final states with all cuts.

• Left panel        = 1 (black solid), 2 (green dashed), 3 (blue dot-dashed); 
Right panels       = 1.5 (black solid), 2.5 (green dashed), 3.5 (blue dot-
dashed)

• Muon final states give a similar signature as well.

Devin Walker Unparticle Analysis 22

invariant masses of order the Z-pole. To this end, we advocate simply when
reconstructing the Z resonance to just look for missing energy. If Unparticle
effects are the source of the missing energy, the dU = 1, 2, 3 signal + SM
background (left panel) and the dU = 1.5, 2.5, 3.5 signal + SM background
(right panel) would look like

.

Here dU = 1 and 1.5 is in green solid, dU = 2 and 2.5 is in blue dot-dashed
and dU = 3 and 3.5 is in red dashed. Note: There is missing energy from
the pp → Z/γ → leptons process. (A reminder: We imposed a pT > 20 GeV
acceptance cut on the leptons as well as confined the events to the central
detector region. Also, of course we added a ∆Rdilepton < 0.4 to elminate the
ZZ, hZ and WW backgrounds.) Here are the number of events expected for
10 fb−1.

.

Finally, please note: Just plotting the invariant mass of the di-lepton system
without looking for missing energy will obfuscate many Unparticle signatures.
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[?] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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Summary:
• We showed how to distinguish signatures of Unparticle 

physics at the LHC from the Standard Model and beyond.

• The key point is models with Unparticle physics do not 
have a definitive mass scale associated with the missing 
energy.  The Standard Model and models of new physics 
(such as SUSY, LH, etc.) each have such a scale. 

• To clarify the collider signatures, we provided a set of 
kinematic variables and cuts useful in distinguishing scale 
invariance at the LHC.

• We showed how Unparticle physics can potentially be seen 
with as little as            of data at the LHC.

• We provided stringent bounds on Unparticles from LEP 
and the TeVatron.
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Paper Title: Mass Scales and Unparticle Physics at the LHC

Abstract

We show how to distinguish signatures of Unparticle physics at the LHC from
the Standard Model and beyond. The key point is models with Unparticle
physics do not have a definitive mass scale associated with the missing energy.
The Standard Model and models of new physics (such as SUSY, LH, etc.)
each have such a scale. To clarify the collider signatures, we provide a set of
kinematic variables and cuts useful in distinguishing scale invariance in l+l−ET/
signals at the LHC. We also show how Unparticle physics can potentially be
seen with as little as 10 fb−1 of data at the LHC. Finally, we also provide
stringent bounds on Unparticle physics from LEP and the TeVatron.

Outline of Notes

These notes are organized in the following way:

• Unparticle Theoretical Background

• Appropriate Collider Signature/Relevant Effective Operators

• Standard Model/Beyond the Standard Model processes from which to
discriminate Unparticles

• Search of Unparticle Physics

– Plots

– Kinematic Variables

– Signal to Background Ratio of LHC Signatures

– Final Plots with Detector/Acceptance Cuts

• Comments about Scale Invariance at the ILC

• Appendices

– Unparticle Feynman Rules/Amplitudes

– Bounds for LEP and the TeVatron

– Notes on Monte-Carlo Implementation

– Phase Space Equivalence Proof

1



Backup Slides



Unique Unparticle Effects

• Can calculate density of final states for 
Unparticles:             

• By scale invariance the matrix element is:

• This is the appropriate phase space for 
Unparticles. 

been seen. What happens as we lower MU or raise our machine energy and this peculiar
stuff can be produced by interactions of ordinary particles?

If the IR fixed point is perturbative, we may be able to calculate the dUs and CUs. But
typically the matching from the BZ physics to the unparticle physics will be a complicated
strong interaction problem, like the matching from the physics of high-energy QCD onto the
physics of the low-energy hadron states. In that case, we should be able to estimate these
constants very roughly by including the appropriate geometrical factors (powers of 4π and
that sort of thing - we will return to this below), but detailed calculation will be impossible.

Now we can ask what physics this produces in the low energy theory below ΛU . We expect
that the virtual effects of fields with nontrivial scaling will produce odd forces. But here
I consider what it looks like to actually produce the unparticle stuff. The most important
effects will be those that involve only one factor (in the amplitude) of the small parameter
in (2),

CU ΛdBZ−dU
U

Mk
U

(3)

from a single insertion of the interaction (2) in some standard model process. The result will
be the production of unparticle stuff, which will contribute to missing energy and momentum.
To calculate the probability distribution for such a process, we need to know the density of
final states for unparticle stuff. In the low energy theory described above, this is constrained
by the scale invariance. Consider the vacuum matrix element

〈0|OU(x) O†
U(0) |0〉 =

∫

e−ipx |〈0|OU(0) |P 〉|2 ρ
(

P 2
) d4P

(2π)4
(4)

where |P 〉 is the unparticle state with 4-momentum P µ produced from the vacuum by OU .
Because of scale invariance, the matrix element (4) scales with dimension 2dU , which requires
that

|〈0|OU(0) |P 〉|2 ρ
(

P 2
)

= AdU θ
(

P 0
)

θ
(

P 2
) (

P 2
)dU−2

(5)

This is the appropriate phase space for unparticle stuff. (5) should remind you of the phase
space for n massless particles,8

(2π)4δ4

(

P −
n

∑

j=1

pj

)

n
∏

j=1

δ
(

p2
j

)

θ
(

p0
j

) d4pj

(2π)3
= An θ

(

P 0
)

θ
(

P 2
) (

P 2
)n−2

(6)

where

An =
16π5/2

(2π)2n

Γ(n + 1/2)

Γ(n − 1) Γ(2n)
(7)

The zero in An for n = 1 together with the pole in P 2 reproduce the δ(P 2) in 1-particle
phase space if the limit n → 1 is approached from above

lim
ε→0+

ε θ(x)

x1−ε
= δ(x) (8)

8The left hand side has an extra (2π)4 compared to the definition in the particle date book.
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strong interaction problem, like the matching from the physics of high-energy QCD onto the
physics of the low-energy hadron states. In that case, we should be able to estimate these
constants very roughly by including the appropriate geometrical factors (powers of 4π and
that sort of thing - we will return to this below), but detailed calculation will be impossible.

Now we can ask what physics this produces in the low energy theory below ΛU . We expect
that the virtual effects of fields with nontrivial scaling will produce odd forces. But here
I consider what it looks like to actually produce the unparticle stuff. The most important
effects will be those that involve only one factor (in the amplitude) of the small parameter
in (2),

CU ΛdBZ−dU
U

Mk
U

(3)

from a single insertion of the interaction (2) in some standard model process. The result will
be the production of unparticle stuff, which will contribute to missing energy and momentum.
To calculate the probability distribution for such a process, we need to know the density of
final states for unparticle stuff. In the low energy theory described above, this is constrained
by the scale invariance. Consider the vacuum matrix element

〈0|OU(x) O†
U(0) |0〉 =

∫

e−ipx |〈0|OU(0) |P 〉|2 ρ
(

P 2
) d4P

(2π)4
(4)

where |P 〉 is the unparticle state with 4-momentum P µ produced from the vacuum by OU .
Because of scale invariance, the matrix element (4) scales with dimension 2dU , which requires
that

|〈0|OU(0) |P 〉|2 ρ
(

P 2
)

= AdU θ
(

P 0
)

θ
(

P 2
) (

P 2
)dU−2

(5)

This is the appropriate phase space for unparticle stuff. (5) should remind you of the phase
space for n massless particles,8

(2π)4δ4

(

P −
n

∑

j=1

pj

)

n
∏

j=1

δ
(

p2
j

)

θ
(

p0
j

) d4pj

(2π)3
= An θ

(

P 0
)

θ
(

P 2
) (

P 2
)n−2

(6)

where

An =
16π5/2

(2π)2n

Γ(n + 1/2)

Γ(n − 1) Γ(2n)
(7)

The zero in An for n = 1 together with the pole in P 2 reproduce the δ(P 2) in 1-particle
phase space if the limit n → 1 is approached from above

lim
ε→0+

ε θ(x)

x1−ε
= δ(x) (8)

8The left hand side has an extra (2π)4 compared to the definition in the particle date book.
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