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Beyond the SM

Naturalness and hierarchy problems

Suggest some new physics at   1 TeV

Solutions often propose partners to Standard 
Model particles
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Supersymmetry? Technicolor? Extra Dimensions?

W±, Z, A→ W̃±, Z̃, Ã (χ̃±i , χ̃0
i )

→W±
1 , Z1, A1, W

±
2 , Z2, A2, . . .

(SUSY)
(UED)



SUSY vs. UED
Both specta contain ‘copies’ of SM

UED has tower of KK modes
New particles have similar interaction 
strengths:

Spin measurements may be the defining 
experimental difference.
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Minimal UED
One extra dimension of radius   , 
compactified to

Quantized 5th dimension momentum provides tree 
level mass for KK modes:

Requiring    ,    odd and     even under the    
provides chiral fermions in the KK=0 level.

Flavor universal boundary terms set to zero at 
scale

Lightest KK=1 state stable: LKP (usually    )
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Minimal UED
Minimal UED model needs 3 parameters 
specified:

Radius of extra dimension
                   required by electro-
weak precision measurements

Scale    
Higgs mass
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R

R−1 > 300 GeV

Λ



Spin at LHC/ILC

Can compare total cross sections:
Need to have a model in mind
Not a measurement of spin

Can look for KK>1 towers
Could be too heavy for colliders, could be 
seeing non-minimal SUSY states
Again, not a spin measurement

Threshold scans at ILC
Both spinors and vector bosons have 
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σSUSY < σUED

σ ∝ β



At ILC, reconstruct production angle:

Scalar production

Spinor production (away from thres.)

T-channel creates forward peak: model 
dependence
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Spin at LHC/ILC

∝ sin2 θ
∝ 1 + cos2 θ
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Figure 3: Differential cross-section dσ/d cos θµ for UED (blue, top) and supersymmetry (red,
bottom) as a function of the muon scattering angle θµ. The figure on the left shows the ISR-
corrected theoretical prediction. The two figures on the right in addition include the effects of event
selection, beamstrahlung and detector resolution and acceptance. The left (right) panel is for the
case of UED (supersymmetry). The data points are the combined signal and background events,
while the yellow-shaded histogram is the signal only.

Distributions (4.2) and (4.3) are sufficiently distinct to discriminate the two cases.

However, the polar angles θ of the original KK-muons and smuons are not directly observ-

able and the production polar angles θµ of the final state muons are measured instead. But

as long as the mass differences Mµ1 − Mγ1 and Mµ̃ − Mχ̃0
1

respectively remain small, the

muon directions are well correlated with those of their parents (see Figure 3a). In Fig. 3b

we show the same comparison after detector simulation and including the SM background.

The angular distributions are well distinguishable also when accounting for these effects.

By performing a χ2 fit to the normalised polar angle distribution, the UED scenario con-

sidered here could be distinguished from the MSSM, on the sole basis of the distribution

shape, with 350 fb−1 of data at
√

s = 3 TeV.

4.2 Threshold scans

At the e+e− linear collider, the muon excitation masses can be accurately determined

through an energy scan of the onset of the pair production threshold. This study not only

determines the masses, but also confirms the particle nature. In fact the cross sections for

the UED processes rise at threshold ∝ β while in supersymmetry their threshold onset is

∝ β3, where β is the particle velocity.

Since the collision energy can be tuned at properly chosen values, the power rise of the

cross section can be tested and the masses of the particles involved measured. We have

studied such threshold scan for the e+e− → µ+
1 µ−

1 → µ+µ−γ1γ1 process at
√

s = 1 TeV,

for the same parameters as in Table 1. We account for the anticipated CLIC centre-of-mass

energy spread induced both by the energy spread in the CLIC linac and by beam-beam

effects during collisions. This been obtained from the detailed GuineaPig beam simulation
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Figure 9: The same as Fig. 3 (left panel), but for KK electron production e+e− → e+
1 e−1 , with θe

being the electron scattering angle.

choose a supersymmetric spectrum with selectron mass parameters as in Table 2. This

guarantees matching mass spectra in the two cases (UED and supersymmetry) so that any

differences in the angular distributions should be attributed to the different spins.

Unlike Fig. 3, where the underlying shapes of the angular distributions were very

distinctive (see eqs. (4.2) and (4.3)), the main effect in Fig. 9 is the uniform enhancement of

the forward scattering cross-section, which tends to wash out the spin correlations exhibited

in Fig. 3.

5.2 Kaluza-Klein quarks

Level 1 KK quarks will be produced in s-channel via diagrams similar to those exhibited in

Fig. 1. The corresponding production cross-sections are shown in Fig. 10, as a function of

R−1. We show separately the cases of the SU(2)W doublets uD
1 and dD

1 and the SU(2)W
singlets uS

1 and dS
1 . In the minimal UED model, the KK fermion doublets are somewhat

heavier than the KK fermion singlets [12], so naturally, the production cross-sections for

uD
1 and dD

1 cut off at a smaller value of R−1. Since singlet production is only mediated

by U(1) hypercharge interactions, the singlet production cross-sections tend to be smaller.

We notice that uS
1 ūS

1 is larger by a factor of 22 compared to dS
1 d̄S

1 , in accordance with the

usual quark hypercharge assignments.

The observable signals will be different in the case of SU(2)W doublets and SU(2)W
singlets. The singlets, uS

1 and dS
1 , decay directly to the LKP γ1, and the corresponding

signature will be 2 jets and missing energy. The jet angular distribution will again be

indicative of the KK quark spin, and can be used to discriminate against (right-handed)

squark production in supersymmetry, following the procedure outlined in section 4.1. The

jet energy distribution will again exhibit endpoints, which will in principle allow for the

mass measurements discussed in section 4.4. A threshold scan of the cross-section will pro-

– 14 –
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Decay of polarized spinor to 
spinor/scalar

Model dependent assumptions 
of chiral couplings.

Decay of vector boson

9

Spin at LHC/ILCHowever, if ψ1 came from the decay of another particle and that vertex was chiral then

the situation is different. In that case ψ1 is polarized and its subsequent decay is governed by

a non-trivial angular distribution as shown in Fig. (1). Whether the decay involves a helicity

flip or not determines the sign of the slope.
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Figure 1: The decay probability for a fermion into a scalar and another fermion of the same helicity
(solid-black) or opposite helicity (dashed-red) as a function of cos θ. θ is defined with respect to the
axis of polarization of the decaying fermion.

Next, we consider the decay of a fermion into another fermion and a gauge-boson via an

interaction of the form

gLψ̄2γ
µPLψ1Aµ + gRψ̄2γ

µPRψ1Aµ (2.2)

As before, we consider the case where ψ2 is boosted. If the interaction is chiral ψ2 is in a

definite helicity state. The fermionic current that couples to Aµ is of the form ψ̄α̇σα̇β
µ ψβ .

If the emitted gauge-boson is longitudinally polarized the distributions are the same as the

decay into a fermion and a scalar. If it transversely polarized it is precisely opposite (i.e.

same helicity corresponds to sin2 θ/2 and opposite helicity to cos2 θ/2).

The most important feature of the fermion’s decay is the linear dependence of the decay

probability on cos θ. It is also clear that chiral vertices must be involved in order to observe

spin correlations (unless the fermion is a Majorana particle, a possibility we discuss below).

2.3 Gauge-boson decay

When a gauge-boson decay (2-body), relativity forces the products to be two bosons or two

fermions. As is well known, when the products are two fermions the angular distribution is

given by,

Ptrans(cos θ) =
1

4

(

1 + cos2 θ
)

Plong(cos θ) =
1

2

(

1 − cos2 θ
)

(2.3)

If a gauge boson decays into two scalars via the interaction

gφ∗
2

↔

∂ µ φ1A
µ, (2.4)

the angular distribution has the opposite structure,

Ptrans(cos θ) =
1

2
(1 − cos2 θ) Plong(cos θ) = cos2 θ (2.5)
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where the subscript on P denotes the initial gauge-boson’s polarization. As usual θ is defined

about the polarization axis. The decay of a gauge-boson into two other gauge-bosons has

the same angular distribution as Eq. (2.5). These are shown in Fig.(2). As usual there are
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Figure 2: The decay probability for a gauge-boson into two fermions (left) and two bosons (right)
for transverse (solid-black) and longitudinal polarization (dashed-red) as a function of cos θ.

finite mass effects that come into play when the products are not highly boosted. Those tend

to wash out any angular dependence of the amplitude. Generically these contributions scale

as m2/E2. Therefore, as noted before there has to be an appreciable difference between the

mass of the decaying particle and its products so that m2/E2 ! 1/2.

The contrast with the previous case is clear as the dependence of the amplitude on cos θ

is quadratic. It is also important to note that the vertex need not be chiral.

2.4 Higher spin

By noting that a rotation by θ of a state of spin j is given by eiθjσy it is easy to see that the

amplitude for the decay of a particle with spin j is some polynomial of degree 2j,

Pλ(cos θ) = a2j(cos θ)2j + a2j−1(cos θ)2j−1 + . . . + a0 (2.6)

The coefficients ai are such that when we sum over all polarizations λ we get,

∑

λ

Pλ(cos θ) = 1 (2.7)

since an unpolarized particle has no preferred direction. In this paper we concentrate on spin

0,1/2, and 1 and will not consider higher spin. Nonetheless, this is an important issue to

address. For example, if the partners of the graviton are indeed detected it would be good to

know whether it is a supersymmetric spin-3/2 object or a Same-Spin spin-2 resonance.

3. Angular correlations in cascade decays

In this section, we present a systematic study of spin correlations in a wide variety of cascade

decay channels. Aside from the matrix element, the kinematics also play a crucial role in the

observability of spin effects. We lay out the conditions for observing spin correlations in each
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to spinors to bosons
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Spin at LHC/ILC

Charge asymmetry:

Spinor      has            compared to         
          for phase space.
Signal polluted by    decays, and cannot 
distinguish near/far leptons
Signal survives in charge asymmetry of

Model dependent assumption of     chiral 
couplings.
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m̂ ≡ mnear
!q /(mnear

!q )max = sin θ∗/2

q̃L → χ̃0
2qL → "̃±R"∓qL → "±"∓qLχ̃0

1

near

far

χ̃0
2

¯̃qL

χ̃0
2

σ ∝ m̂3

σ ∝ m̂

dσ

dm!±q



Spin and Quantum Interference

Decay of particle with 
helicity   :

Rotations about z-axis 
of decay plane imply
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hh

h

φ

Jz =
(!s + !x× !p) · !p

|!p|

=
!s · !p

|!p| = h

M ∝ eiJzφ



Spin and Quantum Interference

If particle produced in multiple helicities with 
approximately equal probabilities, then

If we can measure the    dependence of 
cross section, we can determine what 
helicities contributed to the interference.
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φ

σ ∝
∣∣∣
∑
Mprod.Mdecay

∣∣∣
2

Mdecay = eihφMdecay(h, φ = 0)



Vector Boson Decay:
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∣∣∣
∑
M

∣∣∣
2

= A + B cosφ1 + C cos 2φ1

M+ ∝ eiφ1

M0 ∝ 1
M− ∝ e−iφ1

Spin and Quantum Interference
Spinor Decay:

M↑ ∝ eiφ1/2

M↓ ∝ e−iφ1/2

∣∣∣
∑
M

∣∣∣
2

= A + B cosφ1

Scalar Decay:
∣∣∣
∑
M

∣∣∣
2

= A



Coherent Sums and Kinematics
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pair prod.
kinematics

µ

µ

µ̃R/µ1R
χ̃0

1/B1

µ̃R/µ1R

χ̃0
1/B1



Scalar vs. Spinor at ILC

Scalar decay:
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e−e+ → µ+
1Rµ−1R → µ+µ−B1B1

e−e+ → µ̃+
Rµ̃−R → µ+µ−χ̃1

0χ̃
1
0

Spinor decay:

Reconstruct      distributions and measure 
        parametersA, B
φ1/2

σ ∝ |M|2 = A σ ∝ |M↑ +M↓|2

= A + B cosφi



Reconstruction of
Assume masses of   /   partners 
known.

system specified up to a 2-
fold ambiguity

Use both solutions: true and 
false       to derive true and 
false values for

16

φ1/2

Bµ

!pµ̃R

φi

4+4 unknown LSP/LKP momenta 
-4 measured /p
-4 mass relations

µ

µ

µ̃R/µ1R
χ̃0

1/B1

µ̃R/µ1R

χ̃0
1/B1



Reconstruction Algorithm
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c1 =
1
2
(m2

B̃
−m2

µ̃R
+ 2Ebp

0
1)

c2 = −1
2
(m2

B̃
−m2

µ̃R
+ 2Ebp

0
2)

t1 =
(!p2 · !p2)c1 − (!p2 · !p1)c2

(!p2 · !p2)(!p1 · !p1)− (!p2 · !p1)2

t2 =
(!p1 · !p1)c2 − (!p2 · !p1)c1

(!p2 · !p2)(!p1 · !p1)− (!p2 · !p1)2

y =

√
E2

b −m2
µ̃R
− (t21(!p1 · !p1) + t22(!p2 · !p2) + 2t1t2(!p2 · !p1)

|!p1 × !p2|2

!pµ̃R = t1!p1 + t2!p2 ± y(!p1 × !p2)

p

p
p  x p

1

2
1 2



Mass Measurements at ILC/LHC

Reconstruction assumes no mass/momentum 
measurement errors.
Tracking resolution at ILC expected to have                                 
error
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∆mcont. (GeV) ∆mthres (GeV)
ẽR 0.2 0.05
ẽL 0.2 0.18
ν̃e 0.1 0.07
χ̃0

1 0.1 0.05

∆pT /pT = 5× 10−5(pT /GeV)



Backgrounds
Depending on spectrum and beam energy:

BUT: requiring successful reconstruction i.e.          
that        , and assuming that the decaying 
particle is a     cuts          of background.
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W−W+ → µ+µ−νµν̄µ χ̃−χ̃+ → µ+µ−ν̃µ
¯̃νµ

µ̃−L µ̃+
L → µ+µ−χ̃0χ̃0 ZZ → (µ+µ−)(νν̄)

· · ·

y ∈ R
∼ 99%µ̃R



Scalar vs. Spinor at ILC
Assume              ,
Take two possible spectra: a typical SUSY 
and a typical MUED spectrum.

Since mass of SM partners assumed 
known, we ‘fake’ a MUED model with SUSY 
spectrum, and vice versa.
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L = 500 fb−1

SUSY SPS3 MUED

√
s ≤ 1 TeV

m0 90 GeV
m1/2 400 GeV
A0 0

tanβ 10
µ > 0

R−1 300 GeV
Λ 20R−1

mH 120 GeV



Event Generation
Differential cross sections 
calculated using HELAS with 
narrow-width approx.

Cross-checked with 
MadGraph/CalcHEP where 
applicable

MUED spectrum calculated 
using Matchev et. al. CalcHEP 
model

Monte Carlo implemented with 
BASES

21

HELAS: FORTRAN 77 subroutines 
to calculate helicity amplitudes.

BASES: adaptive Monte-Carlo 
FORTRAN 77 subroutines

MadGraph: publicly available Monte 
Carlo using HELAS to calculate 
parton-level amplitudes

Does not have UED implimented

CalcHEP: publicly available 
Monte Carlo. Implements UED, 
but slow for 2->4 processes



SPS 3 Analysis
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Assuming 500 fb   of 
luminosity, have several 
thousand to several 100k’s 
of events.

Cut on successful 
reconstruction of     and 
make pseudo-rapidity cuts 
on leptons and missing 
energy:

µ̃R

η ≤ 2.5

100

10

1

200 250 300 350 400 450 500

Beam Energy (GeV)

 (
fb

)

SUSY

UED

χ̃0
1/B1 161 GeV

µ̃R/µ1R 181 GeV
µ̃L/µ1L 289 GeV

-1



Azimuthal Distributions
Sum     and     distributions.
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Azimuthal Distributions
Rapidity cuts and false solutions cause high 
frequency oscillations in the distribution. 

Fit to

Overall scaling depends 
on total   , parameter 
of interest is

Presence of
may cause confusion 
between spinor and 
vector boson
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A + B cosφ + C cos 2φ

σ
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Error Calculations

Assume      errors for histogram bins
Fit          using method of least squares

95% confidence interval for each variable 
after marginalizing over the other 2
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√
N

A, B, C

χ2 =
20∑

n=1

(tn −
∫

bin A + B cosφ + C cos 2φ)2

s2
n



Azimuthal Distributions
SPS3 spectrum
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MUED Spectrum
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Azimuthal Distributions
MUED spectrum
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Spinor vs. Vector Boson at ILC

Spinor azimuthal distribution

Vector boson distribution

For    to be large, need equal production 
of all 3 polarizations. 
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∣∣∣
∑
M

∣∣∣
2

= A + B cosφi

∣∣∣
∑
M

∣∣∣
2

= A + B cosφi + C cos 2φi

C



Effect of Cuts

Distributions develop                            
dependence due to cuts 
on rapidity.
False solutions also have
        dependence. 
In                       
this may cause 
confusion between 
spinor/vector.
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cos 2φ

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

Azimuthal Angle

E
v
e
n
ts

µ+
1Rµ−1R → µ+µ−B1B1

Both True & False

True
cos 2φ



Effects of Cuts on

Subtract off effect of cuts on flat 
distribution to correct for detector effects: 
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MUED uncorrected

e−e+ → µ+
1Rµ−1R → µ+µ−B1B1

MUED corrected
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Both solutions/no cuts
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Charged W’s at ILC

Major backgrounds

Again can be greatly reduced by requiring 
successful reconstruction of
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e−Le+
L → χ̃−1 χ̃+

1 → "±"∓ν̃ ¯̃ν
e−Le+

L →W−
1 W+

1 → !±!∓ν1ν̄1

W−W+ → !±!∓νν̄ !̃−!̃+ → !±!∓χ̃0
1χ̃

0
1

χ̃±1

W±
1 /χ̃±1 306 GeV
ν1/ν̃ 276 GeV

SPS3
spectrum
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Charged W’s at ILC

Statistics limited:

Requires           to distinguish UED vector 
bosons true solution from spinors.

Poor understanding of false distribution
Flat distribution in         does not capture 
effect of cuts on non-trivial distributions.

34

(
√

s = 650 GeV)

θi, φi

σUED ×BR = 87.7 fb
σSUSY ×BR = 2.9 fb

∼ 1 ab−1



Full Reconstruction of Events

If masses of             
known then

Near/far ambiguity 
potential problem, but 
with precision mass & 
momentum knowledge, 
this can be overcome.
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e±

e∓

ẽ∓

µ̃∓
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µ±

χ̃0
1

χ̃0
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χ̃0
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χ̃0
2, χ̃

0
1, "̃

±

4+4 unknown LSP/LKP momenta 
-4 measured /p
-6 mass relations



Can reconstruct using 
either       /       combined 
momentum or just near    /
Now have near/far ambiguity. 
Demanding agreement 
between the two methods 
eliminates false solutions.
Statistics limited, cross section 
at ILC only:

36

e±e∓µ±µ∓

µ±e±

e±

e∓

ẽ∓

µ̃∓
µ∓

µ±

χ̃0
1

χ̃0
1

χ̃0
2

χ̃0
2

σSUSY ×BR ∼ 0.1 fb
σUED ×BR ∼ 1 fb

χ̃0
2χ̃

0
2 → (µ±µ̃∓)(e±ẽ∓)→ (µ±µ∓χ̃0

1)(e
±e∓χ̃0

1)
W 3

1 W 3
1 → (µ±µ∓1 )(e±e∓1 )→ (µ±µ∓B1)(e±e∓B1)



Top Spin at the Tevatron

Can completely reconstruct top momentum in 
semi-leptonic decays

With known bottom and W spin, top spin can 
be either       or

Fit azimuthal distribution to

Spin      implies

37

t→ bW+

1/2 3/2

3∑

n=0

Ai cos(nφ)

1/2 A2 = A3 = 0



Spin at LHC
Lose two constraints: center 
of momentum frame and 

Still can reconstruct up 
to two-fold ambiguity

Much higher statistics 
available;

38

χ̃0
1

χ̃0
1g̃

g̃

q̃

q
q

q

q

q̃

√
ŝ

q̃

q
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q̃

χ̃0
2

χ̃0
2

!

!̃

!̃

!

σ ∼ 1 pb

4+4 unknown LSP/LKP momenta 
-2 measured
-6 mass relations

/pT



Mass measurements at LHC
Cheng, Gunion et. al. 0707.0030

Fit unknown masses (i.e.               ), 
require real solutions to the 
reconstruction

Solutions describe 3D volume in 
parameter space

With detector effects included, 
real masses correspond to values 
where the # of real solutions to 
data changes rapidly
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Figure 7: A few steps showing the migration of the one dimensional fits. The middle curve

in each plot corresponds to masses close to the correct values.
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Figure 8: The final plot for determining mN . The position of the maximum of the fitted

polynomial is taken to be the estimation of mN .

where this cliff is steepest that is close to the input masses, which are indicated by

the (red) star. The mass obtained by our recursive fitting procedure is indicated by
the (blue) cross. It is quite close to the actual steepest descent location. It is possible

that use of the contour plot by visually picking the point of steepest descent might
also yield an accurate mass determination comparable to or possibly even superior

to that obtained (and specified in detail below) using the recursive fitting procedure.
Roughly, the steepest descent point corresponds to the point where the magnitude
of !∇2 in mass space is maximized. Unfortunately, even after some smoothing, the

second derivative is quite ‘noisy’ and therefore not particularly useful in a local sense.
The one-dimensional fits give us a quick and intuitive way to find this maximum, and
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2900 events→
mχ̃2 = 252.2± 4.3, mµ̃ = 130.4± 4.3, mχ̃1 = 86.2± 4.3 GeV
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Conclusions

Quantum interference between helicity/
polarization states can serve as a fully model 
independent probe of spin in an event

A linear collider is capable of 
distinguishing scalars from higher spins
Distinguishing vector and spinor may be 
possible with higher luminosity and  a 
better understanding of cuts and false 
solutions.
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Conclusions

Method utilizes reconstruction of event up to 
two-fold ambiguity; longer decay chains may 
remove this ambiguity and allow for better 
discrimination of spin.

Investigated chains all suffer from poor 
statistics

At LHC, similar events would allow for 2-fold 
reconstruction, and with large # of events, 
allow for direct spin measurements
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