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New Era in Fundamental Physics

Energy Frontier
LHC

Nature of Electroweak Symmetry Breaking
(Higgs, Naturalness, New Symmetries/Dimensions)
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New Era in Fundamental Physics

Energy Frontier
LHC

Nature of Electroweak Symmetry Breaking
(Higgs, Naturalness, New Symmetries/Dimensions)

Precision Frontier
Atom Interferometry

Strong CP Solution, Nature of CC/DM
(Axions, Naturalness, New Forces, Violations of GR)

Rapidly advancing - Gaining 10 in sensitivity per year
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Atomic Interferometer

10 m atom drop tower.

10
 m

currently under 
construction
at Stanford
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Outline

Atom Interferometry

Fifth Force Experiments

Deviations in Newtonian Gravity
Equivalence Principle Violating Forces

Outlook

Motivation for New Forces
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Many suggestions for fifth forces

δV (r) = α
GNMm

r
exp(−r/λ)

Parameterization of new force

α
λ

Strength relative to gravity
Range (i.e. Compton wavelength)

One Precision Frontier:  
Short Distance Gravity
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Moduli Mediated Forces
In Supersymmetry some particles only get mass from 

supersymmetry breaking

msusy ∼ 1 TeV =⇒ λ =
!

mφc
∼ 1 mmIf

Generically have gravitational size couplings to matter
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MPlanck

MWeak

Large Extra Dimensions

V (r) ∼ 1
r
→ Ln

rn+1

St
re

ng
th

E ∼ 1
r

EM+ QCD

Gravity
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3-d brane

All forces start out equal at weak scale
EM & QCD live in 4 dimensions, 

gravity lives in more and dilutes

Basic Idea

High scale physics is just a mirage

Gravity is different at 
a new scale: mm to fm
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Composite Gravity

The Cosmological Constant ΛCC !
!c

(50 µm)4

+ +    ...ΛCC = ∼ !c

ε4
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Composite Gravity

The Cosmological Constant ΛCC !
!c

(50 µm)4

+ +    ...ΛCC = ∼ !c

ε4

L

Cosmological expansion driven by coupling to gravity

hµν ΛCC ∼
!c

L4
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Composite Gravity

The Cosmological Constant ΛCC !
!c

(50 µm)4

+ +    ...ΛCC = ∼ !c

ε4

If the graviton is composite with a size 50µm
no coupling to small loops L < ε

L

Cosmological expansion driven by coupling to gravity

hµν ΛCC ∼
!c

L4
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Composite Gravity

The Cosmological Constant ΛCC !
!c

(50 µm)4

+ +    ...ΛCC = ∼ !c

ε4

If the graviton is composite with a size 50µm
no coupling to small loops L < ε

L

Cosmological expansion driven by coupling to gravity

hµν ΛCC ∼
!c

L4

 No known theory does this
Motivates looking at short distance gravity
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Neutrinos in the Standard Model

ν

ν

e

e e

e

W W

mediate a very tiny, unscreenable force

Vν !
G2

F

16π2

e−mνc r/!

r5

!
mνc

∼ 1 mm

∼ 10−15 VN (r ∼ 100µm)

Still futuristic, but something to aim for!
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Short Distance Gravity Experiments

D.J. Kapner, et.al.,hep-ph/0611184.
11



Outline

Atom Interferometry

Fifth Force Experiments

Deviations in Newtonian Gravity
Equivalence Principle Violating Forces

Outlook

Motivation for New Forces

12



Space-time Interferometry

Mirrors

Beam-Splitters

Output Ports

x

ct

v1
v2

v1

v2

Time is a big lever-arm in area

∆x ∼ 1 m
cτ = 108 m

ALigo ∼ 107 m2

AAI ∼ 108 m2

10m Stanford Inteferometer
Kasevich & Hogan

Mach-Zehnder Inteferometer
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Raman  Transitions

1s

2p

ω1

ω1ω2

ω2

E

p

Two photon transition

|2〉

|1〉

1 eV
Fine Split

∆p ∼ 1 eV
∆E ∼ 0

Hyperfine Split
10−5 eV

absorbedemitted
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Rabi Oscillations
Effectively 2 state oscillations

i
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mirrors and beamsplitters are lasers

π

2

π

2

π

pulse

pulse

pulse
t = 0

t = T

t = 2T

t

x

Atom Interferometry

O2 =
1
2
(1− cos φ)O1 =

1
2
(1 + cos φ)
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Difference of Phases

O1 O2

!Φ = [V (0)− V (vrT )] ∆ T

ct

V (x)
x
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Slowly changing potentials 
For optical transitions and Rb

ct

V (x)

x

V (x) = V0 + V ′ x(t) + V ′′ x2(t)

∆V ∼ V ′∆x

Interferometers are accelerometers
for V ′′∆x / V ′ ! 1

∼ Force · Area

φ = ∆V T

∆x = vr T ∼ 1 mm

φ ∼ F vrT T
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Quickly changing potentials 
Consider  Yukawa potential

∆x! λFor measures potential differences

V (x) = V0 exp(−x/λ)

∆Φ ∼ V0 T V0 ∼ m a λ

Insensitive to momentum impartedx
V (x)

ct
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The “Gyroscope” Configuration
Launch vertically but shine lasers horizontally

Measures the force in laser’s direction

x

Free motion in horizontal direction

z
P

Iz

Ballistic motion - time and height the same

h = gT 2
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Experimental Set-up

z
P

Iz

First measure “null”

ΦNull
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Experimental Set-up

L

P

Iz

Nw x

z

Lasers shine horizontally towards test mass

Move test mass in and out and measure its gravity

ΦNullΦNear
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Experimental Set-up

x

L

w

z
P

Iz

F

Lasers shine horizontally towards test mass

Move test mass in and out and measure its gravity

ΦNullΦNearΦFar
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Precision

Dimensions of experiment

δΦ ∼ 10−1

Signal Size Resolution
Φ ∼ 10−2

Φ = kaT 2 =
h

λ

a

g

λ ∼ 500 nm h ∼ 10 cma ∼ GNρw ∼ 10−8g
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Precision

Dimensions of experiment

δΦ ∼ 10−1

Signal Size Resolution
Φ ∼ 10−2

Natoms ∼ 106 Nbunches ∼ 106

Ultimate Resolution
1√

NbNa

δΦ
Φ
∼ 10−5

Φ = kaT 2 =
h

λ

a

g

λ ∼ 500 nm h ∼ 10 cma ∼ GNρw ∼ 10−8g
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Measurement Strategy

log
x

L

lo
g

V
(x

)

GN unknown Normalization of V (x) unknown=⇒
Must measure at two distances

V0 + ax

x−2

x ∼ L
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Measurement Strategy

log
x

L

lo
g

V
(x

)

GN unknown Normalization of V (x) unknown=⇒
Must measure at two distances

λ <∼ L

λ >∼ L
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Limits on Resolution
Newtonian Prediction

Atoms initially held in laser trap

V(x)

x

∆x ∼ 100 µm

Wide wave packet
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Limits on Resolution
Newtonian Prediction

V(x)

x

δx ∼ 1 µm

δV/V ∼ 10−6 δV√
Nb V

∼ 10−9

Systematic Stochastic

Limits on source mass geometry
V ∼ m ax (1 +O(x/L)) Planar Geometry

Uncertainty in the position looks like new force
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Casimir / van der Waal’s Force
V (r) =

α0

r4

P

Iz

d
w x

L

z

L

w

zI

P
z

x
d

Put in shield to keep environment constant

Near
Far

30 µm 1 nmshield bends by

α0 polarizability ∼ 20 Å3
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Coriolis Force

Is common mode noise - up to jitter and vibrations

still need δvvib
<∼ 10−4 m/s

good vibration isolation

Methods of actively reducing it by 10−5

Stochastic with bunches 10−3

φCor = m ω vl vr T 2 ∼ 103
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Preliminary Reach

Existing Limits
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Equivalence Principle
New forces often violate EP

Way of distinguishing from Gravity
Useful for long distances
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Equivalence Principle
New forces often violate EP

Way of distinguishing from Gravity
Useful for long distances

New force couples to Z & (A− Z) as

F ∼ (1 + c)Z + (1− c)(A− Z)
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Equivalence Principle
New forces often violate EP

Way of distinguishing from Gravity
Useful for long distances

New force couples to Z & (A− Z) as

F ∼ (1 + c)Z + (1− c)(A− Z)

a =
F

m
∼ a0(1 + c ζ)

ζ ≡ Z/A Proton fraction of nucleusIntroduce

Composition dependent force
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Multiple Isotopic Species

Perform differential measurements

Different isotopes at same time

Want to maximize isotopic differences
δζLi ∼ 7%δζRb ∼ 1%

δζHe ∼ 25% δζH ∼ 50%

Use composition dependent force

∆Φ = Φ1 − Φ2

∆Φ ∝ a1 − a2 ∼ a0 c(ζ1 − ζ2)
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Co-Location

V(x)

x

10 nm85Rb 87Rb

Electronically identical

Nuclear moments differ, atoms see slightly different potential

Changes to a null experiment
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Backgrounds

Casimir is important at 0.1 mm
Double differential measurement as before

Coriolis is greatly reduced

Uncontrolled gravitational sources
are not a problem

easier environment to find
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Number of bunches 
 sets length of experiment

Can’t make signal bigger

Big cost to make taller drop towers

Improvements
Consider the phase

Φ
∆Φres

∼ p a T 2 N
1
2
atom N

1
2
bunch
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Large Momentum Transfer

|1〉

|2〉 1s

2p

E

p

changing the frequency to walk up momentum

2 orders of magnitude 
improvement

on long ranged forces

no gain on 
short ranged forces

∆x ∼ 10 cm

Φ ∼ p a T 2 N
1
2
atom N

1
2
bunch

∆p ∼ 102 eV
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Could do more atoms... 

Improvements

|ψ〉 ∼ (|1〉+ |2〉)NAtom

Resolution goes as N
− 1

2
Atom

Φ ∼ p a T 2 N
1
2
atom N

1
2
bunch

37



Could do more atoms... 

Improvements

|ψ〉 ∼ (|1〉+ |2〉)NAtom

Resolution goes as N
− 1

2
Atom

|ψ〉 ∼ (|1〉)NAtom + (|2〉)NAtom

Resolution goes as N−1
Atom

103 Gain!
known as Heisenberg Statistics

Φ ∼ p a T 2 N
1
2
atom N

1
2
bunch
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Other experiments

Precision GR
Dimopoulos, Graham, Hogan, Kasevich
gr-qc/0610047

Gravity Waves
Dimopoulos, Graham, Hogan, Kasevich, Rajendran

Electric Neutrality of Atoms
Arvanitaki, Dimopoulos, Geraci, Hogan, Kasevich

Equivalence Principle
Hogan, Kasevich
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Atom Interferometry

New method for searching for
beyond the SM physics

Many possibilities for 
future improvements

Need creativity for new
methods of searching
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