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Unparticles
Georgi: 

  a different way to calculate in CFT’s

  phase space looks like a fractional number                       
of particles

Georgi hep-ph/0703260, 0704.2457
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discuss, this can have a profound impact on their mo-
mentum dependence.

The spectral density ρ(p2, µ) defined in (7) obeys the
renormalization-group evolution equation [50]

dρ(p2, µ)

d lnµ
= −

[
2Γcusp(µ) ln

p2

µ2
+ 2γJ(µ)

]
ρ(p2, µ)

− 2Γcusp(µ)

∫ p2

0

dp′2
ρ(p′2, µ) − ρ(p2, µ)

p2 − p′2
. (8)

The quantities Γcusp and γJ are anomalous dimensions,
which depend on the renormalization scale only through
the running coupling αs(µ). Their perturbative expan-
sions are known to three-loop order. In particular, Γcusp

is the cusp anomalous dimension of Wilson loops with
light-like segments [56], which plays a central role in the
physics of soft-gluon interactions (see e.g. [57]). We stress
that the form of the evolution kernel in (8) is exact; its
simplicity is a consequence of dimensonal analysis com-
bined with some magic properties of Wilson lines.

The exact solution to the evolution equation was ob-
tained in [54]. It can be written in the form

ρ(p2, µ0) = N(M, µ0)
(
p2

)η−1

× j̃
(

ln
p2

M2
+ ∂η, M

) e−γEη

Γ(η)
, (9)

where ∂η denotes a derivative with respect to the quantity
η, which is then identified with

η =

∫ M2

µ2
0

dν2

ν2
Γcusp(ν) . (10)

The normalization factor N has scaling dimension −2η
and is given by

lnN(M, µ0) =

∫ M2

µ2
0

dν2

ν2

[
Γcusp(ν) ln

1

ν2
+ γJ(ν)

]
. (11)

This quantity is momentum-independent and will thus
be irrelevant to our discussion. The function j̃(x, M) has
a perturbative expansion free of large logarithms. It is
obtained from the Laplace transform

j̃(x, M) =

∫ ∞

0

dp2 e−p2/s ρ(p2, M) , (12)

where s = ex+γEM2. At one-loop order [58]

j̃(x, M) = 1 +
CF αs(M)

4π

(
2x2 − 3x + 7 −

2π2

3

)
. (13)

The two-loop expression for this function can be found
in [50].

When the tree-level approximation j̃ = 1 is used in
(9), the result exactly coincides with the unparticle spec-
tral density (2). The terms of order αs(M) in j̃ lead to

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

p2 [GeV2]

ρ(
p2

)/
N

[G
eV

−
1
]

1 2 5 10 20 50 100

0.05

0.1

0.2

0.5

p2 [GeV2]

ρ(
p2

)/
N

[G
eV

−
1
]

FIG. 1. Comparison of the unparticle spectral density (2)
(dashed) and the spectral density (9) of a massless quark jet
at next-to-leading order in QCD (solid). We use parameters
M = 10 GeV and η = 0.5. The right plot shows the same
results on logarithmic scales.

logarithmic modifications of the simple power form. In
the “unparticle language” they would indicate a small
breaking of conformal invariance, which is unavoidable if
the unparticle sector is coupled to the Standard Model.
Therefore, our result (9) shares all features of a realistic
model for the spectral function of the unparticles of a
conformal sector coupled to the Standard Model. In Fig-
ure 1 we compare the results (2) and (9) for a particular
set of input parameters.

In our “interacting particle model” for unparticle
states the exponent η = dU − 1 is expressed as an in-
tegral over the cusp anomalous dimension, see (10). In a
theory such as QCD the numerical value of η can be O(1)
provided the scales µ0 and M are widely separated. This
is because the perturbative smallness of the cusp anoma-
lous dimension is overcome by the logarithmic integra-
tion over scales. In leading logarithmic approximation
one finds

η ≈
Γ0

β0
ln

αs(µ0)

αs(M)
(14)

with Γ0 = 4CF = 16/3 and β0 = 11
3

CA− 2
3
nf = 23/3 (for

nf = 5 light flavors). Considering the case M = 10GeV
as an example, we obtain η = 0.5 for µ ≈ 1.2GeV. Other
examples of jet functions have a similar functional form
but different values of η. For the example of a gluon jet
the one-loop coefficient Γ0 = 4CA is a factor 9/4 larger
than in the case of a quark jet (for Nc = 3), leading to
even larger η values.

The discussion above may be generalized to the case of
massive QCD jets. If the quark field ψ in (5) has mass m,
then relations (5)–(8) remain valid, but the solution (9)
must be modified. In this case it is no longer possible to
write the solution in closed form, however a perturbative
expansion of the resummed spectral function can still be
obtained [59,60]. At one-loop order one finds

3

Quarks are Unparticles

Neubert hep-ph/0708.0036
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More Plans

• Important Operators

• Representative Feynman Graph

the Unparticles directly to the virtual boson so the full center-of-mass energy can be enjoyed by the

novel states. Such a scenario allows the LHC to maximally probe Unparticle effective operators.

For simplicity, without loss of generalization, we consider only scalar Unparticle operators. The

relevant operators [1] are,

O1 =
CU ΛdBZ−dU

U

Mk
ZµνZµν OU (1)

O2 =
C′
U

ΛdBZ−dU
U

Mk
AµνAµν OU (2)

O3 =
C′′
U

ΛdBZ−dU
U

Mk
m2

Z ZµZµ OU (3)

Here we have defined Vµν ≡ ∂µVν −∂νVµ where Vµ = (Aµ, Zµ). From [1], dBZ , dU and k are defined

as: (More on the BZ and k indices) For simplicity, we assume CU = C′
U

= C′′
U
. We can visually

represent our scenario with the following Feynman graph:

q q̄ → l+l−ET/ via virtual Z*/γ∗ with a scalar dU Unparticle operator. Here the Unparticle

operator is represented by the solid line without an arrowhead.

In the next section, we quantify the bounds on Unparticles from LEP and the TeVatron.

III. LEP AND TEVATRON CONSTRAINTS

In this section we give an overview of our application of LEP and TeVatron constraints on the

Unparticle sector. All the details with the relevant plots are in Appendix A.

New physics that produces dilepton final states is highly constrained by measuring the properties

of the Z boson at LEP. (Cite LEP summary papers) We use LEP results in two ways to provide

bounds on the couplings in equation 3. To begin, we take the constrained Unparticle signal plus the

e+e− → l+l− background and ensure the result is indistinguishable from the measured Z lineshape.

(cite LEP) Additionally, we consider invisible higgs decay measurements at LEP.(cite LEP) In this
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Devin Walker Unparticle Analysis 4

l+l− final states are highly constrained by Z-resonances at LEP.3 At the
LHC, these processes have well known backgrounds. For our LHC studies,
we couple the Unparticles to the virtual Z∗/γ∗ for the process q q̄ → l+l−.

qq̄ → l+l−ET/ via virtual Z*/γ∗

Now we could have coupled the Unparticles to the initial q̄ q or final state l+l−

particles. However, one can better probe the Unparticle effects by coupling
to the virtual Z∗/γ∗ which enjoy the full center of mass energy available to
the event. The relevant operators:

O1 =
CU ΛdBZ−dU

U

Mk
ZµνZµν OU (8)

O2 =
C′
U ΛdBZ−dU

U

Mk
AµνAµν OU (9)

O3 =
C′′
U ΛdBZ−dU

U

Mk
m2

Z ZµZµ OU (10)

Here, all factors of the weak mixing angle and coefficients from other oper-
ators are accounted for in CU , C′

U and C′′
U . We ignore the triple gauge boson

coupling terms to define here

Zµν = ∂µZν − ∂νZµ. (11)

Even though these operators could have been generated by a neutral scalar,
we will find the collider signatures are distinct. The remainder of these notes
explore these operators.

3Additionally, LEP I and II constrained missing higgs (l+l−ET/ ) signals.
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Lineshape Bounds from LEP

The bounds are derived assuming final state electrons.  
They are more stringent than the literature.
Use these values in the following analysis.
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Invisible Higgs Searches

It is possible the other LEP searches can place bounds on the Unparticle
physics. Note: The Unparticle signal we are studying is similar invisible
higgs searches at LEP I and II. In this case the invisible higgs decayed in the
following way:

1. e+e− → Z∗ higgs

2. (a) higgs → LSP LSP

(b) Z∗ → µ+µ−

All of the LEP collaborations had different ways to quantify the invisible
higgs’ mass. In this section, without loss of generality, we follow the Delphi
collaboration.[12] The recoil mass defined as

Mrec =

√

(

Ecms −
mZ Evis

Mvis

)2

−
(

mZ p/

Mvis

)2

(32)

where p/ is the missing momemtum. This is effectively the invariant mass of
the invisible higgs with the invariant mass of the visible system constrained
to the Z mass. To get a rough estimate, we just plot the missing invariant
mass of the Unparticle system. The recoil mass for dU = 1, 2 and 3 is black,
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!pU = −!pγ

EU = Ebeam − Eγ

MonoPhotons

Eγ = |pγ |

FµνFµν
OU
Λd



MonoPhotons

K. Cheung et. al. hep-ph/0706.3155
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FIG. 5: Comparison of photon energy and recoil mass distributions of e−e+ → γU (spin-1

unparticle) with the standard model background e−e+ → γZ∗ → γνν̄ for different values of

dU = 1.001, 1.2, 1.5, 2 and 3 at
√

s = 1 TeV.

where these complicated functions can be found in the appendix. We note that these func-

tions satisfy the following equations

F2 + G2 + H2 = 0 ,

F4 + G4 + H4 = 0 .

Thus, if we set r = 1, i.e., λ2 = λ′
2, the 1/P 2

U and 1/P 4
U terms in the matrix element squared

summed up to zero. This reflects the fact that the longitudinal parts in polarization sum of

the spin-2 unparticle are just like the gauge artifact of the spin-2 massless graviton. They

should not contribute to physical matrix elements. Note that the longitudinal part of the

polarization sum of the Z boson does not contribute to the matrix element squared either,

because the external fermion masses are set to be zero. In the case of r = 1, the above

matrix element squared is simplified to

|M|2 =
1

4Nc

λ2
2

Λ2
U

e2(gf
L

2
+ gf

R

2
)

2 sin2 θw cos2 θw

1

3(s − M2
Z)2t2u2

F(t, u) (49)

where

F ≡ F0 + G0 + H0

= 8M6
Ztu

[

3P 4
U + 4tu − 3P 2

U (t + u)
]

+ 3tu
(

−P 2
U + t + u

) [

2P 4
U + t2 + u2 − 2P 2

U (t + u)
] [

−P 4
U − 4tu + P 2

U (t + u)
]
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Monojets
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FIG. 8: Differential cross section dσ/dEj versus Ej for the monojet signal at the LHC, with

various dU . We have set ΛU = 1 TeV and λ0 = λ1 = 1.

original anticipation [2]. One would anticipate that mono-photon or mono-Z production plus

an unparticle may be more promising at hadronic collisions, because of better experimental

resolution for photons and charged leptons. However, one still suffers from the unknown ŝ

in hadronic collisions. The unparticle information carried by the mono-photon or mono-Z

is likely to be washed out by parton smearing as well. Even though we do not consider the

case of spin-2 unparticle here, including them should not alter the conclusion.

D. Present constraints on ΛU from mono-photon production at LEP2

LEP collaborations [36] had measured mono-photon production in the context of extra

dimensions, gauge-mediated SUSY breaking models, and other models that can produce a

single photon plus missing energy in the final state. Their limits on mono-photon production

are similar. We simply take the strongest bound among these LEP results: L3 obtained an

95% C.L. upper limit on σ(e−e+ → γ + X) " 0.2 pb under the cuts: Eγ > 5 GeV and

| cos θγ | < 0.97 at
√

s = 207 GeV. We calculate mono-photon plus unparticle production

with the same cuts in e−e+ collisions with
√

s = 207 GeV versus the unparticle scale ΛU

(with a fixed λ1 = 1) for dU = 1.4, 1.6, 1.8 and 2 in Fig. 9. We have also drawn the
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Unparticle Signal at LHC

• Again, no associated mass scale for the effective mass.   
(No cuts applied.)

• Left/right panels = 1 (black solid), 2 (green solid), 3 (blue dot-dashed)

• Distribution is clearly different from background.  

• Electron final states.
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For both pp → ZZ and pp → WW plots, note there is a kinematic edge/relative
maximum at the mass of the Z and W, respectively. The mass scale for the
missing energy is given by this edge. The Unparticle signal does not have
an edge/maximum around the respective Z and W masses to suggest a miss-
ing energy mass scale. The signal already has very different kinematics seen
clearly for the simple ET/ kinematic variable.

We should try a simple reconstruction of each event. We do this in order
to make optimal cuts to maximize the signal-to-background ratio. We note
most kinematic variables have a definite mass scale which introduces a mass
bias. The mass bias makes such variables useless for our purposes. An ex-
ample is the (cluster) transverse mass variable used to reconstruct pp → ZZ
(pp → WW ). It is defined as

M2
T =

(

√

p2
T,l+l− + m2

l+l− +
√

p2
T,l+l−/ + M2

Z(W )

)2

. (12)

It is clear the absolute minimum of the mass variable is M2
Z(W ). Any plot of

this variable, would have an “artificial” edge (representing the minimum) at
M2

Z(W ). A kinematic variable that does not have a mass bias is the effective
mass:

Meff =
∑

visible particles

pT + ET/. (13)

The effective mass for the dU = 1, 2, 3 (left panel) and dU = 1.5, 2.5, 3.5 (right
panel) signal:

The pp → ZZ background:

9
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A Note on Kinematic Variables

• Kinematic variables are needed to maximize signal-to-
background ratio.

• Not all kinematic variables, however, are useful in 
uncovering Unparticle kinematics.  Consider the (cluster) 
transverse mass variable used to reconstruct                 
(                 )

Artificial mass bias at          .  The effective mass 

and the       are suitable non-baised variables.
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Introduction

• We will use the Higgs portal to unparticles a

L = −κU |H|2OU

• When H acquires a VEV v it gives: 〈OU〉 =
∫ ∞

0
dM 2F (M 2)u(M 2) = −

κUv2

2

∫ ∞

0

F 2(M 2)

M 2
dM 2

F 2(M 2) =
AdU

2π
(M 2)dU−2

which has an IR divergence

aP.J. Fox, A. Rajaraman and Y. Shirman, arXiv:0705.3092
THE HIGGS CONNECTION – P.2/11

Higgs Mediator

Mariano Quiros



Casem2

h > ζv2

1.051.11.151.21.251.31.35
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Width of the Higgs boson from unparticle merging
for ζ = 0.2
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COLORED UNPARTICLES

Strong production rate, similar to heavy colored particles

SIGNATURES

! Hadronization: they form heavy (stable) meson-like 
states (charged, neutral...)

! Unjets: containing SM hadrons + CFT stuff

UNJETS

! Only a small fraction of the energy is in hadrons 
(visible)

! Look like (maybe broader) QCD jets + !pT

G. Cacciapaglia, G. Marandella, J. Terning

Guido Marandella, 

Giacomo Cacciapaglia

Colored Mediator

σunparticle = (2− d)σparticle d < 2

R-Hadrons, anomalous jets/E loss



unquark production



σunparticle = (2− d)σparticle

unquark production



2 jets +

Pair production

     is aligned to visible  

!pT

!pT

CFT stuff radiation
not aligned!pT

pT

Colored Mediator


