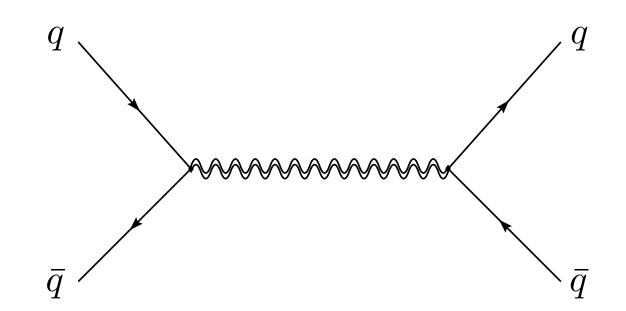
Light Colored Resonances at the Tevatron (and the very early LHC?)

Takemichi Okui (JHU & UMD)

with C. Kilic and R. Sundrum

Introduction

Tevatron } Hadron Colliders


Large CM energies. Collide colored partons.

Good for producing colored resonances. Seeing them not necessarily easy.

Better be prepared!

Consider a color-octet vector resonance: (or "coloron")

Minimal realization:

with the coupling $g_3 \tan \theta$ ($\theta \ge a \text{ few}/10$).

Immediate virtues:

The coloron is { Flavor blind, Electroweak neutral.

$\Rightarrow \begin{cases} No FCNCs, \\ No Conflicts w/ electroweak precision. \end{cases}$

 \Rightarrow Can be very light!

Coupling to $q\bar{q}$ cannot be turned off.

 \Rightarrow Copious production guaranteed!

Possible Scenarios

(1) "QCP"-like scenario

(Analogy)

photon-rho mixing

 $SU(3)_L \times SU(3)_R \times U(1)_B$ $\longrightarrow SU(3)_{L+R} \times U(1)_B \supset U(1)_{EM}$

 $e^+e^-
ightarrow
ho$ via mixing

 $\theta \simeq 0.06$

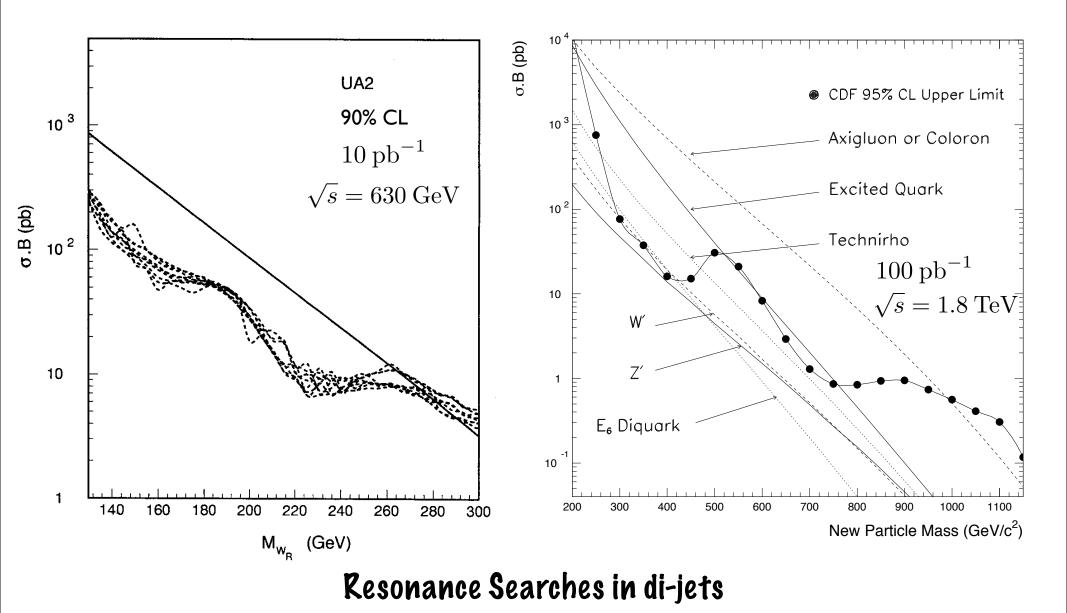
gluon-coloron mixing

 $SU(3)_L \times SU(3)_R$ $\longrightarrow SU(3)_{L+R} \equiv SU(3)_c$

 $qar{q}
ightarrow ilde{
ho}$ via mixing

$$\theta \simeq \frac{g_3}{e} \times 0.06 \simeq 0.2$$

(2) "Two-site" scenario (e.g. KK gluon)


 $\begin{array}{l} SU(3)_p\otimes SU(3)_q\longrightarrow SU(3)_{p+q}\equiv SU(3)_c\\ \uparrow\\ q\\ \end{array}$ by $\Sigma:(\mathbf{3},\mathbf{\bar{3}})$ with $\langle\Sigma\rangle\propto\mathbf{1}_{3\times3}.$ Then,

$$\frac{1}{g_3^2} = \frac{1}{g_p^2} + \frac{1}{g_q^2} , \qquad \sin \theta = \frac{g_q}{\sqrt{g_p^2 + g_q^2}}$$

where

$$\begin{split} &1\lesssim g_p^2,\ g_q^2\lesssim 16\pi^2/3\approx 50\\ \Rightarrow &\sin\theta\gtrsim 0.2\,,\quad \cos\theta\gtrsim 0.2\,. \end{split}$$

Actually, minimal coloron is ruled out:

But we're not too far from the bound.

 \Rightarrow Additional decay modes can easily save us!

What kind of new decay is "plausible"?

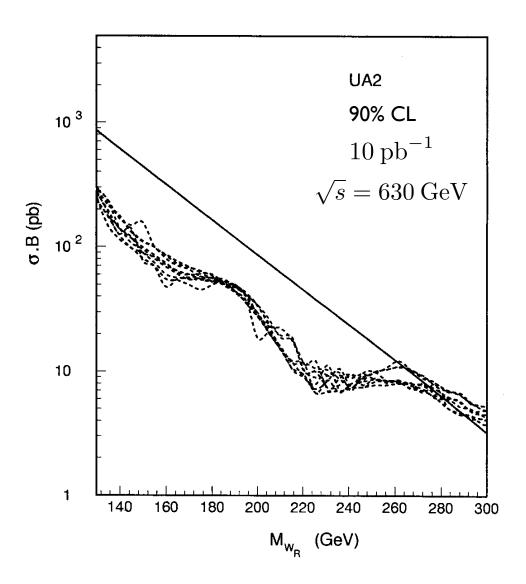
(1) "QCP"-like scenario

Chiral symmetry breaking \Rightarrow Pions " ρ " \rightarrow " $\pi\pi$ " i.e. coloron \rightarrow two scalars ($\approx 100\%$)

(2) "Two-site" scenario

Let it be a linear σ model: $\Sigma = \langle \Sigma \rangle + \sigma + i\chi + \phi^a T^a$ Then, $\operatorname{tr}[|D\Sigma|^2] \supset \tilde{o}^a (\phi^a \partial^\mu \gamma - \gamma \partial^\mu \phi^a)$

$$\sum [D\Sigma]^{2} \supset \rho^{a}(\phi^{a}\partial^{\mu}\chi - \chi\partial^{\mu}\phi^{a})$$


$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$coloron \qquad two scalars$$

In either case, "coloron \rightarrow two scalars" is very plausible!

Now, let's see!

Data

Scenario (2)

$$m_{\phi} = 160 \text{ GeV}$$

 $m_{\chi} = 30 \text{ GeV}$
 $\sin \theta = 0.2$

$m_{\tilde{ ho}} \; [\text{GeV}]$	$\sigma_{p\bar{p}\to\tilde{ ho}\to q\bar{q}} \left[\mathrm{pb} \right]$
240	16
260	7.0
280	3.2
300	1.6

CDF Run-I

Mass	$95\%~{\rm CL}$	Mass	95% CL
$({\rm GeV/c^2})$	$\sigma \cdot B \ (\mathrm{pb})$	$({\rm GeV/c^2})$	$\sigma \cdot B \text{ (pb)}$
200	1.3×10^4	700	1.3×10^0
250	$7.6 imes 10^2$	750	8.6×10^{-1}
300	$7.7 imes 10^1$	800	8.4×10^{-1}
350	3.8×10^1	850	9.3×10^{-1}
400	1.6×10^1	900	9.5×10^{-1}
450	$1.5 imes 10^1$	950	7.4×10^{-1}
500	3.1×10^1	1000	5.6×10^{-1}
550	2.1×10^1	1050	4.1×10^{-1}
600	8.3×10^0	1100	3.1×10^{-1}
650	2.9×10^0	1150	1.2×10^{-1}

$m_{\tilde{ ho}} \; [{ m GeV}]$	$\sigma_{p\bar{p}\rightarrow\tilde{ ho}\rightarrow q\bar{q}} \left[\mathrm{pb} \right]$
300	55
320	39
340	28

A "coloron window" exists!!!

How do the two scalars decay?

In scenario (1), " $\pi ightarrow \gamma$ " i.e. $\tilde{\pi} ightarrow gg$ So, $q\bar{q} ightarrow \tilde{ ho} ightarrow \tilde{\pi} \tilde{\pi} ightarrow gggg$

In scenario (2),

So, $\phi o gg$ and $\chi o q \bar q g$ at one loop. $q \bar q o \tilde
ho o \phi \chi o q \bar q g g g$

SM Bkgd too overwhelming!

But the $q\bar{q} \rightarrow \tilde{
ho}$ cross-section is enormous.

 \Rightarrow even a small "perturbation" could make $\tilde{\rho}$ visible.

Scalar Decay Possibilities:

(a) Into electrons, muons, photons Too obvious. Looked for already. Must be "just-so".

(b) Into b-quarks, taus

Good chances, especially b's!

In "QCD"-like scenario, there is $ilde{\pi} o b\overline{b}$!

Recall in QCD,

 $\pi \to \gamma \gamma = 99\%$ $\pi \to e^+ e^- \gamma = 1\%$

So, in scenario (1),

 $ilde{\pi} o b ar{b} g$ with $rac{1\% imes (g_3/e)^2}{99\% + 5 imes 1\% imes (g_3/e)^2} \simeq 9\%$ So,

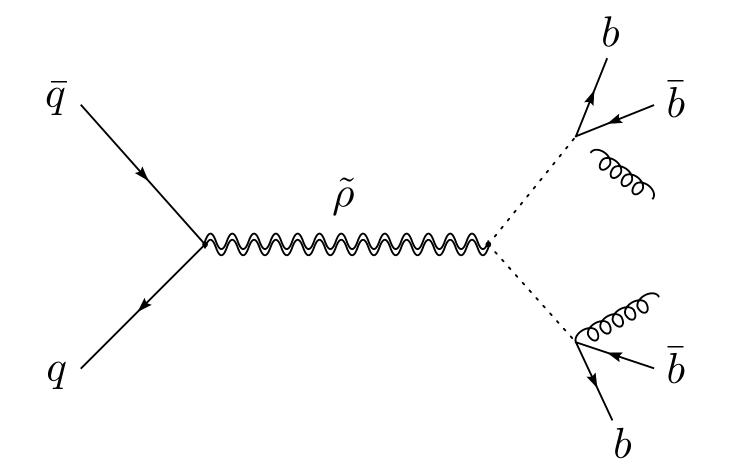
 $\tilde{
ho}
ightarrow \tilde{\pi} \tilde{\pi}
ightarrow 4b + 2g$ with O(1)%

In scenario (2),

Add a dim-6 op:

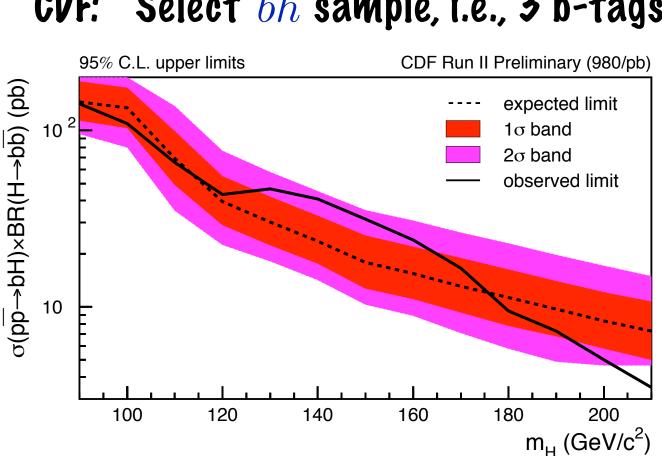
$$\frac{c}{M^2} H d^c \Sigma^{\dagger} \Sigma \hat{\mathbf{Y}}_d Q \quad \supset \frac{c y_b \langle \Sigma \rangle \langle H \rangle}{M^2} b^c \phi b$$

with $c \lesssim 16\pi^2$.


For example,

c = 40, $\sin \theta = 0.2$, $m_{\phi} = 160 \text{ GeV}$, M = TeVgives $\sim 0.5 \%$ for $\phi \to b\overline{b}$.

χ still goes to $q \bar{q} g$ dominantly.


So, $\tilde{
ho}
ightarrow 4b(+g)$ is $\sim 0.1~\%$.

So, best chance to discover coloron is via

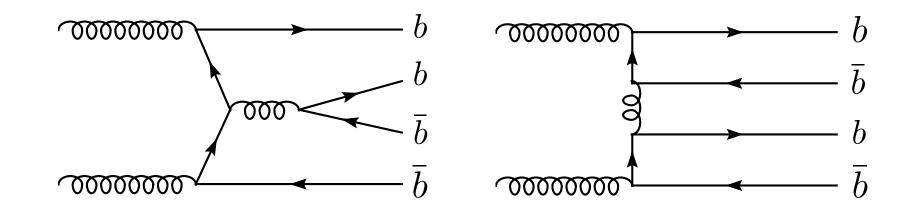
How about $h \rightarrow b\overline{b}$ search?

For example,

CDF: Select *bh* sample, i.e., **3** b-tags.

Similar to the size of our 2b cross-sec.

How about di-jet bound on $gg \to \tilde{\pi} \to jj$ or $gg \to \phi \to jj$?


Note the couplings g-g- $\tilde{\pi}$ and g-g- ϕ are non-renormalizable.

 $\Rightarrow \quad \text{Suppressed at least by } (16\pi^2)^{-2} \sim 10^{-4}$ compared to coloron of same mass.

Safe!

Quick look at discovery potential

The SM Bkgd:

etc.

Typically forward.

Dominated by small-x gluons.

No b-pairs sees a peak or edge.

So let's try crude cuts:

- 4 b-tags
- p_T cuts: all b's $> 20~{\rm GeV}$, one b $> 50~{\rm GeV}$
- Demand the two highest- p_T is have

 $110 < \text{inv mass}^2 < 210$

- η cut: $-2.5 < \eta < 2.5$
- $\Delta R > 0.4$

$\Rightarrow SM bkgd \approx 2 pb$ Signal = O(0.1)-O(1) pb

Summary:

There is a "window" for a light coloron.

The coloron can naturally decay to 4 b's via 2 scalars.

Tevatron has a good chance for seeing it!