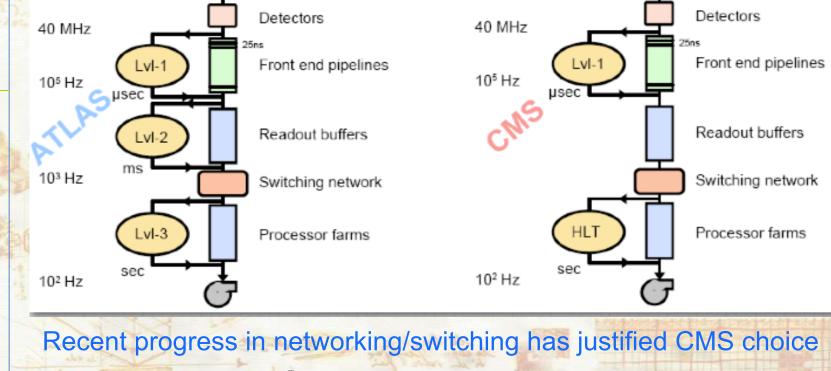
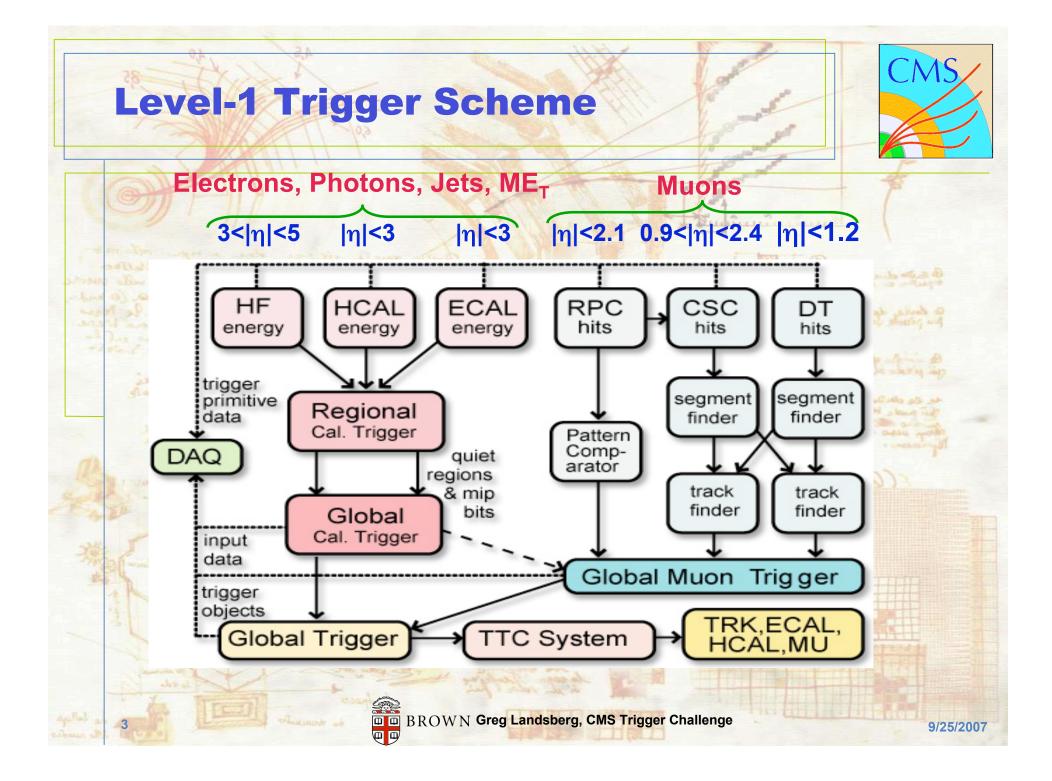
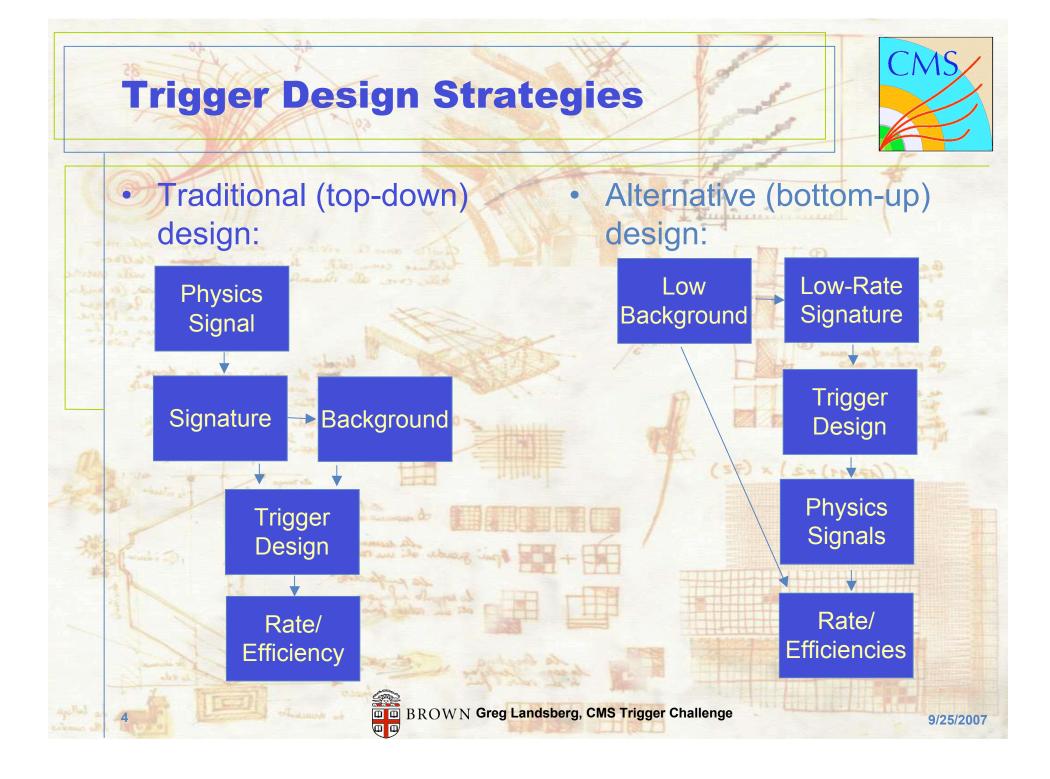

CMS Trigger Challenge

Greg Landsberg



November 17, 2007


Detecting the Unexpected Workshop at the UC Davis



Must reduce 32 MHz of input interactions to 100 Hz Do it in steps/successive approximations: "Trigger Levels" Multilevel trigger and readout systems Multilevel trigger and readout systems

BROWN Greg Landsberg, CMS Trigger Challenge

Pro's and Con's

- Top-down Approach
- Examples:
 - e+jets trigger for top in lepton+jets
 2 jets + ME_T trigger for
 - squark/gluino searches
- Pro's:
 - Optimum design for welldefined signals
 - Thorough threshold optimization
- Con's:
 - Inflexibility
 - Covers only a small fraction of allowed model space
 - No model no trigger?

Bottom-Up Approach

Example:

- Low-threshold µe trigger for generic searches
- H_T trigger

Pro's:

- Casting net for large variety of signals, possibly missed by the dedicated triggers
- Largely model-indpendent trigger
- Con's:
 - Non-optimum (purely ratedriven) design
 - Loss of efficiency compared to dedicated triggers

HLT Trigger Table for 2x10³³ cm⁻²s⁻¹

Trigger	L1 bits used	L1 Prescale	HLT Threshold (GeV)	HLT Rate (Hz
Inclusive e	2	1	26	23.5 ± 6.7
e-e	3	1	12, 12	1.0 ± 0.1
Relaxed e-e	4	1	19, 19	1.3 ± 0.1
Inclusive γ	2	1	80	3.1 ± 0.2
<i>γ</i> - <i>γ</i>	3	1	30, 20	1.6 ± 0.7
Relaxed γ - γ	4	1	30, 20	1.2 ± 0.6
Inclusive μ	0	1	19	25.8 ± 0.8
Relaxed μ	0	1	37	11.9 ± 0.5
μ-μ	1	1	7,7	4.8 ± 0.4
Relaxed μ - μ	1	1	10, 10	8.6 ± 0.6
	1	1	I	
$\tau + E_{T}^{miss}$	10	1	$65 (E_T^{miss})$	0.5 ± 0.1
Pixel τ - τ	10, 13	1	_	4.1 ± 1.1
Tracker τ - τ	10, 13	1	_	6.0 ± 1.1
$\tau + e$	26	1	52, 16	< 1.0
$\tau + \mu$	0	1	40, 15	< 1.0
b-jet (leading jet)	36, 37, 38, 39	1	350, 150, 55 (see text)	10.3 ± 0.3
b-jet (2 nd leading jet)	36, 37, 38, 39	1	350, 150, 55 (see text)	8.7 ± 0.3
				•
Single-jet	36	1	400	4.8 ± 0.0
Double-jet	36, 37	1	350	3.9 ± 0.0
Triple-jet	36, 37, 38	1	195	1.1 ± 0.0
Quadruple-jet	36, 37, 38, 39	1	80	8.9 ± 0.2
$E_{\rm T}^{\rm miss}$	32	1	91	2.5 ± 0.2

From Physics	TDR, vol. 2
--------------	-------------

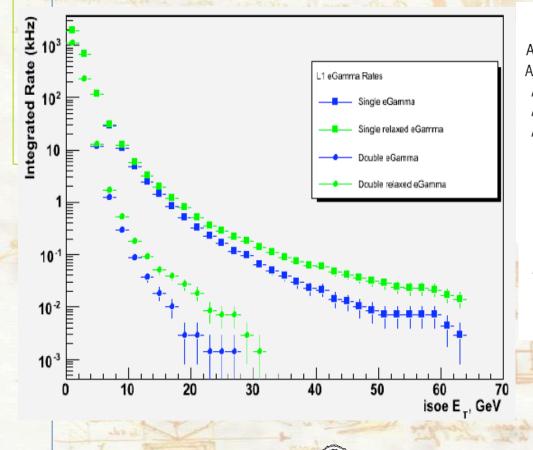
State State State	/	100	20 10 10 30	
jet + $E_{\rm T}^{\rm miss}$	32	1	180, 80	3.2 ± 0.1
acoplanar 2 jets	36, 37	1	200, 200	0.2 ± 0.0
acoplanar jet + E_{T}^{miss}	32	1	100, 80	0.1 ± 0.0
2 jets + E_{T}^{miss}	32	1	155, 80	1.6 ± 0.0
3 jets + E_{T}^{miss}	32	1	85, 80	0.9 ± 0.1
4 jets + E_{T}^{miss}	32	1	35, 80	1.7 ± 0.2
		•		
Diffractive	See Ref. [10]	1	40, 40	< 1.0
$H_{T} + E_{T}^{miss}$	31	1	350, 80	5.6 ± 0.2
$H_{\rm T}$ + e	31	1	350, 20	0.4 ± 0.1
		·		•
Inclusive γ	2	400	23	0.3 ± 0.0
$\gamma - \gamma$	3	20	12, 12	2.5 ± 1.4
Relaxed γ - γ	4	20	19, 19	0.1 ± 0.0
Single-jet	33	10	250	5.2 ± 0.0
Single-jet	34	1 000	120	1.6 ± 0.0
Single-jet	35	100 000	60	0.4 ± 0.0

Total HLT rate

 119.3 ± 7.2

BROWN Greg Landsberg, CMS Trigger Challenge

EM Trigger Suite

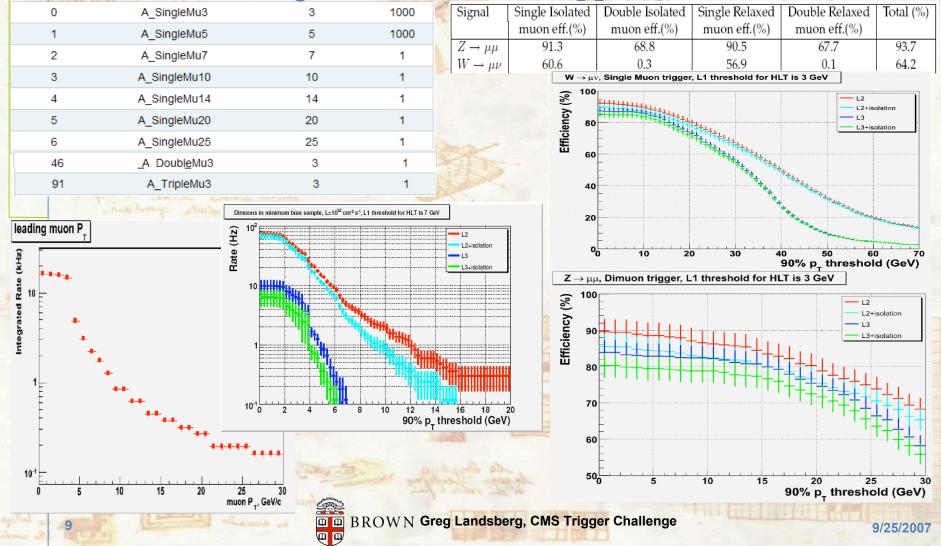

Extensive suite of single and double EM triggers, including prescaled background triggers

7		00		10000	X	<u>L1 T</u>	rigger		Trigge	er Name	2	H	LT Thr	eshold (GeV)
	A_SingleIsoEG5		5	10000	14000	A_Single	elsoEG12	2	Single Electror	ı				15	
8	A_SingleIsoEG8		8	1000		A_Single	eEG15	I	Relaxed Single	Electro	n			17	
9	A_SingleIsoEG1		10	100		A Doub	lelsoEG8		– Double Electro	n				10	
10	A_SingleIsoEG1		12	1		A Doub	leEG10		Relaxed Doubl	e Electro	on			12	
11	A_SingleIsoEG1		15	1			elsoEG12		Single Photon	0 210001				40	
12	A_SingleIsoEG2		20	1					-	Dhoton				60	
13	A_SingleIsoEG2)	25	1	- And	A_Single			Relaxed Single						
14	A_SingleEG5		5	10000		A_Doub	lelsoEG8		Double Photon	1				20, 20	
15	A_SingleEG8		8	1000		A_Doub	leEG10		Relaxed Doubl	e Photo	n		:	20, 20	
16	A_SingleEG10		10	100	and i	A_Single	eEG15	I	Relaxed Single	e EM Hig	h Et			80	
17	A_SingleEG12		12	100		A_Single	eEG15	I	Relaxed Single	EM Ver	y High I	Et		200	
18	A_SingleEG15		15	1				[Signal process	Isolated	Relax	ed Is	olated	Relaxed	Total
19	A_SingleEG20		20	1						single	singl		ouble	double	
20	A_SingleEG25		25	1	11111					electron			ectron	electron	
47	A_DoubleIsoEG8		8	1			- 1		$Z \rightarrow ee$ $W \rightarrow e\nu$	79.9 58.2	82.8 58.2		49.3 0.0	56.0 0.0	
48	A_DoubleIsoEG1	0	10	1	L	1 / HL	-1 /	ſ	Cional muonoso	Inc	lated P	elaxed	Icolator	d Relaxed	Tatal
49	A_DoubleEG5		5	10000	/	The state of the s			Signal process			ingle	Isolated double		Iotai
50	A_DoubleEG10		10	1							0	hoton	photon		
51	A_DoubleEG15		15	1					$H \rightarrow \gamma \gamma (m_H = 120)$	GeV) 7	1	42.7	59.6	71.5	
Signal process	Acceptanc	e Single	Relaxed Single	Double	Relaxed I	Double []	Total	1	Signal process		single	high	Single	e very high	Tota
$Z \rightarrow ee$	89.9	96.0	97.0	77.3	86.9			1			energy e			y egamma	
$W \rightarrow e\nu$	41.0	85.5	88.2	0.0	0.0	0			$Z' \rightarrow ee(M \ge 200)$		72			7.5 %	
$H \rightarrow \gamma \gamma (m_H = 120)$	GeV) 93.1	97.9	99.9	78.1	94.3	3	153		$Z' \rightarrow ee(M \ge 500)$ $Z' \rightarrow ee(M \ge 100)$		93 ⁻ 96 -			71.5 % 93 %	
able 3.2: Detector	r acceptance (%) a	nd Level-1	trigger efficiencie	es relative	to the acce	eptance	100		$Z \rightarrow ee(M \ge 100)$ $Z' \rightarrow ee(M \ge 160)$,	90 94			97 %	
%) for EM trigger	• • •								$Z' \rightarrow ee(M \ge 200)$		94			98 %	

BROWN Greg Landsberg, CMS Trigger Challenge

EM trigger Rates

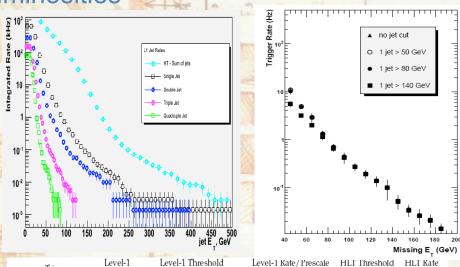
Rates are under control and add up to ~5 kHz


A SingleIsoEG5 : Individual : 4.43 +- 2.60 Pure : 4.42 A SingleIsoEG8 : Individual : 25.06 +- 5.91 Pure : 24.94 A SingleIsoEG10 : Individual : 114.87 +- 11.63 Pure : 110.94 A SingleIsoEG12 : Individual : 5450.12 +- 76.81 Pure : 5269.47 A SingleIsoEG15 : Individual : 2404.75 +- 45.80 Pure : 0.00 A SingleIsoEG20 : Individual : 765.67 +- 21.61 Pure : 0.00 A SingleIsoEG25 : Individual : 301.60 +- 12.04 Pure : 0.00 A SingleEG5 : Individual : 7.58 +- 2.63 Pure : 7.54 A SingleEG10 : Individual : 148.53 +- 13.08 Pure : 81.59 A SingleEG15 : Individual : 89.61 +- 7.05 Pure : 27.44 A SingleEG20 : Individual : 117.13 +- 7.66 Pure : 26.17 A SingleEG25 : Individual : 482.74 +- 13.41 Pure : 141.91 A DoubleIsoEG8 : Individual : 642.01 +- 21.95 Pure : 204.69 A DoubleIsoEG10 : Individual : 204.42 +- 11.11 Pure : 0.00 A DoubleEG5 : Individual : 2.09 +- 1.24 Pure : 0.60 A DoubleEG10 : Individual : 426.00 +- 14.17 Pure : 43.43 A DoubleEG15 : Individual : 64.44 +- 3.71 Pure : 0.00

BROWN Greg Landsberg, CMS Trigger Challenge

Muon Triggers

Similar well-thought suite of muon triggers


Jets/MET Triggers

•

Well-designed suite of jet/MET triggers Challenge to keep it at higher luminosities

	onunongo te	noop n at	Ingito
23	A_SingleJet30	30	10000
24	A_SingleJet50	50	
25	A_SingleJet70	70	100
26	A_SingleJet100	100	1
27	A_SingleJet150	150	1
28	A_SingleJet200	200	1
37	A_HTT250	250	1
38	A_HTT300	300	1
39	A_HTT400	400	1
40	A_HTT500	500	1
41	A_ETM20	20	10000
42	A_ETM30	30	1
43	A_ETM40	40	1
44	A_ETM50	50	1
45	A_ETM60	60	1
52	A_DoubleJet70	70	1
53	A_DoubleJet100	100	1
94	A_TripleJet50	50	1
110	A_QuadJet30	30	1

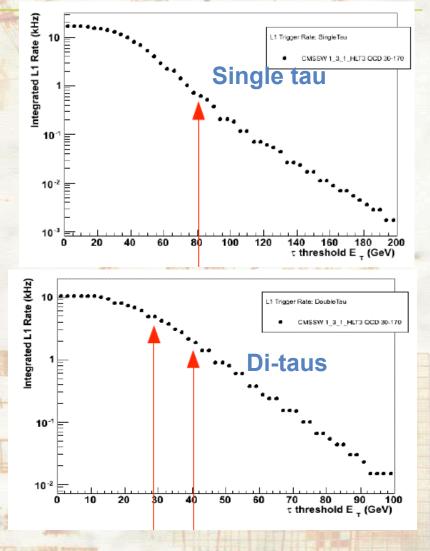
Trigger	Level-1	Level-1 Threshold	Level-1 Kate/ Prescale		HLT Kate	
	Prescale	(GeV)	(Hz)	(GeV)	(Hz)	
HIGH	1	200	17	250	3.0	
MED	10^{2}	70	12	120	1.1	
LOW	10^{4}	30	_	60	???	
Double jet	1	200 (1j),100 (2j)	_	200	2.9	
Triple jet	1	200 (1j),100 (2j),50 (3j)	_	100	3.4	
Quadruple jet	1	200 (1j),100 (2j),50 (3j),30 (4j)	_	80	1.0	
E_T	1	50	_	75	1.1	
jet + E_T	1	$50 (E_T)$	_	180,65	1.0	
$2 \text{ jets} + E_T$	1	$50 (E_T)$	_	155,65	0.3	
3 jets + E_T	1	$50 (E_T)$	_	85,65	0.2	
4 jets + E_T	1	$50 (E_T)$	_	35,65	0.4	
acoplanar 2 jets	1	200 (1j),100 (2j)	_	155,155	0.4	
acoplanar jets + E_T	1	$50 (E_T)$	_	100,70	0.5	
$H_T + E_T$	1	300 (H _T)	_	350,80	1.5	
$H_T + e$	1	$300 (H_T)$	—	350,20	—	3
VBF jet + ₽ _T ‡	1	$60 (E_T)$	_	40,80	0.05	

BROWN Greg Landsberg, CMS Trigger Challenge

9/25/2007

180

Triggers with Taus


Based on the "tau-jets" found by the L1 Calorimeter Trigger

•

32	A_SingleTauJet40	40	1000
33	A_SingleTauJet80	80	1
34	A_SingleTauJet100	100	1
54	A_DoubleTauJet20	20	1000
55	A_DoubleTauJet30	30	100
56	A_DoubleTauJet40	40	1
71	A_lsoEG10_TauJet20	10, 20	1
72	A_lsoEG10_TauJet30	10, 30	1
88	A_TauJet30_ETM30	30, 30	1
89	A_TauJet30_ETM40	30, 40	1

Table 5.1: Efficiencies, purities and rates for Level-1 tau trigger paths.

Samples/Trigger	SingleTau		DoubleTau		SingleTauMET	
	Eff.	Purity	Eff.	Purity	Eff.	Purity
$Z \rightarrow \tau \tau$	9%	6%	18%	13%	18%	12%
$W \rightarrow \tau \nu$	4%	3%	_	_	12%	20%
$\mathrm{H}^{\pm} \rightarrow \tau \nu \ (m_{\mathrm{H}} = 200 \ \mathrm{GeV/c^2})$	62%	37%	_	_	83%	41%
$\mathrm{H}^{\pm} \to \tau \nu \ (m_{\mathrm{H}} = 400 \mathrm{GeV/c^2})$	71%	50%	_	_	90%	50%
$QCD(\hat{p}_T=15\text{-}300GeV/)$	200 Hz		1800 Hz		700 Hz	

BROWN Greg Landsberg, CMS Trigger Challenge

A No-Lose Trigger Conjecture

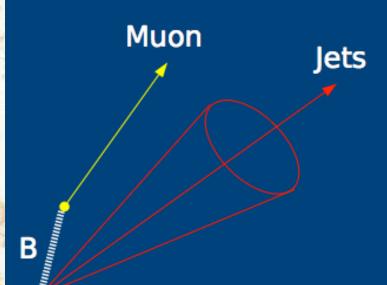
- Conjecture: *if we can discover it, we should be able to trigger on it!*
- Idea based on multiple discussions with the LHC phenomenologists,
- Two scenarios:
 - Low-mass high rate, soft final state particles
 - High-mass low rate, hard final state particles or large multiplicity
 Key observation:
 - Low-rate signal can be only found in low-background samples
 - Hence should be possible to design trigger with S/√B factor of 10-1000 worse than offline, but still high, i.e. a LOW-RATE trigger!
 - Example: heavy Higgs in 2e2 μ or 4e/ μ
 - High-rate signal can be found even if the efficiency is low
 - Hence can go for decays with low branching fraction and more complicated signatures or raise thresholds to fit the bandwidth
 - Example: use $h \rightarrow \gamma\gamma$, rather than $h \rightarrow$ bb for low-mass Higgs
 - Shell and armor race: theorists design a new model; we design a trigger
 - Can we get ahead in this game?
 - Yes, by designing generic feature triggers and the "last-resort" trigger!

BROWN Greg Landsberg, CMS Trigger Challenge

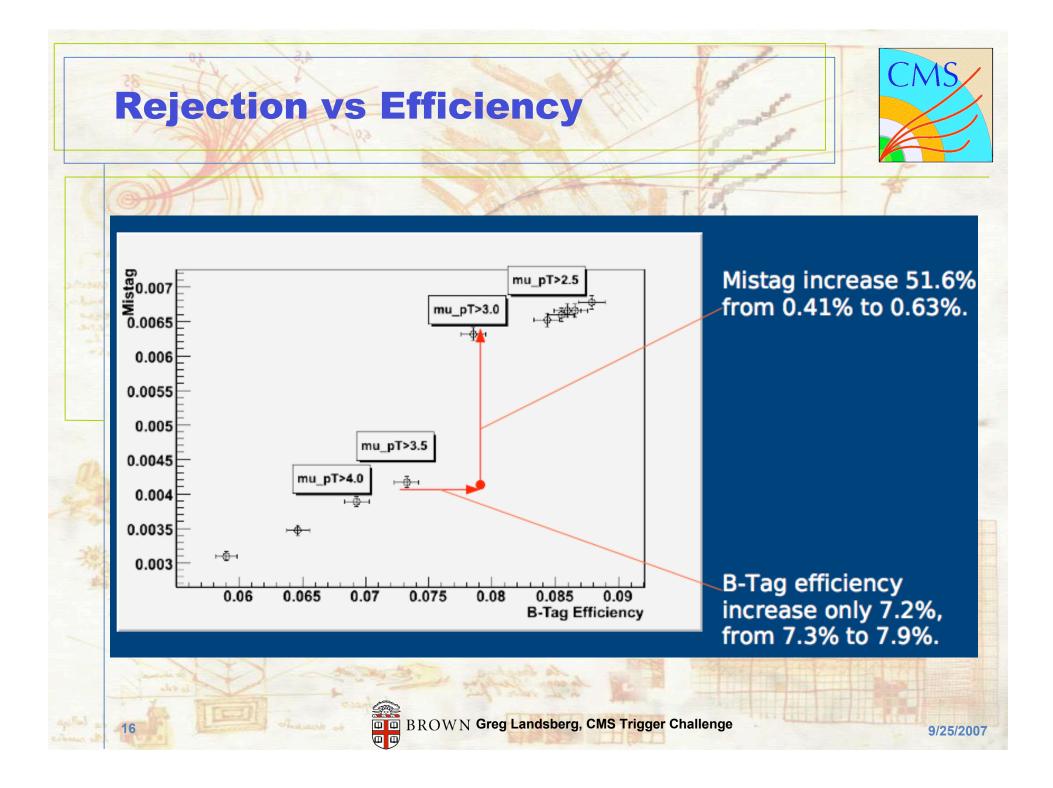
What's Common About New Physics?

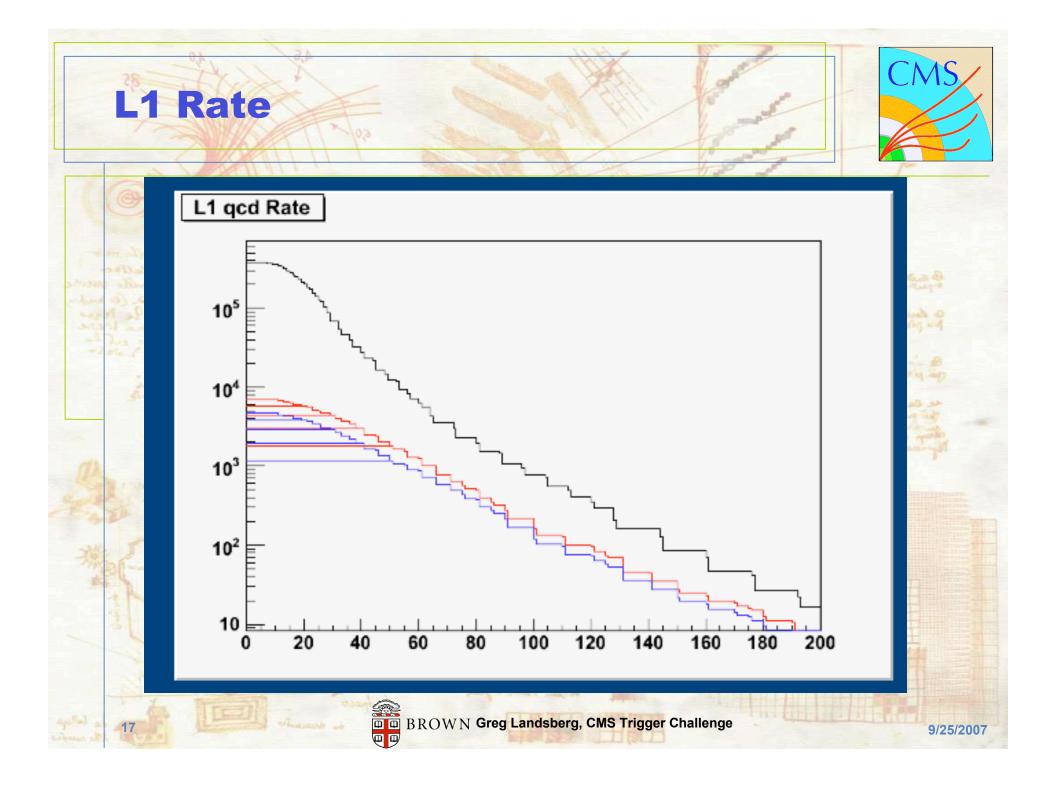
- Start with a few very general features of new physics:
 - Either pair- or singly produced
 - Has relatively high s-hat
 - To be produced, must couple to gluons, quarks, and/or $W/Z/\gamma$
 - Prompt or cascade decays into SM particles
 - Cascades often carried by intermediate vector bosons, thus expect leptons in the final state
 - May have couplings proportional to mass and prefer decays into third-generation
 - Both tau's and b's decay with emission of electrons and muons sizeable fraction of the time

Generalized Exotics Triggers



Go for high s-hat:


- High-threshold single and di-object triggers
- H_T trigger for high-multiplicity decays
 - $H_T + ME_T$ trigger for high-multiplicity events with large fraction of invisible particles
 - Multiplicity
- Multiplicity trigger
- Sphericity trigger
- Go for semi-soft leptons from cascade decays:
 - Multiobject $e/\mu+X$ and $ee/e\mu/\mu\mu+X$ triggers; H_T is a good choice for X
- Go for the third generation:
 - Leptonic τ +X, mixed $\tau\tau$ +X, hadronic high $p_T \tau\tau$ +X
 - A suite of b-tagged triggers (including jet+muon tag at L1!)
 - CMS-specific: given the simplicity of L1 triggers and high available L1 bandwidth, most rejection power has to come from the HLT
 - Staged rate rejection L2 → L3 → ...
 - Object quality and topological requirements at each level to control rate


BROWN Greg Landsberg, CMS Trigger Challenge

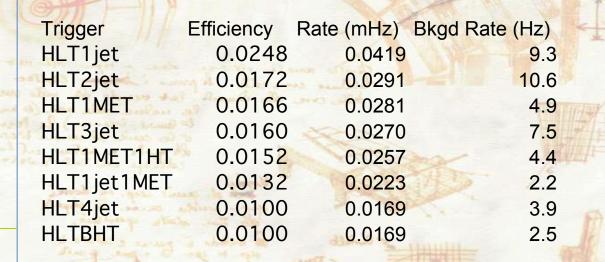
B-Tagging at L1

- Mean lifetime of b meson is ~1.2 ps (~360um).
- Most light jets don't decay leptonically.
- Identify b-jet by the angular separation between jets & muon.

Example

- $H^0 \rightarrow A^0 A^0 \rightarrow bbar bbar events$
- Standard configuration file with the following:
 - H⁰ mass = 130 GeV
 - A^0 mass = 50 GeV
 - A^0 lifetime = 66.7 ps
 - Production via $gg \rightarrow H^0$ (process 152)
- The H⁰ can only decay to A⁰s and the latter decay to bbar over 99% of the time
 - Pythia cross-section: 16.9 pb

L1 Trigger Results


Trigger	Efficiency	Bkgd Rate (kHz)
L1_HTT250	0.2676	2.56
L1_DoubleTauJet40	0.2570	2.36
L1_lsoEG10_Jet20	0.2324	3.04
L1_lsoEG10_Jet30	0.2136	1.95
L1_lsoEG10_TauJet20	0.2136	1.95
L1_QuadJet30	0.1936	0.58
L1_SingleEG15	0.1884	1.51
L1_lsoEG10_TauJet30	0.1844	1.33
And & same & and & all		

Luminosity = 10E32 cm⁻²s⁻¹

All background rates from HLT exercise
Note: IsoEG10_Jet30 and IsoEG10_TauJet20 do in fact have the same rates (not a typo)

(SF) x (Sx (1+45)

HLT Results

Luminosity = 10E32 cm⁻²s⁻²

This is total efficiency, L1 included Approximately 5 events per day

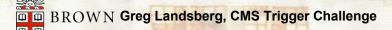
φΦ

9/25/2007

(SF) x (Sx (1++F))

CMS

When General Triggers Fail...


- The above strategy works in general, but what if an object fails "standard quality" cuts?
 - More likely to happen at the HLT, as L1 quality requirements are, in general, fairly loose
- Examples:
 - Jets from slow-particle decays, which lack tracking confirmation
 - Electron/photons with large impact parameter resulting in a "funny' cluster profile
 - Events with "mixed" timing (e.g., calorimeter and muon or track are offset in time)
 - Events with abnormally high multiplicity of relatively soft objects
 - b-tagged jets with extremely large impact parameter
 - Funny tracking patterns in roads defined by L1 candidates
 - Abnormally large fraction of L1 triggers fired with no HLT triggers to pass
 - Abnormal density of tracks within HLT roads

The "Last Resort" Trigger

Possible remedy:

- Let individual HLT trigger set a "weirdness flag" when the event fails the trigger, but in the process something in the event is found to look fairly strange (e.g., one of the cuts is failed by a very large margin)
 Run the "Last Resort" HLT filter as the last one before rejecting the
- event
 - Try to rescue these weird events by analyzing "weirdness flags" set by individual paths and/or based on global event properties
 - Forcefully accepts the event if several such flags are set
 - Accepts the event if large number of L1 triggers is fired
 - Accepts the event if abnormally high multiplicity of high-p_T L1 objects have been found
 - Cuts designed to keep very low output rate (« 1 Hz)
- The LRT clearly fails the no-volunteer concept
 - Can't measure efficiency or luminosity presicely
 - However, allows for an early warning system for "weird" events, which may indicate hardware failure or interesting, exotic physics
 - Designated triggers can then be developed for particular exotic signatures found by the LRT without compromising taking these data

