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What is the Quark-Gluon Plasma?
It is a phase of QCD conjectured to exist at high temperature and density

Tc ≈ 1012 oK



The QCD Phase Diagram

Figure obtained from the Facility for Antiproton and Ion Research

τ ≈ 20− 30 µ sec

170

Relativistic Heavy Ion Collider (BNL)



How is the Quark-Gluon Plasma produced?
√

s " 200 GeV/nucleonHead-on Au+Au collision at (center of mass) energies of at RHIC

τ0

pQCD predicts (parton-parton collisions) τ0 ∼ 3 fmτ0 ≤ 1 fm

τhad

Heinz, 2002
Fast thermalization at



Conformal behavior and hadronization
Lattice data supports an 
equation of state

ε = 3p

for T ≥ 2 Tc
Karsch-Laermann, 2003

Relative abundances of 
detected particles provides

Tfreezeout ≈ 176 MeV



Some features of QGP: I. Elliptic Flow
In off-center collisions, the heated overlap region is elongated. Collective interactions produce 
pressure gradients that result in an anisotropy of produced hadrons w.r.t. the reaction plane:

The fireball expands (in thermal and hydrodynamical equilibrium) under its own pressure and 
cool while expanding. It is much larger than a single gold nucleus with a lifetime of order 10 fm.

Animation by J. Mitchell (BNL)



Elliptic Flow and Shear Viscosity
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Figure 3: The pt-differential elliptic flow v2(pt) from minimum bias Au+Au collisions at RHIC, for
different identified hadron species (PHENIX). with negative (left) and positive (right) charge.The curves
are hydrodynamic calculations.

how far down the spectrum the hydrodynamics should be trusted?

3.2 Elliptic Flow

Non-central heavy ion collisions produced fireball which has an almond shape. It would not matter
for independently produced secondaries, but in a collective expansion the shape matters, leading to
“elliptic” flow pattern. This is quantified by vi harmonics defined as

dN

dφ
=

v0

2π
+

v2

π
cos(2φ) +

v4

π
cos(4φ) + · · · (1)

Each of vi is a function of centrality (the impact parameter b), rapidity y, transverse momentum pt

and, last but not least, the particle type. By now v1, v2, v4 have been studied. The important feature of
elliptic flow is self-quenching, as a result of which the elliptic flow develops earlier than the radial one.
This is why it is especially important for understanding the EOS of the QGP.

The ellipticity depends on a particle mass, again in a predictable way [13]. Let me show few plots
from Kolb and Heinz review [14] to convince the reader that the elliptic flow is a hydrodynamical effects.

The next Fig.4 makes use of one important fact: centrality dependence of v2 is basically a response
to the initial spatial anisotropy of the system, quantified by the parameter ε = 〈y2 − x2〉/〈y2 + x2〉,
and so plotting v2/ε one basically eliminates the geometry of the problem and finds all points at some
universal curve, see7 Fig.4(a).

The main message of this figure is that v2 grows with multiplicity8 . The parts (b,c) of the figure
shows how the v2 magnitude was expected to depend on the collision energy9, from Teaney et al [13].

We will not have time to discuss details of the hydrodynamics calculations, which reproduce these
data. Let me only tell why RHIC energy range is special. Due to the QCD phase transition, the matter
is very soft in the so called “mixed phase” energy density region. That is why at SPS energies there
was no substantial v2 contribution, which only happen at RHIC due to “stiff QGP”.

7The horisonal band on this figure marked “hydro limit” refers to some hydro with ideal gas EoS and simplistic
freezeout. It supposed to hold at very large entropy density.

8This theoretical prediction was made at QM99 by Teaney and myself, as well as Kolb and Heinz, prior to RHIC.
9Other authors such as Ollitraught and Heinz et al have used fixed freezeout predicted a different energy dependence

of v2.

6

1, 6 GeV

The elliptic Flow is characterized by the anisotropy parameter v2 = v2(pT , b, A)

dn

dφ
∝ 1 + v2 cos 2φ

η

s
∼ 0, 15

!
kB

More than a gas of quarks and gluons, it seems an almost perfect liquid!

Fitting data



R is the ratio of number of jets to those seen in p+p 
collisions (scaled to account for the number of 
participating nucleons)

Departure from R=1 indicates that partons kicked 
up by hard scatterings are slowed by the hot 
medium

Correlating azimuthal angles among high pt 
particles produced in the same event. The peak at 
Δϕ=0 indicates partners in the same jet as the 
trigger

The recoil peak at 180 , indicating back-to-back 
jets in p+p and d+Au collisions, is absent/displaced 
in Au+Au collision

Some features of QGP: II. Jet Quenching
Hard scattering is seen for the first time in nuclear collisions. There is a supression in the 
observed back-to-back high pt jets in Au+Au vs. p+p collisions

o



Some features of QGP: II. Jet Quenching
The observed deficit of high-energy jets seems to be the result of a slowing down, damping or 
quenching of the most energetic partons as they propagate through the QGP

The rate of energy loss should be spectacular: several GeV per fm instead of a few MeV per 
centimeter (cold nuclear matter). This can be seen as follows:

Bjorken, 1983

The average squared transverse momentum transferred to the 
hard parton, per mean free path, is a transport coefficient called q̂

The energy loss of a hard parton in QCD is parameterized as follows:
q̂ = (10± 5)

GeV2

fm

Fitting data

Back-to-back 
collision in 

vacuum

Back-to-back 
collision in a 
hot medium

Animation by J. Mitchell (BNL)



A strongly interacting QGP?

This is a significant mismatch! It suggests a strongly interacting Quark-Gluon Plasma: sQGP

There are further interesting features in the physics of QGP:

Diffusion constants
J/ψ and other heavy meson’s melting

Thermal spectral functions
Further transport properties

If we assume a weakly interacting QGP (λ<<1), and use perturbative QCD, we get:

η

s
≈ 1

λ2 log 1
λ

!
kB
" 1 q̂ ≈ 1

GeV2

fm

but we have seen earlier that

η

s
≈ 0.15

!
kB

q̂ ≈ (10± 5)
GeV2

fm



How can we deal with a sQGP?
Lattice? Well, this would cover the window given by small Nc and large λ 

Besides, hydrodynamics with η≠0 is also very hard 

However, it is not suitable to study real-time dynamics of a strongly interacting QCD plasma

What about AdS/CFT?
QCD N=4 SYM

T=0Confinement, Stable particles, 
Scattering Conformal, No particles, No S-matrix

No relation

Non-Abelian plasma, (gluons + 
fundamental matter), No 
confinement, Debye screening, 
Finite spatial correlation length

Non-Abelian plasma (gluons + adjoint 
matter), No confinement , Debye 
screening, Finite spatial correlation 
length

T≠0

Very similar!



The only available tool: AdS/CFT?!
It would be the perfect tool but:

It is hard to deal with dynamical quarks beyond the quenched approximation, Nf ! Nc

We only know how to compute when                    and                   (not terribly bad)Nc →∞ λ→∞

The more tractable case is the unphysical N=4 super Yang-Mills theory

In general, it is hard to get rid of supersymmetry, conformal invariance and, roughly 
speaking, to pick the right supergravity dual of QCD

Nevertheless:

Finite temperature already breaks supersymmetry

There might be universal features that we can learn about

AdS/CFT at finite temperature                                 black holes (black branes)!

TH &SBH T &S



The gravity dual of finite T gauge theories

Compactification on S⁵ leads to an AdS black hole in 5d

Soon after Maldacena, it was proposed that finite T implies a string background

ds2 = H−1/2(r)
[
−f(r)dt2 + d!x2

]
+ H1/2(r)

[
f−1(r)dr2 + r2dΩ2

5

]

black 3-braneH(r) = 1 +
L4

r4
f(r) = 1− r4

H

r4
rH < r ! L

It is not hard to compute:
TH =

rH

π L2
! 1

L
SBH =

3
4
SpSYM

Is there something wrong with the latter?  NO, it tells us that 

S(λ) = f(λ) SpSYM such that f(0) = 1 and f(∞) =
3
4

Indeed, finite coupling corrections suggest a smooth interpolation



Shear viscosity revisited
Kubo formulas allow us to calculate transport coefficientes from microscopic models:

η = lim
ω→0

1
2ω

∫
dt d3x eiωt〈[Txy(t, x), Txy(0, 0)]〉

This strongly supports the use of AdS/CFT to describe RHIC physics

It is amusing to check that the leading finite `t Hooft coupling correction reads:

η

s
=

[
1
4π

+
135 ζ(3)
32π 23/2

λ−3/2

]
!

kB
Buchel-Liu-Starinets, 2004

that seems to smoothly interpolate between the weak/strong coupling results

Now, this correlator can be computed by means of AdS/CFT:

compatible with the values measured at RHIC!!!

Policastro-Son-Starinets, 2000
η

s
=

1
4π

!
kB

≈ 0.08
!

kB



The viscosity bound: a conjecture

Conjecture:

For all relativistic quantum field 
theories at finite temperature,

η

s
≥ 1

4π

!
kB

and saturated for gauge/gravity duals!

Kovtun-Son-Starinets, 2004

This result holds for any gravity dual (no matter the amount of supersymmetry and field 
content!), at least for the cases worked out so far!  Even with chemical potential.

Buchel, 2004
Mas, 2006

Son-Starinets, 2006

It also holds when massless quarks are introduced in the quenched approximation
Mateos-Myers-Thomson, 2006



Multiple soft scattering of a parton in sQGP
In order to study the jet quenching phenomenon, we must first provide an appropriate 
phenomenological description of the relevant physics

We will assume:

Almost straight trajectory θ≃0

Wave length << λ << Size medium

Eikonal approximation

x << 1

Transverse Brownian motion

Dipole approximation
Nikolaev-Zakharov, 1994

There are several models of radiative energy loss for a parton moving on a medium

Zakharov, 1997

Landau-Pomeranchuk, 1953
Migdal, 1956

Baier-Dokshitzer-Mueller-Peigné-Schill, 1997



Eikonal approximation: relativistic probes

ω
dI

dω
=

αs CR

(2π)2 ω2
2Re

∫ ∞

ξ0

dyl

∫ ∞

yl

dȳl

∫
d2u

∫ χω

0
d2k e−ik·u e

− 1
2

R∞
ȳl

dξ n(ξ) σ(u)

Density of scattering 
centers

Dipole cross section

Casimir factor: quarks/gluons

× ∂

∂y
· ∂

∂u

∫ u=r(ȳl)

y=0
Dr exp

[
i

∫ ȳl

yl

dξ
ω

2

(
ṙ2 − n(ξ)σ (r)

iω

)]

Wiedemann, 2000

A compact formula after some approximations:

n(ξ)σ (r) ≈ 1
2

q̂(ξ) r2

multiple soft scattering, Brownian motion, 
harmonic oscillator

Baier-Dokshitzer-Mueller-Peigné-Schill, 1997

[n(ξ)σ (r)]N

opacity expansion, hard scattering
Gyulassy-Levai-Vitev, 2000



Eikonal approximation: a formula for q
For a static medium, the jet quenching parameter is time independent:

After some further approximations and a lengthy computation:

L

L -

x - x3

L! L−

〈WA(C)〉 ≡ exp
[
−1

4
q̂L−L2

]

^

Kovner-Wiedemann, 2001

for a light-like Wilson loop of the form



AdS/CFT and Wilson loops
At large Nc, 〈

WA(C)
〉

=
〈
WF (C)

〉2
+O

(
1

Nc

)

x+

x-

L

L-

rH

Now, AdS/CFT tells us that it can be computed by evaluating the classical Nambu-Goto action for 
a string ending on the boundary along the previous light-like contour,

〈WF (C)〉 = exp [−S(C)]
Maldacena, 1998

Rey-Yee, 1998



Non-perturbative computation of q

It seems to measure the temperature but not the number of degrees of freedom

This computation was carried out by Liu-Rajagopal-Wiedemann with the result

q̂ =
π3/2 Γ(3/4)

Γ(5/4)
√

λ T 3

However, this is strictly valid for infinite λ, while we have adopted  λ=6π

It is necessary to compute finite `t Hooft coupling corrections

^

Liu-Rajagopal-Wiedemann, 2006

For Nc=3, αs=.5 and T = 300 MeV: not bad!!!q̂ = 4.5
GeV2

fm



The energy is a first integral of motion, from which we get the profile

r′(σ)2 =
c2
X

c2
R

(
k c2

X (c2
X − c2

T )− 1
)

where “k” is an integration constant

ds2 = GMN dXMdXN = −c2
T dt2 + c2

X dxidxi + c2
R dr2 + GMndXMdXn

Let us start from a family of ten dimensional metrics

and consider the following light-like Wilson line

x− = τ , x2 = σ , r = r(σ) τ ∈ (0, L−) σ ∈ (−L

2
,
L

2
) L− # L

From these expressions, the Nambu-Goto action takes the form

S =
L−
√

2πα′

∫ L/2

0
dσ

(
c2
X − c2

T

)1/2 (
c2
X + c2

R r′(σ)2
)1/2

r0 = r(0) r′(0) = 0

Non-perturbative computation of q̂



It is not hard to solve the profile equation with the result:

σ(r) =
∫ r

rH

cR

cX

dr

(k c2
X (c2

X − c2
T )− 1)1/2

The integration constant is linked with L by the relation σ(∞)=L/2

The prescription in LRW calls for the leading behavior with L when LT << 1. This is clearly related 
to the limit k➝∞

L =
2 rH√

k

∫ ∞

1

cR dρ

c2
X (c2

X − c2
T )1/2

+O(k−3/2)

we are now using dimensionless radial coordinate ρ=r/rH.  The action reads:

S =
rH L−√

2πα′

∫ ∞

1

√
k (c2

X − c2
T ) cX cR dρ

(k c2
X (c2

X − c2
T )− 1)1/2

We must still substract the contribution corresponding to the self-energy of the quarks

Non-perturbative computation of q̂



This is given by the NG action for a pair of Wilson lines stretched straight from the boundary to 
the horizon. The regularized action, to leading order in 1/k, reads

S =
L−√
2πα′

L2

8rH

(∫ ∞

1

cR dρ

c2
X (c2

X − c2
T )1/2

)−1

It is now convenient to define

c2
T (ρ) =

1
∆R

ĉ2
T (ρ) c2

X(ρ) =
1

∆R
ĉ2
X(ρ) c2

R(ρ) = ∆R ĉ2
T (ρ) ∆R =

(
(α′)5−p λ

r7−p
H

)1/2

From all these formulas we obtain

q̂ =
1√
2πλ

(rH

α′

)6−p
(∫ ∞

1

ĉR dρ

ĉ2
X (ĉ2

X − ĉ2
T )1/2

)−1

In the case of non-rotating backgrounds, it can be made more explicit:

q̂ =
1√
2π

[
16π2

(√
ĉ2
T (1) ĉ2

R(1)
ĉ2
T
′(1)

)2 ] 6−p
5−p

T 2
(
T 2 λ

) 1
5−p

(∫ ∞

1

ĉR dρ

ĉ2
X (ĉ2

X − ĉ2
T )1/2

)−1

Non-perturbative computation of q̂



Witten’s D4-background at finite T
The fifth dimension is compactified to a circle of radius   . Hence, the four dimensional effective 
coupling is   

λ̃ = λ/" ≡ 4παSY MNc

!

These values are slightly smaller than those in LRW. Still, the 5d origin is reflected in the linear 
dependence in the `t Hooft coupling

Therefore, we may write for the effective quenching parameter

where c =   T is the ratio of the thermal and Kaluza-Klein circles. c = 1 signals the confinement/
deconfinement transition temperature.

!

q̂ ! 20.16 c T 3 αSY M Nc

For Nc=3, αs=.5 and T = 300 MeV: still good, but not universal!!!q̂ = 4, 14
GeV2

fm



Finite `t Hooft coupling correction

q̂(λ) = q̂(0)
(
1− 1.7652 λ−3/2 + . . .

)
The final result in this case is: Decreases! A good interpolation?

T (ρ) =
(
−75ρ−4 − 1225

16
ρ−8 +

695
16

ρ−12

)
X(ρ) =

(
−25

16
ρ−8(1 + ρ−4)

)
R(ρ) =

(
75ρ−4 +

1175
16

ρ−8 − 4585
16

ρ−12

)

In the gravity side this amounts to stringy corrections. The α’ corrected near-extremal D3-brane 
solution reads

ĉ2
T (ρ) = ρ2(1− ρ−4)(1 + γ T (ρ) + ...) ĉ2

X(ρ) = ρ2(1 + γ X(ρ) + ...)

ĉ2
R(ρ) = ρ−2(1− ρ−4)−1 (1 + γ R(ρ) + ...)

to first order in                                                            , withγ =
ζ(3)
8

(α′/R2)3 ∼ 0.15 λ−3/2

Pawelczyk-Theisen, 1998
Gubser-Klebanov-Tseytlin, 1998

Caveat: Dominant finite `t Hooft coupling corrections are those coming from quantum 
fluctuations of the world sheet. They contribute as λ         and are quite hard to compute!-1/2



Finite chemical potential: STU black hole

Upon KK reduction, this becomes a charged AdS black hole solution of N = 2 U(1)3R supergravity

N = 4 SU(N) SYM at finite temperature and with a chemical potential for the U(1)3R symmetry

This is not the baryonic chemical potential!

ds2 =
√

∆
(
−H−1fdt2 + f−1dr2 +

r2

R2
d!x · d!x

)
+

1√
∆

3∑

i=1

R2Hi

[
dν2

i + ν2
i (dφi + Aidt)2

]

Ai =
1
R

√
µ

qi
(1−H−1

i )f =
r2

R2
H− µ

r2
∆ = H

3∑

i=1

ν2
i

Hi
Hi = 1 +

qi

r2

where ν1 = cos θ1, ν2 = sin θ1 cos θ2, ν3 = sin θ1 sin θ2, and H = H1H2H3,

The near horizon metric of rotating black D3-branes with maximal number of angular momenta:



Finite chemical potential: STU black hole

µ =
r4
H

R2
H(rH)

We can trade the non-extremality parameter μ for the horizon radius

and define the adimensional quantities

κi =
qi

r2
H

∆R =
R2

r2
H

as before go the dimensionless variable ρ,

Hi(ρ) = 1 + κiρ
−2 f(ρ) =

1
∆R

(
ρ2H(ρ)− ρ−2H(1)

)
≡ 1

∆R
f̂(ρ)

so that the relevant functions entering the previously derived formula are:

ĉ2
T (ρ) =

√
∆ f̂

H − 1√
∆

3∑

i=1

ν2
i H(1)
κiHi

(Hi − 1)2 ĉ2
X(ρ) =

√
∆ ρ2 ĉ2

R(ρ) =
√

∆
f̂

The factors in the metric depend on the internal angles



Finite chemical potential: STU black hole
However, the terms above conspire to give

∫ ∞

1

ĉRdρ

ĉ2
X

√
ĉ2
X − ĉ2

T

=
1

H(∞)

∫ ∞

1
dρ

(
ρ4 H(ρ)
H(∞)

− 1
)−1/2

where all information about the internal angles has dissapeared. Now, given that the Hawking 
temperature of this solution is given by

T =
2 +

∑3
i=1 κi −

∏3
i=1 κi

2
√
H(1)

rH

πR2

we get the final answer

q̂(κi) =
π2T 3

√
λ√

2
H(1)

(
2
√
H(1)

2 +
∑3

i=1 κi −
∏3

i=1 κi

)3 (∫ ∞

1
dρ

(
ρ4H(ρ)
H(1)

− 1
)−1/2

)−1

In order to analyze this result, it must be recalled that the domain of thermodynamical stability is 
bounded by the inequality

κ1 + κ2 + κ3 − κ1 κ2 κ3 < 2
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Jet quenching with chemical potential
Let me discuss the results through some plots:
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Expansions in order to better compare

ρi =
πN2T 3

0

8
√

2κi

3∏

i=1

(1 + κi)1/2 µi ≡ Ai(r)
∣∣
r=rH

=
πT0

√
2κi

1 + κi

3∏

i=1

(1 + κi)1/2

In order to compare with other approaches, it is useful to perform an expansion in terms of 
quantum field theoretical magnitudes

In particular, the density of physical charge and chemical potential are:

We should invert in terms of (ρ,T) [canonical ensemble] or (μ,T) [grand canonical ensemble]

This is difficult in the general case. Consider κ1 = κ and κ2 = κ3 = 0

q̂C(ρ) = q̂(0)
(
1 + 0.63 ξ − 1.08 ξ2 + 2.83ξ3 + ...

)
q̂GC(µ) = q̂(0)

(
1 + 0.63 ζ + 0.18 ζ2 + 0.06ζ3 + ...

)

This allows to make contact with the results in the literature:

with ξ =

(
4
√

2ρ

πN2T 3

)2

ζ =
(

µ√
2πT

)2

κC = ξ − ξ2 +
11
4

ξ3 + ... κGC = ζ + ζ2 +
5
4
ζ3 + ...or



A call for massless dynamical quarks
QCD has quarks. These are d.o.f. in the fundamental representation of the gauge group. Notice 
that, up to this point, we have been using the words QGP for theories without quarks

It is evident that, in order to deal with QCD-like QGPs, we need to be able to accomodate quarks 
beyond the quenched approximation, i.e. for Nf ≈ Nc

Some very recent attemps to extrapolate results from N=4 SYM towards QCD, have been shown 
to apply in a variety of theories without fundamental d.o.f. Gubser, 2006

Liu-Rajagopal-Wiedemann, 2006

It is an open problem whether this nice result actually persists or not after quarks are introduced

For example, based on the following result, that holds for SCFTs

it has been conjectured that, since QCD’s QGP is approximately conformal

q̂N=1

q̂N=4
=

√
sN=1

sN=4

Liu-Rajagopal-Wiedemann, 2006q̂QCD

q̂N=4
=

√
sQCD

sN=4
! 0.63



QGP and non-critical holography
Non-critical string duals of 4d gauge theories with large Nc, Nf both at zero and at high temperature

Our optimistic prejudice is that these setups are robust enorugh to capture qualitative features

The gravity solutions are generically strongly coupled and α’ corrections are not subleading

Polyakov, 1999
Klebanov-Maldacena, 2004

Bigazzi-Casero-Cotrone-Kiritsis-Paredes, 2005

We have dealt with two cases:

An AdS5 black hole dual to finite temperature QCD in the conformal window

An AdS5 x S  black hole dual to finite temperature SQCD in the Seiberg conformal window1

Casero-Paredes-Sonnenschein, 2005

In both models, the color d.o.f. are introduced via Nc D3-brane sources and the backreacted flavor via Nf 
spacetime filling brane-antibrane pairs

This reproduces the classical U(Nf) x U(Nf) flavor symmetry expected in the gauge duals with massless 
fundamental matter



QCD in the conformal window

R2 =
200

50 + 7ρ2 − ρ
√

200 + 49ρ2 eφ0 =
√

200 + 49ρ2 − 7ρ

10Qc

F(5) = Qc Vol(AdS)

ds
2 =

(

u

R

)2
[(

1 −

u4
H

u4

)

dt
2 + dxidxi

]

+ (Ru)2
du2

u4
− u4

H

ρ ≡

Qf

Qc
∼

Nf

Nc

The 5d model is given by the following solution (in α’ = 1 units)

where

Bigazzi-Casero-Cotrone-Kiritsis-Paredes, 2005

Notice that                depends on the flavor/color ratio. It is a decreasing function of       (consistent 
with the expected behavior in the upper part of the conformal window at zero temperature)

g2
QCD ρ

Furthermore, it is given by
g2
QCD =

F(ρ)
Nc

∼ 1
ρ

ρ→∞

as expected in the Veneziano limit Veneziano, 1976Nc →∞, Nf →∞, ρ fixed



QCD in the conformal window
The black hole temperature and entropy density read

T =
uH

πR2
s =

A3

4G(5)
=

π2R3T 3

e2φ0

The free energy can be obtained by suitably renormalizing the Euclidean action

I =
1

16πG(5)

∫
d5x
√

g

[
e−2φ

(
R + 4(∂µφ)2 + 5

)
− 1

5!
F 2

(5) − 2Qfe−φ

]

Since the dilaton is constant, the DBI term is a cosmological constant and the calculation follows 
closely its 10d critical counterpart Witten, 1998

The result is
F = TI = −π2R3T 4

4e2φ0

The energy density, heat capacity and speed of sound can be readily computed:

ε =
3π2R3T 4

4e2φ0
cV =

3π2R3T 3

e2φ0
v2

s =
s

cV
=

1
3

,



QCD in the conformal window

s ∼ 4π2Q2
cT

3

{ 1 +
√

2ρ + . . . for ρ→ 0

343
250

√
7
5

(
ρ2 +O(ρ0)

)
for ρ→∞

q̂ ∼
4π3/2Γ( 3

4 )
Γ( 5

4 )
T 3

{ 1 +
√

2
5 ρ + . . . for ρ→ 0 ,

7
5 +O

(
1
ρ2

)
for ρ→∞ .

The holographic evaluation of the shear viscosity per entropy density gives the universal value

η

s
=

1
4π

!
kB

We expect that α’ corrections shall modify (increase?) this ratio

The entropy density

The first correction to the pure glue result coincides with earlier but very recent findings
Mateos-Myers-Thomson, 2006

The jet quenching is a monotonically increasing function of ρ



QGP and wrapped fivebranes

ds2 = eΦ0z2

[
− Fdt2 + d!x2

3 + Ncα
′

(
4

z2F dz2 +
1
ξ

(dθ2 + sin2 θ dϕ2) +
1

4− ξ
(dθ̃2 + sin2 θ̃ dϕ̃2)

+
1
4

(dψ + cos θ dϕ + cos θ̃ dϕ̃)2
)]

T =
1

2π
√

α′Nc
s =

A8

4G(10)
=

8e4Φ0z8
0N4

c

ξ(4− ξ)
T 3

A family of black hole solutions corresponding to Nf = 2 Nc, with quartic superpotential, coupled 
to Kaluza-Klein adjoint matter reads Casero-Nuñez-Paredes, 2006

eΦ = z2eΦ0 F = 1− z4
0

z4

The temperature and entropy of these black holes are

The temperature does not depend on the horizon radius and, thus, on the energy density. The free 
energy vanishes. The theory is in a Hagedorn phase

Indeed, T = TH of Little String Theory. The solution suffers from thermodynamical instabilities, 
as it is the case for flat NS5-branes Kutasov-Sahakyan, 2000

Buchel, 2001



QGP and wrapped fivebranes
A naive proposal to cure these problems: deal with the QGP of a theory on S   since the radius of 
the sphere provides a scale that naturally should shift T away from TH

3

This is not the case: this gives an IR cutoff that cannot remedy the LST behavior

If we insist and compute thermodynamical and transport properties of the would be QGP:

η

s
=

1
4π

!
kB

Quarks and antiquarks are always screened Vqq̄ = 0

The drag force from trailing strings reads µMkin = 2π λ T2

instead of          in N=4 SYM
√

λ

q̂ = 0

This is puzzling. We have checked that an analog behavior takes place in any QGP resulting from  
a wrapped fivebrane setup. We call these LST plasmas



Conclusions and Outlook
We computed the jet quenching parameter in a variety of cases:

For finite `t Hooft coupling we got corrections suggesting a smooth interpolation with the 
perturbative results, such as with the entropy and shear viscosity

For the thermal deformation of Witten’s D4-background, we have obtained slightly smaller 
values and a different `t Hooft coupling dependence

We have thoroughly studied the addition of a chemical potential for the gauged R-
symmetry. It generically increases the value of the jet quenching parameter.

We showed how this setup can be extended to quarks of finite mass

N=4 SYM theory to N=2 flavor multiplets at finite temperature remains to be an open problem

We studied the introduction of unquenched fundamental degrees of freedom, i.e., quarks

In non-critical setups corresponding to QCD and SQCD models in the conformal window

In wrapped fivebrane setups corresponding to SQCD-like theories


