\mathcal{H} Lographic $\operatorname{Truncated}$ Space Model: Baryons

$$
\begin{gathered}
\alpha \prod(\zeta) \psi(\zeta)=\mathcal{M} \psi(\zeta) \\
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{\zeta}\right) \quad \begin{array}{l}
\alpha^{\dagger}=\alpha, \quad \alpha^{2}=1, \\
\gamma_{\zeta}^{\dagger}=\gamma_{\zeta}, \gamma_{\zeta}^{2}=1, \\
\left\{\alpha, \gamma_{\zeta}\right\}=0 .
\end{array} \\
\left(\begin{array}{cc}
0 & -\frac{d}{d \zeta} \\
\frac{d}{d \zeta} & 0
\end{array}\right)\binom{\psi_{+}}{\psi_{-}}-\left(\begin{array}{cc}
0 & \frac{\nu+\frac{1}{2}}{\zeta} \\
\frac{\nu+\frac{1}{2}}{\zeta} & 0
\end{array}\right)\binom{\psi_{+}}{\psi_{-}}=\mathcal{M}\binom{\psi_{+}}{\psi_{-}},
\end{gathered}
$$

Frame-Independent LF Dírac Equation AdS/QCD

Holographic Harmonic Oscíllator Model: Baryons

$$
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0
$$

Frame-Independent $\mathcal{L F}$ Dirac Equation

$$
\begin{aligned}
& \Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right) \\
& \Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}+\kappa^{2} \zeta \gamma_{5}\right)
\end{aligned}
$$

Coupled Equations

$$
\begin{array}{r}
\left(\begin{array}{cc}
0 & -\frac{d}{d \zeta} \\
\frac{d}{d \zeta} & 0
\end{array}\right)\binom{\psi_{+}}{\psi_{-}}-\left(\begin{array}{cc}
0 & \frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta \\
\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta & 0
\end{array}\right)\binom{\psi_{+}}{\psi_{-}}=\mathcal{M}\binom{\psi_{+}}{\psi_{-}} \\
-\frac{d}{d \zeta} \psi_{-}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}-\kappa^{2} \zeta \psi_{-}=\mathcal{M} \psi_{+} \\
\frac{d}{d \zeta} \psi_{+}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}-\kappa^{2} \zeta \psi_{+}=\mathcal{M} \psi_{-} . \\
\text {HO due to Linear Potential! } \\
\begin{array}{l}
\text { AdS/QCD } \\
\mathbf{9 9}
\end{array} \\
\begin{array}{l}
\text { UCD } \\
\text { March } \mathbf{3}, \mathbf{2 0 0 7}
\end{array}
\end{array}
$$

\mathcal{H} Olographic Harmonic Oscíllator Model: Baryons

$$
\begin{array}{r}
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0, \\
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right) \\
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}+\kappa^{2} \zeta \gamma_{5}\right) \\
\left(H_{L F}-\mathcal{M}^{2}\right) \psi(\zeta)=0, \quad H_{L F}=\Pi^{\dagger} \Pi
\end{array}
$$

Uncoupled Schrodinger Equations
Harmonic Oscillator Potential!

$$
\begin{aligned}
& \left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2(\nu+1) \kappa^{2}+\mathcal{M}^{2}\right) \psi_{+}(\zeta)=0 \\
& \left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4(\nu+1)^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \nu \kappa^{2}+\mathcal{M}^{2}\right) \psi_{-}(\zeta)=0
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

Same eigenvalue! $\quad \mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)$

Holographic Baryon Spectrum

$$
\psi(\zeta)=\kappa^{2+L} \sqrt{\frac{n!}{(n+L+2)!}} \int^{\frac{3}{2}+L} e^{-\kappa^{2} \zeta^{2} / 2}\left[L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) u_{+}+\frac{\kappa \zeta}{\sqrt{n+L+2}} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right) u_{-}\right.
$$

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+2)
$$

Vacuum Energy

$$
\mathcal{M}^{2} \rightarrow \mathcal{M}^{2}-4 \kappa^{2}
$$

Shift?

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+1)
$$

$J=L+1 / 2$ Regge trajectory

$$
\kappa \simeq 0.49 \mathrm{GeV}
$$

Same slope in L and n

Example: Evaluation of QCD Matrix Elements

Pion decay constant f_{π} defined by the matrix element of EW current J_{W}^{+}:

$$
\langle 0| \bar{\psi}_{u} \gamma^{+}\left(1-\gamma_{5}\right) \psi_{d}\left|\pi^{-}\right\rangle=i \sqrt{2} P^{+} f_{\pi}
$$

with

$$
\left|\pi^{-}\right\rangle=|d \bar{u}\rangle=\frac{1}{\sqrt{N_{C}}} \frac{1}{\sqrt{2}} \sum_{c=1}^{N_{C}}\left(b_{c d \downarrow}^{\dagger} d_{c u \uparrow}^{\dagger}-b_{c d \uparrow}^{\dagger} d_{c u \downarrow}^{\dagger}\right)|0\rangle .
$$

Use light-cone expression:

$$
f_{\pi}=2 \sqrt{N_{C}} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{\bar{q} q / \pi}\left(x, k_{\perp}\right) .
$$

Lepage and Brodsky '80
Find:

$$
f_{\pi}=\frac{\sqrt{3} \Lambda_{\mathrm{QCD}}}{8 J_{1}\left(\beta_{0,1}\right)}=83.4 \mathrm{Mev}
$$

for $\Lambda_{\mathrm{QCD}}=0.2 \mathrm{GeV}$ (fixed from the pion FF).
Experiment: $f_{\pi}=92.4 \mathrm{Mev}$.

Pion Decay Constant in HO Model

$$
\begin{gathered}
f_{\pi}=2 \sqrt{N_{C}} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{\bar{q} q / \pi}\left(x, \vec{k}_{\perp}\right) \\
=2 \sqrt{N_{C}} \int_{0}^{1} d x \phi\left(x, Q^{2} \rightarrow \infty\right) \\
\phi\left(x, Q^{2}\right)=\int^{Q^{2}} \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi\left(x, \vec{k}_{\perp}\right) \\
\psi_{\bar{q} q / \pi}\left(x, \vec{k}_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{\vec{k}_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
f_{\pi}=\frac{\sqrt{3} \kappa}{8}=86.6 \mathrm{MeV} \quad \kappa=0.4 \mathrm{GeV}
\end{gathered}
$$

$$
f_{\pi}=92.4 \quad \mathrm{MeV}
$$

Exp.

$$
\begin{gathered}
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z) \\
\Phi(z)=\frac{\sqrt{2} \kappa}{R^{3 / 2}} z^{2} e^{-\kappa^{2} z^{2} / 2} . \quad J(Q, z)=z Q K_{1}(z Q) \\
F\left(Q^{2}\right)=1+\frac{Q^{2}}{4 \kappa^{2}} \exp \left(\frac{Q^{2}}{4 \kappa^{2}}\right) E i\left(-\frac{Q^{2}}{4 \kappa^{2}}\right) \quad E i(-x)=\int_{\infty}^{x} e^{-t} \frac{d t}{t}
\end{gathered}
$$

Space-like Pion
Form Factor

$$
\kappa=0.4 \mathrm{GeV}
$$

$\Lambda_{\mathrm{QCD}}=0.2 \mathrm{GeV}$.
Identical Results for both confinement models

Stan Brodsky, SLAC

$\mathcal{H a d r o n ~ D i s t r i ́ b u t i o n ~} \mathfrak{A m p l i t u d e s}$ $\phi\left(x_{i}, Q\right) \equiv \Pi_{i=1}^{n-1} \int^{Q} d^{2} \vec{k}_{\perp} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}\right)$

- Fundamental measure of valence wavefunction Lepage, SJB
- Gauge Invariant (includes Wilson line)
- Evolution Equations, OPE
- Conformal Expansion
- Hadronic Input in Factorization Theorems

$$
F_{\pi}\left(Q^{2}\right)=\int_{0}^{1} d x \phi_{\pi}(x) \int_{0}^{1} d y \phi_{\pi}(y) \frac{16 \pi C_{F} \alpha_{V}\left(Q_{V}\right)}{(1-x)(1-y) Q^{2}}
$$

AdS/CFT: Increases PQCD leading twist prediction for $F_{\pi}\left(Q^{2}\right)$ by factor $16 / 9$ AdS/QCD

Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

$$
M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\pi}\left(x, k_{\perp}\right)
$$

Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

Diffractive Dissociation of a Pion into Dýets

$\pi A \rightarrow \operatorname{JetJet}^{\prime}{ }^{\prime}$

- E789 Fermilab Experiment Ashery et al
- 500 GeV pions collide on nuclei keeping it intact
- Measure momentum of two jets
- Study momentum distributions of pion LF wavefunction

Fluctuation of a Pion to a Compact Color Dípole State

Color-Transparent Fock State For High Transverse Momentum Di-Jets

AdS/QCD

March 13, 2007

III
Same Fock State Determines Weak Decay

Stan Brodsky, SLAC

Key Ingredients in \mathfrak{A} shery Experiment

1-2005
8711A41

Local gauge-theory interactions

 measure transverse size of color dipole

AdS/QCD

Key Ingredients in Ashery Experiment

1-2005

Brodsky Mueller Frankfurt Miller Strikman

Small color-dipole moment pion not absorbed, interacts with each nucleon coherently QCD COLOR Transparency

AdS/QCD

UCD
March 13, 2007

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

UCD
March 13, 2007

AdS/QCD

```
                    Ashery E791:
Measure of pion LFWF in diffractive dijet production
    Confirmation of color transparency,
    gauge theory of strong interactions
                                    Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman
\begin{tabular}{lcc} 
A-Dependence results: & \(\sigma \propto A^{\alpha}\) & \\
\begin{tabular}{lc}
\(\mathrm{k}_{t}\) range \((\mathrm{GeV} / \mathrm{c})\) & \(-\alpha\) \\
\(1.25<k_{t}<1.5\) & \(1.64+0.06-0.12\) \\
\(1.5<k_{t}<2.0\) & \(1.52 \pm 0.12\) \\
\(2.0<k_{t}<2.5\) & \(1.55 \pm 0.16\) \\
& \\
\(\alpha(\) Incoh. \()=0.70 \pm 0.1\) & 1.45 \\
\hline
\end{tabular} & \\
\end{tabular}
```

Conventional Glauber
Theory Ruled Out !

Factor of 7
AdS/QCD

Color Transparency
 A. H. Mueller, sjb
 Bertsch, Gunion, Goldhaber, sjb
 Frankfurt, Miller, Strikman

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

Key Ingredients in \mathfrak{A} shery Experiment

Two-gluon exchange measures the second derivative of the pion light-front wavefunction

UCD
March 13, 2007

AdS/QCD
117

Stan Brodsky, SLAC

gluons
measure
size of
color
dipole
$\frac{\mathrm{d} \sigma}{\mathrm{d} k_{t}^{2}} \propto\left|\alpha_{s}\left(k_{t}^{2}\right) x_{N} G\left(u, k_{t}^{2}\right)\right|^{2}\left|\frac{\partial^{2}}{\partial k_{t}^{2}} \psi\left(\mathrm{x}, k_{t}\right)\right|^{2}$

THE k_{t} DEPENDENCE OF DI-J ETS YIELD

$$
\frac{d \sigma}{d k_{t}^{2}} \propto\left|\alpha_{s}\left(k_{t}^{2}\right) G\left(x, k_{t}^{2}\right)\right|^{2}\left|\frac{\partial^{2}}{\partial k_{t}^{2}} \psi\left(u, k_{t}\right)\right|^{2}
$$

W ith $\psi \sim \frac{\phi}{k_{t}^{2}}$, weak $\phi\left(k_{t}^{2}\right)$ and $\alpha_{s}\left(k_{t}^{2}\right)$ dependences and $G\left(x, k_{t}^{2}\right) \sim k_{t}^{2 / 2}: \frac{d \sigma}{d k_{e}} \sim k_{t}^{-}$

High Transverse momentum dependence consistent with PQCD, ERBL Evolution

Two Components?

AdS/QCD

Narrowing of x distribution at higher jet transverse momentum
\mathbf{X} distribution of diffractive dijets from the platinum target for $1.25 \leq k_{t} \leq 1.5 \mathrm{GeV} / c$ (left) and for $1.5 \leq k_{t} \leq 2.5 \mathrm{GeV} / c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components:
Nonperturbative and Perturbative
(ERBL) Evolution

UCD
March 13, 2007

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support o < x $<$ I.
- Quark Interchange dominant force at short distances

AdS/CFT explains why quark interchange is dominant
interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

AdS/QCD

Why is quark-interchange dominant over gluon exchange?

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$
Quarks travel freely within cavity as long as
separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$
LFWFs obey conformal symmetry producing quark counting rules.

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{(a)}$ G. C. Blazey, ${ }^{\text {(b) }}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{\left({ }^{(}\right)}$M. L. Marshak,
E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{(d)}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and

$$
\text { S. Gushue }{ }^{(e)} \text { and J. J. Russell }
$$

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm} \\
& K^{ \pm} p \rightarrow p K^{ \pm} \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm} \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm} \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm} \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0} \\
& p^{ \pm} p \rightarrow p p^{ \pm}
\end{aligned}
$$

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Some Applications of LightFront Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role if ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

Annihilation amplitude needed for Lorentz Invariance

AdS/QCD

Ligft. Front Wave Function Overlap Representation

Diehl, Hwang, sjb, NPB596, 200I
See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region
N=3 VALENCE QUARK \Rightarrow Light-cone Constituent quark model
$\mathrm{N}=5$ VALENCE QUARK + QUARK SEA \Rightarrow Meson-Cloud model Pasquini

March 13, 2007

AdS/QCD

130
Stan Brodsky, SLAC

The Generalized Parton Distribution $E(x, \zeta, t)$

The generalized form factors in virtual Compton scattering $\gamma^{*}(q)+p(P) \rightarrow \gamma^{*}\left(q^{\prime}\right)+p\left(P^{\prime}\right)$ with $t=\Delta^{2}$ and
$\Delta=P-P^{\prime}=\left(\zeta P^{+}, \Delta_{\perp},\left(t+\Delta_{\perp}^{2}\right) / \zeta P^{+}\right)$, have been constructed in the light-front formalism. [Brodsky, Diehl, Hwang, 2001]
We find, under $\boldsymbol{q}_{\perp} \rightarrow \boldsymbol{\Delta}_{\perp}$, for $\zeta \leq x \leq 1$,

$$
\begin{aligned}
\frac{E(x, \zeta, 0)}{2 M}= & \sum_{a}(\sqrt{1-\zeta})^{1-n} \sum_{j} \delta\left(x-x_{j}\right) \int[\mathrm{d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \\
& \times \psi_{a}^{*}\left(x_{i}^{\prime}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{\mathbf{q}_{\mathbf{j}}} \psi_{a}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right),
\end{aligned}
$$

with $x_{j}^{\prime}=\left(x_{j}-\zeta\right) /(1-\zeta)$ for the struck parton j and $x_{i}^{\prime}=x_{i} /(1-\zeta)$ for the spectator parton i.
The E distribution function is related to a $S_{\perp} \cdot L_{\perp}^{q_{j}}$ matrix element at finite ζ as well.

Link to DIS and Elastic Form Factors

	DIS at $\xi=t=0$
$H^{q}(x, 0,0)=$	$q(x), \quad-\bar{q}(-x)$
$\tilde{H}^{q}(x, 0,0)=$	$\Delta q(x), \Delta \bar{q}(-x)$

Form factors (sum rules)
$\int d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{l}(t)$ Dirac f.f.
$\int d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f. $\int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

$$
H^{q}, E^{q}, \widetilde{H}^{q}, \widetilde{E}^{q}(x, \xi, t)
$$

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

Verified using LFWFs

Diehl,Hwang, sjb

Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

P. Hoyer

$$
x^{+}=\mathbf{x}_{\perp}=0
$$

The position of the struck quark differs by x^{-}in the two wave functions

Measure x^{-}distribution from DVCS:
Use Fourier transform of skewness, the longitudinal momentum transfer

$$
\zeta=\frac{Q^{2}}{2 p \cdot q}
$$

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary $^{e, a, f}$

Hadron Optics

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of

$$
\sigma=\frac{1}{2} x^{-} P^{+} \quad \zeta=\frac{Q^{2}}{2 p \cdot q}
$$

DVCS Amplitude using holographic QCD meson LFWF

$$
\wedge_{Q C D}=0.32
$$

 $\left|b_{\perp}\right|$.

GeV units

Stan Brodsky, SLAC

Features of Light-Front Formalism

- Hidden Color Of Nuclear Wavefunction
- Color Transparency, Opaqueness
- Intrinsic glue, sea quarks, intrinsic charm
- Simple proof of Factorization theorems for hard processes (Lepage, sjb)
- Direct mapping to AdS/CFT (de Teramond, sjb)
- New Effective LF Equations (de Teramond, sjb)
- Light-Front Amplitude Generator

Light-Front QCD

Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ

	n Seater	¢й	${ }_{\text {gq }}^{2}$	998	${ }_{\text {ququ }}^{4}$	$\begin{array}{\|l\|} \hline 5 \\ \hline 99 \end{array}$	${ }_{\text {q98 }}^{6}$	quaq9	${ }_{\text {a¢9 ¢ }}^{8}$	${ }_{\text {g99 }}$	${ }_{\text {a¢999 }}^{10}$	$\begin{aligned} & \text { айофя } \end{aligned}$		
	व9	T	F	-	E	.	7		.		.	.		
	298		-	\sim		\cdots	E			t				
	3 \%i9	>-	;	T.	\cdots	I	<	E			\%			
	4 4989	5		i	I	-	\pm	-	E			E		
	${ }^{5} 989$.	y	F		x	\checkmark			\sim	E			
	6^{6} q998	3	J	\%	I	;	I	\checkmark	.	I	-	E		
	7 ¢9999			J	>-		2	\cdots	\checkmark		I	-	E	
	8 өө¢я				7			;	7			I	-	E
			3			3-	I	-	\because	X	-			
§	10 96898			I		5	>-	I)	-	$\underline{2}$		
$\underset{\mathrm{k}_{\mathrm{k}, \sigma^{\prime}}^{(0)}}{(0)}$	119909989				\%		7	\rangle	I		\cdots	1.	<	
	12 ¢9\%9\%99							5	>-	.		$>$	T.	\checkmark
									3				\cdots	I
$\substack{\text { UCD } \\ \text { Uarch } \mathbf{3 3 , 2 0 0 7}}$ basisfunctions Pauli, Pinsky, sjb AdS/QCD $\mathbf{1 3 8}$ Stan Brodsky, $\mathbf{S L A C}$														

Use AdS/CFT orthonormal LFWFs as a basis for diagonatizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis
- DLCQ discretization -- highly successful I+I
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations

Vary, Harinandrath, sjb

AdS/QCD

- New initial approximation to QCD based on conformal invariance, and confinement
- Underlying principle: Semi-Classical QCD
- AdS5: Mathematical representation of conformal gauge theory
- Challenges: chiral symmetry, heavy quark masses
- Systematically improve using DLCQ
- Successes: Hadron spectra, LFWFs, dynamics
- QCD at the Amplitude Level

Outlook

- Only one scale $\Lambda_{Q C D}$ determines hadronic spectrum (slightly different for mesons and baryons).
- Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.
- String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS boundary.
- Only dimension $3, \frac{9}{2}$ and 4 states $\bar{q} q, q q q$, and $g g$ appear in the duality at the classical level!
- Non-zero orbital angular momentum and higher Fock-states require introduction of quantum fluctuations.
- Simple description of space and time-like structure of hadronic form factors.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model. Modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.

AdS/CFT and QCD

Bottom-Up Approach

- Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering for gauge theories with mass gap dual to string theories in warped space:
Polchinski and Strassler, hep-th/0109174.
- Deep inelastic structure functions at small x :

Polchinski and Strassler, hep-th/0209211.

- Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular momentum, matching short distance behavior with string modes at AdS boundary: Brodsky and de Téramond, hep-th/0310227. E. van Beveren et al.
- Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz, Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Pomarol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hepth/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.

- Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez, hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower, Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

- D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos, Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erdmenger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201; Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnenschein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera, hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219; Casero, Paredes and Sonnenschein, hep-th/0510110.

- Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

- Strongly coupled quark-gluon plasma ($\eta / s=1 / 4 \pi$):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 ...

* * * *

String theorists have broken an impasse and may be on their way to converting this mathematical structure -- physicists' best hope for unifying gravity and quantum theory -- into a single coherent theory.
Frank and Ernest

Copyfigh (o) 1994 by Thaves. Distitulted form wwithecomies com

Stan Brodsky, SLAC

