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Figure 3: J = L + 1 vector meson Regge trajectory for κ ! 0.54 GeV.

4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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4.1 Two-Component Dirac Equation

The plus and minus chirality components are not independent since they must obey

the first order Dirac equation (102). We use the Weyl representation where γ5 is

diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find (
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ
ν+ 1

2
ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (119)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− = Mψ+, (120)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ = Mψ−. (121)

Solving the linear equation (121) using the relation between Bessel functions

Jν+1(x) =
ν

x
Jν(x)− J ′

ν(x), (122)

it follows that

ψ+(ζ) = C
√

zJν(ζM),

ψ−(ζ) = −C
√

zJν+1(ζM).

The solution to (102) can thus be written as

ψ(ζ) = C
√

ζ [Jν(ζM)u+ + Jν+1(ζM)u−] , (123)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (124)

Notice that we could have solved initially the linear Dirac equation (120) and use

the relation between Bessel functions(
d

dx
+

ν + 1
2

x

)
φν+1(x) = cνφν(x), (125)

to obtain identical results.
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Holographic Harmonic Oscillator Model: Baryons

4.6 Stability of Solutions

Using the positivity of the product

〈ψ|d†d|ψ〉 ≥ 0, (144)

there follows

M2 ≥ 0, if ν2 ≥ 0, (145)

identical to the Breitenlohner-Freedman bound for the scalar case. Thus in principle

a twist-dimension two baryon is allowed by holographic considerations.

4.7 AdS Dirac Equation

Identical results can also be obtained starting from the solution of the Dirac equation

in AdS space

(/D − µR)Ψ(x, z) = 0, (146)

where µ is the fifth dimensional mass. The solution to (146) is [7]

Ψ(z) = Ce−iP ·x [Ψ+(z)U+(P ) + Ψ−(z)U−(P )] , (147)

with

U− =
γµPµ

P
U+. (148)

The physical solutions have plane waves and chiral spinors U(P )± along the Poincaré

coordinates and hadronic invariant mass states PµP µ = M2.

5 Harmonic Oscillator Holographic Model: Baryons

We write the Dirac equation

(αΠ(ζ)−M) ψ(ζ) = 0, (149)

in terms of the matrix-valued operator Π and its adjoint Π†

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
, (150)

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
γ5 + κ2ζγ5

)
, (151)
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diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find(
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ + κ2ζ
ν+ 1

2
ζ + κ2ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (161)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− − κ2ζψ− = Mψ+, (162)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ − κ2ζψ+ = Mψ−. (163)

Solving for example the linear coupled equation (163) using as input the ψ+ solu-

tion

ψ+(ζ) = Cz
1
2+νe−κ2ζ2/2Lν

n

(
κ2ζ2

)
, (164)

we find

ψ−(ζ) = −C
κζ√

n + ν + 1
z

1
2+νe−κ2ζ2/2Lν+1

n

(
κ2ζ2

)
, (165)

where we have used the relation

Lν+1
n−1(x) + Lν

n(x) = Lν+1
n (x), (166)

between associated Laguerre functions Lν
n.

The solution to (149) can thus be written as

ψ(ζ) = Cz
1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
, (167)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (168)

If we take as starting point the linear coupled equation we find identical results.
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Coupled Equations
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with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=

(
2ν + 1

ζ2
− 2κ2

)
γ5. (152)

Since the operator αΠ is self-adjointM is real. Each component satisfies the Dirac

wave equation (
HLF −M2

)
ψ(ζ) = 0, (153)

where the effective light-front Hamiltonian HLF = Π†Π is given by

HLF = − d2

dζ2
+

(
ν + 1

2

)2

ζ2
− ν + 1

2

ζ2
γ5 + κ4ζ2 + κ2(2ν + 1) + κ2γ5. (154)

The light-front wave equation (153)

HLF ψ± =M2ψ±, (155)

leads to the uncoupled light-front wave equations(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2(ν + 1)κ2 +M2

)
ψ+(ζ) = 0, (156)(

d2

dζ2
+

1− 4(ν + 1)2

4ζ2
− κ4ζ2 − 2νκ2 +M2

)
ψ−(ζ) = 0, (157)

with solutions

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2), (158)

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2), (159)

and eigenvalues

M2 = 4κ2(n + ν + 1), (160)

identical for both plus and minus eigenfunctions.

5.1 Two-Component Dirac Equation

The plus and minus chirality components are not independent since they must obey

the first order Dirac equation (149). We use the Weyl representation where γ5 is
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Solution

Same eigenvalue!



 

5.2 Normalization

In terms of the upper and lower components of the wavefunction Ψ the normalization

condition ∫
dζψ†(ζ)ψ(ζ) = 1, (169)

is ∫
dζ

[|ψ+(ζ)|2 + |ψ−(ζ)|2] = 1. (170)

Using the holographic harmonic-oscillator light-front wavefunction (173) we find

that the total probability to find a baryon in its plus or minus component P± is

identical

P+ =

∫ ∞

0

dζ|ψ+(ζ)|2 (171)

P− =

∫ ∞

0

dζ|ψ−(ζ)|2. (172)

Our final result:

ψ(ζ) = κ1+ν

√
n!

Γ(n + ν + 1)!
z

1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
.

(173)

5.3 Holographic Baryon Spectrum

The solution to (149) for a baryon (twist-dimension 3) including its orbital excitations

is

ψ(ζ) = κ2+L

√
n!

(n + L + 2)!
z

3
2+Le−κ2ζ2/2

[
LL+1

n

(
κ2ζ2

)
u+ +

κζ√
n + L + 2

LL+2
n

(
κ2ζ2

)
u−

]
.

(174)

with eigenvalues

M2 = 4κ2(n + L + 2). (175)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 4κ2, (176)
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The solution to (149) for a baryon (twist-dimension 3) including its orbital excitations

is
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z
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LL+1

n

(
κ2ζ2

)
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κζ√
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LL+2
n

(
κ2ζ2

)
u−

]
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with eigenvalues

M2 = 4κ2(n + L + 2). (175)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 4κ2, (176)
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0
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0
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thus

M2 = 4κ2(n + L + 1). (177)

The shift given by (176) differs from the shift required to reproduce the vector meson

data (100).

The Regge trajectory for the proton is shown in Fig. 6. The linear prediction

from (177) corresponds to κ ! 0.49 GeV.
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Figure 6: J = L + 1/2 Regge trajectory for the proton for a values of κ ! 0.49 GeV.

The HO solution does not seem to lead to parallel trajectories for baryons as

the holographic truncated model. Would a HO R-S equation solve the problem to

describe the J = 3/2 + L trajectories?
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diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find(
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ + κ2ζ
ν+ 1

2
ζ + κ2ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (161)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− − κ2ζψ− = Mψ+, (162)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ − κ2ζψ+ = Mψ−. (163)

Solving for example the linear coupled equation (163) using as input the ψ+ solu-

tion

ψ+(ζ) = Cz
1
2+νe−κ2ζ2/2Lν

n

(
κ2ζ2

)
, (164)

we find

ψ−(ζ) = −C
κζ√

n + ν + 1
z

1
2+νe−κ2ζ2/2Lν+1

n

(
κ2ζ2

)
, (165)

where we have used the relation

Lν+1
n−1(x) + Lν

n(x) = Lν+1
n (x), (166)

between associated Laguerre functions Lν
n.

The solution to (149) can thus be written as

ψ(ζ) = Cz
1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
, (167)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (168)

If we take as starting point the linear coupled equation we find identical results.

24

Same slope in L and n
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Example: Evaluation of QCD Matrix Elements

• Pion decay constant fπ defined by the matrix element of EW current J+
W :〈

0
∣∣ψuγ+(1− γ5)ψd

∣∣ π−
〉

= i
√

2P+fπ,

with ∣∣π−〉
= |du〉 =

1√
NC

1√
2

NC∑
c=1

(
b†c d↓d

†
c u↑ − b†c d↑d

†
c u↓

) ∣∣0〉
.

• Use light-cone expression:

fπ = 2
√

NC

∫ 1

0
dx

∫
d2$k⊥
16π3

ψqq/π(x, k⊥).

Lepage and Brodsky ’80

• Find:

fπ =
√

3ΛQCD

8J1(β0,1)
= 83.4 Mev,

for ΛQCD = 0.2 GeV (fixed from the pion FF).

Experiment: fπ = 92.4 Mev.
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The LFWF in !k⊥ space is the Fourier transform

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ei!b⊥·!k⊥ψ̃(x,!b⊥)

= 4π3/2

∫ ∞

0

J0(kb)ψ̃(x, b). (9)

We find

ψqq/π(x,!k⊥) =
4π

κ
√

x(1− x)
e
− !k2⊥

2κ2x(1−x) . (10)

an exponential, but not a power-law fall off for the LFWF at high momentum transfer.

Note: The LFWF in !b⊥ (8) and !k⊥ (10) space are properly normalized according

to ∫
dx

∫
d!k⊥
16π3

∣∣∣ψ(x,!k⊥)
∣∣∣2 =

∫
dx

∫
d!b⊥

∣∣∣ψ̃(x,!b⊥)
∣∣∣2 = 1. (11)

3 The Pion Decay Constant

From the light-cone expression:

fπ = 2
√

NC

∫ 1

0

dx

∫
d2!k⊥
16π3

ψqq/π(x,!k⊥)

= 2
√

NC

∫ 1

0

dx φ(x,Q2 →∞), (12)

with

φ(x,Q2) =

∫ Q2
d2!k⊥
16π3

ψ(x,!k⊥) (13)

we find for (10) the result

fπ =

√
3κ

8
= 86.6 Mev, (14)

for κ = 0.4 GeV. This value is to be compared with the experimental value fπ = 92.4

Mev.

The distribution amplitude φ(x) ≡ φ(x, Q2 →∞) is

φ(x) =
4√
3π

fπ

√
x(1− x). (15)
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Pion Decay Constant in HO Model
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Holographic Pion Form Factor

SJB and GdT

09/13/2006

1 The Pion Form Factor in the Gaussian Model

The form factor in AdS is the overlap of the normalizable modes dual to the incoming

and outgoing hadrons ΦP and ΦP ′ with the non-normalizable mode J(Q, z) dual to

the external source

F (Q2) = R3

∫ ∞

0

dz

z3
ΦP ′(z)J(Q, z)ΦP (z). (1)

The pion string mode Φ in the Gaussian model is

Φ(z) =

√
2κ

R3/2
z2e−κ2z2/2. (2)

In the interaction picture, where we neglect confinement of qq virtual pairs in the

electromagnetic current as it propagates inside the AdS cavity, J(Q, z) is the solution

of a vector AdS wave equation

J(Q, z) = zQK1(zQ). (3)

The form factor (1) has a closed form solution

F (Q2) = 1 +
Q2

4κ2
exp

(
Q2

4κ2

)
Ei

(
− Q2

4κ2

)
, (4)

where Ei is the exponential integral

Ei(−x) =

∫ x

∞
e−t dt

t
. (5)

For large transverse momentum Q2 we use the the asymptotic expansion of Ei(−x)

−Ei(−x) =
e−x

x

(
1− 1

x
+

2!

x2
+ . . .

)
. (6)
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Φ(z) =

√
2κ

R3/2
z2e−κ2z2/2. (2)

In the interaction picture, where we neglect confinement of qq virtual pairs in the

electromagnetic current as it propagates inside the AdS cavity, J(Q, z) is the solution

of a vector AdS wave equation
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F (Q2) = 1 +
Q2

4κ2
exp

(
Q2

4κ2

)
Ei
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− Q2

4κ2

)
, (4)
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∫ x
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e−t dt

t
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+ . . .
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Figure 1: Space-like pion form factor in a holographic AdS Gaussian-modified-metric

model for κ = 0.4 GeV (red curve). The blue curve corresponds to the truncated

space holographic model for ΛQCD = 0.2 GeV.

We find at large Q2

F (Q2)→ 4κ2

Q2
, (7)

and we recover the dimensional counting rule! It is remarkable that even if the

hadronic mode (2) is Gaussian, its leads to hard power behavior for the form factor

at large momentum transfer.

We show in Figure 1 the behavior of the spacelike pion form factor in the Gaussian

model (red curve). The results are almost indistinguishable from the hard wall model

results (blue curve).

2 Mapping to QCD LFWF

From the holographic mapping to LFWF∣∣∣ψ̃(x, ζ)
∣∣∣2 =

R3

2π
x(1− x)

|Φ(ζ)|2
ζ4

,

we find the pion LFWF in the Gaussian-modified model

ψ̃qq/π(x,%b⊥) =
κ√
π

√
x(1− x) e−

1
2κ2x(1−x)#b2⊥ . (8)
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• Fundamental measure of valence wavefunction

• Gauge Invariant (includes Wilson line)

• Evolution Equations, OPE

• Conformal Expansion

• Hadronic Input in Factorization Theorems

Hadron Distribution Amplitudes 

Lepage, SJB

φ(xi, Q) ≡ Πn−1
i=1

∫ Q d2"k⊥ ψn(xi,"k⊥i)
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0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2
φ π(x

)

Linear potential(m=0.22 GeV,β=0.3659 GeV)

HO potential(m=0.25 GeV,β=0.3194 GeV)

φ
as

(x)~x(1-x)

φ
AdS/CFT

(x)~[x(1-x)]
1/2

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9
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shown in Fig. 1. The corresponding predictions for !R and

!MS using the CSRs at NLO are also shown. Note that for

low Q2 the couplings, although frozen, are large. Thus the

NLO and higher-order terms in the CSRs are large, and in-

verting them perturbatively to NLO does not give accurate

results at low scales. In addition, higher-twist contributions

to !V and !R , which are not reflected in the CSR relating

them, may be expected to be important for low Q2 "35#.
It is clear that exclusive processes such as the pion and

photon to pion transition form factors can provide a valuable

window for determining the magnitude and the shape of the

effective charges at quite low momentum transfers. In par-

ticular, we can check consistency with the !V prediction

from lattice gauge theory. A complimentary method for de-

termining !V at low momentum is to use the angular anisot-

ropy of e!e"→QQ̄ at the heavy quark thresholds "36#. It
should be emphasized that the parametrization $18% is just an
approximate form. The actual behavior of !V(Q

2) at low Q2

is one of the key uncertainties in QCD phenomenology. In

this paper we shall use exclusive observables to deduce in-

formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sensitive

to the magnitude and shape of the QCD couplings at quite

low momentum transfer: QV
*2!e"3Q2!Q2/20 and

QR
*2!Q2/50 "37#. The fact that the data for exclusive pro-

cesses such as form factors, two photon processes such as

&&→'!'", and photoproduction at fixed (c .m . are consis-
tent with the nominal scaling of the leading-twist QCD pre-

dictions $dimensional counting% at momentum transfers Q up

to the order of a few GeV can be immediately understood if

the effective charges !V and !R are slowly varying at low

momentum. The scaling of the exclusive amplitude then fol-

lows that of the subprocess amplitude TH with effectively

fixed coupling. Note also that the Sudakov effect of the end-

point region is the exponential of a double log series if the

coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data "38# for the
photon to pion transition form factor with the prediction

Q2F&'$Q2%#2 f '" 1"
5

3

!V$e"3/2Q %

' # . $19%

The flat scaling of the Q2F&'(Q
2) data from Q2#2 to

Q2#8 GeV2 provides an important confirmation of the ap-

plicability of leading twist QCD to this process. The magni-

tude of Q2F&'(Q
2) is remarkably consistent with the pre-

dicted form assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with

!V(e
"3/2Q)/'!0.12. Radyushkin "39#, Ong "40# and Kroll

"41# have also noted that the scaling and normalization of the
photon-to-pion transition form factor tends to favor the

asymptotic form for the pion distribution amplitude and rules

out broader distributions such as the two-humped form sug-

gested by QCD sum rules "42#. One cannot obtain a unique
solution for the non-perturbative wave function from the F'&
data alone. However, we have the constraint that

1

3
$ 1

1"x
% &1"

5

3

!V$Q*%

' '!0.8 $20%

"assuming the renormalization scale we have chosen in Eq.
$13% is approximately correct#. Thus one could allow for

some broadening of the distribution amplitude with a corre-

sponding increase in the value of !V at low scales.

In Fig. 3 we compare the existing measurements of the

space-like pion form factor F'(Q
2) "43,44# $obtained from

the extrapolation of &*p→'!n data to the pion pole% with
the QCD prediction $10%, again assuming the asymptotic
form of the pion distribution amplitude. The scaling of the

FIG. 1. The coupling function !V(Q
2) as given in Eq. $18%.

Also shown are the corresponding predictions for !MS̄ and !R fol-

lowing from the NLO commensurate scale relations "Eqs. $2% and
$9%#.

FIG. 2. The &→'0 transition form factor. The solid line is the

full prediction including the QCD correction "Eq. $19%#; the dotted
line is the LO prediction Q2F&'(Q

2)#2 f ' .

FIG. 3. The space-like pion form factor.
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

where !M(x ,Q̃) is the process-independent meson distribu-

tion amplitude, which encodes the non-perturbative dynam-

ics of the bound valence Fock state up to the resolution scale

Q̃ , and

TH"x ,y ,Q2#!
16$CF%s"&#

"1"x #"1"y #Q2 '1#O"%s#( "6#

is the leading-twist perturbatively-calculable subprocess am-

plitude )*q(x) q̄ (1"x)→q(y) q̄ (1"y), obtained by re-

placing the incident and final mesons by valence quarks col-

linear up to the resolution scale Q̃ . The contributions from

non-valence Fock states and the correction from neglecting

the transverse momentum in the subprocess amplitude from

the non-perturbative region are higher twist, i.e., power-law

suppressed. The transverse momenta in the perturbative do-

main lead to the evolution of the distribution amplitude and

to NLO corrections in %s . The contribution from the end-

point regions of integration, x*1 and y*1, are power-law
and Sudakov suppressed and thus can only contribute correc-

tions at higher order in 1/Q '4(.
The distribution amplitude !(x ,Q̃) is boost and gauge

invariant and evolves in lnQ̃ through an evolution equation

'4(. It can be computed from the integral over transverse

momenta of the renormalized hadron valence wave function

in the light-cone gauge at fixed light-cone time '4(:

!"x ,Q̃ #!! d2k!!+" Q̃2"
k!!
2

x"1"x #
#,"Q̃ #"x ,k!!#. "7#

The physical pion form factor must be independent of the

separation scale Q̃ . The natural variable in which to make
this separation is the light-cone energy, or equivalently the

invariant mass M2!k!!
2 /x(1"x), of the off-shell partonic

system '20,4(. Any residual dependence on the choice of Q̃
for the distribution amplitude will be compensated by a cor-
responding dependence of the NLO correction in TH . How-
ever, the NLO prediction for the pion form factor depends
strongly on the form of the pion distribution amplitude as
well as the choice of renormalization scale & and scheme.
It is straightforward to obtain the commensurate scale re-

lation between F$ and %V following the procedure outlined
above. The appropriate BLM scale for F$ is determined
from the explicit calculations of the NLO corrections given
by Dittes and Radyushkin '21( and Field et al. '22(. These
may be written in the form 'A(&)n f#B(&)(%s /$ , where A
is independent of the separation scale Q̃ . The n f dependence
allows one to uniquely identify the dependence on -0, which
is then absorbed into the running coupling by a shift to the

BLM scale Q*!e3A(&)& . An important check of self-

consistency is that the resulting value for Q* is independent
of the choice of the starting scale & .
Combining this result with the BLM scale-fixed expres-

sion for %V , and eliminating the intermediate coupling, we

find

F$"Q2#!!
0

1

dx!$"x #!
0

1

dy!$"y #
16$CF%V"QV#

"1"x #"1"y #Q2" 1#CV

%V"QV#

$ #
!"4!

0

1

dx!$"x #!
0

1

dy!$"y #V"QV
2 #" 1#CV

%V"QV#

$ # , "8#

where CV!"1.91 is the same coefficient one would obtain
in a conformally invariant theory with -!0, and

QV
2.(1"x)(1"y)Q2. In this analysis we have assumed

that the pion distribution amplitude has the asymptotic form

!$!!3 f $x(1"x), where the pion decay constant is f $$93
MeV. In this simplified case the distribution amplitude does

not evolve, and there is no dependence on the separation

scale Q̃ . This commensurate scale relation between F$(Q
2)

and /%V(QV)0 represents a general connection between the
form factor of a bound-state system and the irreducible ker-

nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor in

terms of other effective charges such as the coupling %R(!s)
that defines the QCD radiative corrections to the e#e"→X

cross section: R(s).31eq
2'1#%R(!s)/$( . The CSR be-

tween %V and %R is

%V"QV#!%R"QR#" 1"
25

12

%R

$
#••• # , "9#

where the ratio of commensurate scales to this order is

QR /QV!e23/12"223$0.614.
If we expand the QCD coupling about a fixed point in

NLO '10(: %s(QV)$%s(Q0)'1"„-0%s(Q0)/2$…ln(QV /Q0)(,
then the integral over the effective charge in Eq. "8# can be
performed explicitly. Thus, assuming the asymptotic distri-

bution amplitude, the pion form factor at NLO is

Q2F$"Q2#!16$ f$
2%V"Q*#" 1"1.91

%V"Q*#

$ # , "10#

where Q*!e"3/2Q . In this approximation lnQ*2

!/ln(1"x)(1"y)Q20, in agreement with the explicit calcula-
tion. A striking feature of this result is that the physical scale

controlling the meson form factor in the %V scheme is very

low: e"3/2Q$0.22Q , reflecting the characteristic momentum
transfer experienced by the spectator valence quark in

lepton-meson elastic scattering.

We may also determine the renormalization scale of %V

for more general forms of the coupling by direct integration

over x and y in Eq. "8#, assuming a specific analytic form for
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Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ
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Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

φ
AdS/QCD
π (x) ∝ [x(1− x)]1/2

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Neutral pair  angular distribution
sensitive to AdS/CFT distribution!
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

109

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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πA→ JetJetA′

ψπ
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOMENTUM WAVE FUNCTION

MEASURED BY DI-JETS

Fermilab E791 Collaboration, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 contains contributions from CZ or other non-perturbative wave functions

x

Diffractive Dissociation of a 
Pion into Dijets

• E789 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction

110
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Fluctuation of a Pion to a 
Compact Color Dipole State

Color-Transparent Fock State For High Transverse 
Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
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Key Ingredients in Ashery Experiment
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Local gauge-theory interactions 
measure transverse size of color dipole
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Key Ingredients in Ashery Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap
A

A’

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q
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Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

LIoffe > 4fm ∼ RA
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber 
Theory Ruled Out ! 
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Ashery E791: 
Measure of pion LFWF in diffractive dijet production 

Confirmation of color transparency, 
gauge theory of strong interactions 

Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman

Factor of 7
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

A. H. Mueller,  sjb
Bertsch, Gunion, Goldhaber, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction
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Brodsky, Gunion, Frankfurt, Mueller, Strikman
Frankfurt, Miller, Strikman
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Fig. 23. The Acceptance-corrected u distributions of diffractive dijets obtained by applying correction to the E791

results [96]. The distributions are for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for 1.5 ≤ kt ≤ 2.5 GeV/c (right). The

solid line is a fit to a combination of Gegenbauer polynomials, Eq. (49).

were very stable. The fact that a4 "= 0, which seems to be essential for a reasonable fit, indicates

a distribution amplitude that is different from φCZ as defined in Eq. (37) which contains only a
a2 term [32].

3.3.4. Transverse momentum distribution

As discussed in Section 2.3, derivation of the cross section for diffractive dissociation [69]

is based on the double-differentiation of the LCWF with respect to kt (Eq. (26)). More

specifically:

dσ

dk2t
∝ |αs(k2t )xNG(u, k2t )|2

∣∣∣∣ ∂2

∂k2t
ψ(u, kt )

∣∣∣∣2 , (50)

with xN = 2k2t /s and GN the gluon distribution function in the nucleon. This double-

differentiation leads to a prediction of the kt dependence of the cross section. By comparing the

measured and predicted kt distributions it is possible to test to what extent the assumptions used

in deriving the cross section are correct with sensitivity to both the LCWF and the interaction.

When applying Eq. (26) to the pion LCWF given by Eq. (46) the differentiation with respect to

kt does not modify the u-dependence if k
2
t $ µ2. An additional kt dependence comes from the

gluon distribution in the nucleon. With αs(k
2
t )xNG(u, k2t ) ∼ k

1
2
t [97] this yields:

M(N) ∝ xNGN

k4t
,

dσ

dk2t
∝ (xNGN )2

k8t
,

dσ

dkt
∝ k−6

t (51)

and the u-dependence is the same as for φ2(u), Eq. (27). The experimental results are shown in
Fig. 24 where they are compared with several fits. An attempt to fit the data over the whole kt
range to a power-law dependence: dσ

dkt
∝ knt resulted in n = −9.2 ± 0.4(stat) ± 0.3(sys), much

larger than expected from Eq. (51). This result is dominated by the low kt high statistics region.

It can be seen that for the larger kt the slope changes and when only the kt > 1.8 GeV region is

fit to a power-law the result is n = −6.5 ± 2.0, consistent with the predictions, Fig. 24(a, b).

314 D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339

Fig. 25. Diagram of diffractive dissociation of a pion to two jets used for the calculations by Chernyak [103] and by

Braun et al. [102,106].

3.3.5. Has E791 measured the pion distribution amplitude?

Following publication of the E791 results [96] several theoretical papers were published

discussing the question of whether they can indeed be taken as measurement of the pion

distribution amplitude. The subject was also discussed in several conferences [104]. We bring

here a brief summary of the main points that were raised and add some comments. The main

questions that were discussed are:

• Is the cross section for the process indeed proportional to φ(u)2 as claimed in Eq. (27) [69]?
• Are the results precise enough to distinguish between φAsy(u) and other forms of φ(u)?

Nikolaev et al. [74] calculate the cross section for diffractive dissociation of pions to dijets

using pQCD methods. They show that the cross section is proportional to φ2(u) and to the

unintegrated gluon structure function of the nucleon. They disagree with Frankfurt et al. [69] who

used the integrated gluon structure function. They calculate higher-twist effects which contain

some u-dependence but show that in nuclear medium they are suppressed. As a result, when the

measurements are done in a heavy nuclear target the cross section is proportional to φ(u)2 and
can be used to determine it. Hence their response to the first question is positive. Concerning the

shape of φ(u) they propose a soft model distribution amplitude that has a different mathematical

form than that of φAsy(u) but has a very similar u-dependence. Because of this similarity they
conclude that the E791 results are consistent with their calculations as well. They are also able

to reproduce the kt and A dependence observed in the experiment.

V. Chernyak [103–105] calculates the process described in Fig. 25. The lower blob in the

diagram represents the skewed gluon distribution of the nucleon. The upper blob represents the

hard kernel of the amplitude that consists of 31 connected Born diagrams. Nuclear effects and

the quark transverse momenta are ignored. Calculations of these diagrams lead to an expression

for the amplitude which is not proportional to φ(u) but rather to a sum of four integrals over

φ(u) multiplied by expressions that contain u-dependence. His conclusion is that the cross
section depends on φ2(u) in a complicated way hence measurement of the cross section cannot

provide a measurement of φ2(u). Chernyak disagrees with the authors of [74] as they ignore

the contributions where the jet momenta differ significantly from the quark momenta. He agrees

that making this assumption will lead to proportionality of the cross section and φ2(u). He also

disagrees with the authors of [69] that ignored contributions from diagrams that are, according

to their evaluation of the E791 conditions, suppressed by Sudakov form factors. Following these

arguments Chernyak applies his calculations to φAsy(u) and to φCZ(u) which he evolves to the

scale of 2 GeV. He does it by treating the pion as free qq̄ and does not use the logarithmic

gluons 
measure 
size of 
color 
dipole

x

x

1-x
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD
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momentum  
dependence 

consistent with 
PQCD, ERBL 
Evolution
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)

x
Narrowing of x distribution at higher jet transverse momentum 
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Nonperturbative and Perturbative 
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Prediction from AdS/CFT: Meson LFWF
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
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 all predict dominance of quark interchange:
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

124
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Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Some Applications of Light-
Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to anm

• Deeply Virtual Compton Scattering, generalized parton distributions, 
angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role if ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.

128



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

9–97 

8348A11

n

p'

k

p

–q

p'

k

p

Large – q2  =  Q2

q

( f )     Virtual Compton   !"!p!!!!!!! 'p'

#n#n

#n+2 #n

p' $'  J"!(z) J%(0)  p $

p p'

&

+

'

'

k

q

'

n

(h)    Weak Exclusive Decay 

#n#n

D  J+ (0)  B

B 

B 

W
– 

D
+

D
+

D
+

g g

+

=

&
cb

d

%

%%

#n
#n+2

B c c

b

d

'

(g)    Vector Meson Leptoproduction     !" p      V  p'

!" (q) V  = ' #!(#!)# J/#

Large –q2  =  Q2

V 

x

1–x

p p'

p p'

'

!"
)v

= + + +

9–97 

8348A11

n

p'

k

p

–q

p'

k

p

Large – q2  =  Q2

q

( f )     Virtual Compton   !"!p!!!!!!! 'p'

#n#n

#n+2 #n

p' $'  J"!(z) J%(0)  p $

p p'

&

+

'

'

k

q

'

n

(h)    Weak Exclusive Decay 

#n#n

D  J+ (0)  B

B 

B 

W
– 

D
+

D
+

D
+

g g

+

=

&
cb

d

%

%%

#n
#n+2

B c c

b

d

'

(g)    Vector Meson Leptoproduction     !" p      V  p'

!" (q) V  = ' #!(#!)# J/#

Large –q2  =  Q2

V 

x

1–x

p p'

p p'

'

!"
)v

= + + +

9–97 

8348A11

n

p'

k

p

–q

p'

k

p

Large – q2  =  Q2

q

( f )     Virtual Compton   !"!p!!!!!!! 'p'

#n#n

#n+2 #n

p' $'  J"!(z) J%(0)  p $

p p'

&

+

'

'

k

q

'

n

(h)    Weak Exclusive Decay 

#n#n

D  J+ (0)  B

B 

B 

W
– 

D
+

D
+

D
+

g g

+

=

&
cb

d

%

%%

#n
#n+2

B c c

b

d

'

(g)    Vector Meson Leptoproduction     !" p      V  p'

!" (q) V  = ' #!(#!)# J/#

Large –q2  =  Q2

V 

x

1–x

p p'

p p'

'

!"
)v

= + + +

Annihilation amplitude needed for Lorentz Invariance

n = n’ + 2

Exact Formula 
Hwang, SJB
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

N=3 VALENCE QUARK ⇒ Light-cone Constituent quark model

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Diehl, Hwang, sjb,  NPB596, 2001

Pasquini
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The Generalized Parton Distribution E(x , ζ, t)

The generalized form factors in virtual Compton scattering
γ∗(q) + p(P)→ γ∗(q′) + p(P ′) with t = ∆2 and
∆ = P − P ′ = (ζP+,∆⊥, (t + ∆2

⊥)/ζP+), have been constructed in the
light-front formalism. [Brodsky, Diehl, Hwang, 2001]

We find, under q⊥ → ∆⊥, for ζ ≤ x ≤ 1,

E(x , ζ, 0)

2M
=

∑
a

(
√

1− ζ)1−n
∑

j

δ(x − xj)

∫
[dx ][d2k⊥]

×ψ∗
a(x ′i , k⊥i ,λi)S⊥ · Lqj

⊥ψa(xi , k⊥i ,λi) ,

with x ′j = (xj − ζ)/(1− ζ) for the struck parton j and x ′i = xi/(1− ζ) for the
spectator parton i .
The E distribution function is related to a S⊥ · Lqj

⊥ matrix element at finite ζ as
well.

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 9
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N

N

γ
*

γ
*

x0
x3

FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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xB

xB

(a) (b)

FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)
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Space-time picture of  DVCSIncreases PQCD leading twist prediction for
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3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315
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Features of Light-Front Formalism

• Hidden Color Of Nuclear Wavefunction

• Color Transparency, Opaqueness

• Intrinsic glue, sea quarks, intrinsic char'

• Simple proof of Factorization theorems for hard processes 
(Lepage, sjb)

• Direct mapping to AdS/CFT (de Teramond, sjb)

• New Effective LF Equations (de Teramond, sjb)

• Light-Front Amplitude Generator
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Goal: First Approximant to QCD
QCD at the Amplitude Level

Holography
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ

Use AdS/QCD  basis functions
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations
Vary, Harinandrath, sjb
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• New initial approximation to QCD based on conformal 
invariance, and confinement

• Underlying principle:  Semi-Classical QCD

• AdS5: Mathematical representation of conformal gauge 
theory

• Challenges: chiral symmetry, heavy quark masses

• Systematically improve using DLCQ

• Successes: Hadron spectra, LFWFs, dynamics

• QCD at the Amplitude Level

•  

AdS/QCD
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Outlook

• Only one scaleΛQCD determines hadronic spectrum (slightly different for mesons and baryons).

• Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.

• String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS

boundary.

• Only dimension 3, 9
2 and 4 states qq, qqq, and gg appear in the duality at the classical level!

• Non-zero orbital angular momentum and higher Fock-states require introduction of quantum

fluctuations.

• Simple description of space and time-like structure of hadronic form factors.

• Dominance of quark-interchange in hard exclusive processes emerges naturally from the

classical duality of the holographic model. Modified by gluonic quantum fluctuations.

• Covariant version of the bag model with confinement and conformal symmetry.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 29141



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

AdS/QCD G. F. de Téramond

AdS/CFT and QCD

Bottom-Up Approach

• Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering

for gauge theories with mass gap dual to string theories in warped space:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic structure functions at small x:

Polchinski and Strassler, hep-th/0209211.

• Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular

momentum, matching short distance behavior with string modes at AdS boundary:

Brodsky and de Téramond, hep-th/0310227.

• Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz,

Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Po-

marol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hep-

th/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.

Caltech High Energy Seminar, Feb 6, 2006 Page 6

E. van Beveren et al.
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AdS/QCD G. F. de Téramond

• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez,

hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower,

Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-

schein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera,

hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219;

Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .

Caltech High Energy Seminar, Feb 6, 2006 Page 7
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I thought I had 
discovered the 

Theory of Everything 
But everything 
canceled out !

A Theory of Everything Takes Place

SCIENCE  VOL  265 15 SEPTEMBER 1995

String theorists have broken an impasse and may be 
on their way to converting this mathematical 

structure -- physicists’ best hope for unifying gravity 
and quantum theory -- into a single coherent theory.
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