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Baryon Spectrum

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• For a three quark state ∆ → ∆ − 3/2. Change compensated in µ by the shift k → L − 1 and
Ψ(z)→ z−

1
2 Ψ(z).

• Three-quark baryon described by wave equation (d = 4, κ = 0)[
z2 ∂2

z − 3z ∂z + z2M2 − L2
± + 4

]
f±(z) = 0

with L+ = L + 1, L− = L + 2, and solution

Ψ(x, z) = Ce−iP ·xz2
[
J1+L(zM) u+(P ) + J2+L(zM) u−(P )

]
.

• 4-d mass spectrumΨ(x, zo)± = 0 =⇒ parallel Regge trajectories for baryons !

M+
α,k = βα,kΛQCD, M−

α,k = βα+1,kΛQCD.

• Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

CAQCD, Minneapolis, May 11-14, 2006 Page 19

Baryon Spectrum

Wave Equation :

Spinor AdS Fields

• Baryon: twist-three, dimension ∆ = 9
2 + L

O 9
2+L = ψD{!1 . . . D!qψD!q+1 . . .D!m}ψ, L =

m∑
i=1

"i.

• Solve full 10-dim Dirac Eq., /DΨ̂ = 0, since baryons are charged under SU(4) ∼ SO(6).
Baryon number conservation?

• Ψ̂ is expanded in terms of eigenfunctions ηκ(y) of the Dirac operator on compact space X

with eigenvalues λκ:

Ψ̂(x, z, y) =
∑

κ

Ψκ(x, z)ηκ(y).

• From the 10-dim Dirac equation, /DΨ̂ = 0:[
z2 ∂2

z − d z ∂z + z2M2 − (λκ + µ)2R2 +
d

2

(
d

2
+ 1

)
+ (λκ + µ)R Γ̂

]
f(z) = 0,

i /DXη(y) = λ η(y),

whereΨ(x, z) = e−iP ·x f(z), PµPµ =M2 and Γ̂u± = ±u± ( For d = 4, Γ̂ = γ5).

CAQCD, Minneapolis, May 11-14, 2006 Page 17



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Predictions 
of  AdS/CFTAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Glueball Spectrum

• AdS wave function with effective mass µ:[
z2 ∂2

z − (d− 1)z ∂z + z2 M2 − (µR)2
]
f(z) = 0,

where Φ(x, z) = e−iP ·x f(z) and PµPµ =M2.

• Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimen-
sion ∆ = 4 + L

O4+L = FD{!1 . . . D!m}F,

where L =
∑m

i=1 "i is the total internal space-time orbital momentum.

• Normalizable scalar AdS mode ( d = 4):
Φα,k(x, z) = Cα,ke

−iP ·xz2Jα (z βα,aΛQCD)

with α = 2 + L and scaling dimension ∆ = 4 + L.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 1352
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Glueball Regge trajectories from gauge/string duality and the

Pomeron

Henrique Boschi-Filho,∗ Nelson R. F. Braga,† and Hector L. Carrion‡

Instituto de F́ısica, Universidade Federal do Rio de Janeiro,

Caixa Postal 68528, RJ 21941-972 – Brazil

Abstract

The spectrum of light baryons and mesons has been reproduced recently by Brodsky and Tera-

mond from a holographic dual to QCD inspired in the AdS/CFT correspondence. They associate

fluctuations about the AdS geometry with four dimensional angular momenta of the dual QCD

states. We use a similar approach to estimate masses of glueball states with different spins and

their excitations. We consider Dirichlet and Neumann boundary conditions and find approximate

linear Regge trajectories for these glueballs. In particular the Neumann case is consistent with the

Pomeron trajectory.

PACS numbers: 11.25.Tq ; 12.38.Aw ; 12.39.Mk .

∗Electronic address: boschi@if.ufrj.br
†Electronic address: braga@if.ufrj.br
‡Electronic address: mlm@if.ufrj.br
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FIG. 1: Approximate linear Regge trajectory for Neumann Boundary con-

dition for the states 2++ , 4++ , 6++ , 8++ , 10++ .
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FIG. 2: Approximate linear Regge trajectory for Dirichlet Boundary condi-

tion for the states 2++ , 4++ , 6++ , 8++ , 10++ .

This result shows that the Neumann boundary condition seems to work better than

Dirichlet for glueballs in this holographic model. Both choices correspond to vanishing flux

for bulk scalar fields at z = zmax and would be physically acceptable conditions. It is

interesting to note that similar Neumann conditions appear in the Randall Sundrum model

[39] as a consequence of the orbifold condition.

Acknowledgments: We would like to thank Guy de Teramond for interesting correspon-

dence. The authors are partially supported by CNPq and CLAF. H. L. C. would like to

thank CBPF for hospitality during part of this work.
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Hadronic Form Factor in Space and Time-Like Regions
SJB and GdT in preparation

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming

and outgoing hadron ΦI and ΦF and the non-normalizable mode J , dual to the external

source (hadron spin σ):

F (Q2)I→F = R3+2σ
∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z)

! R3+2σ
∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

• J(Q, z) has the limiting value 1 at zero momentum transfer, F (0) = 1, and has as boundary
limit the external current, Aµ = εµeiQ·xJ(Q, z). Thus:

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1.

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and z → 0:

J(Q, z) = zQK1(zQ).

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 2154
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• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

55

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

56

-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

Untitled-1 1

-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

Untitled-1 1

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Truncated Space Confinement

Harmonic Oscillator Confinement

One parameter -  set by pion decay constan!

Data Compilation from Baldini, Kloe and Volmer

G. de Teramond, sjb 



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

57

-10 -5 0 5 10

-3

-2

-1

0

1

2

Untitled-2 1

Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb 
Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

One parameter - 
set by pion decay 

constant

Harmonic Oscillator 
Confinement

Current modified 
by metric 



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

58

Effective 
timelike  

proton form 
factor

jFp!m"j #
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!p !p!m"=!n!m"

q
; (11)

where !p !p!m" is the measured e$e% ! p !p cross section
and !n!m" is the cross section obtained from Eq. (3) under
the assumption that jGEj # jGMj # 1. At Mp !p #
2 GeV=c2 !n ’ 10 nb. This definition of the effective

form factor Fp!m" permits comparison of our measure-
ments with measurements from other experiments, in
e$e% as well as p !p collisions. Most available form-factor
data are analyzed using the assumption that jGEj # jGMj.
The calculated effective form factor is shown in Fig. 18
(linear scale), in Fig. 19 (logarithmic scale), and in
Table VI. The form factors here are averaged over bin
width, and the four points of PS170 [10] with lowest
mass are all situated within the first bin of the BABAR
measurement. For the mass region near threshold where
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FIG. 18 (color online). The proton effective form factor mea-
sured in this work and in e$e% and p !p experiments: FENICE
[6], DM2 [5], DM1 [4], BES [8], CLEO [9], PS170 [10], E835
[12], E760 [11]. The upper plot shows the mass interval from the
p !p threshold to 3:01 GeV=c2. The lower plot presents data for
p !p masses from 2.58 to 4:50 GeV=c2.
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FIG. 17 (color online). The e$e% ! p !p cross section near
threshold measured in this work and e$e% experiments:
FENICE [6], DM2 [5], DM1 [4], ADONE73 [7], BES [8].
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FIG. 19 (color online). The proton effective form factor mea-
sured in this work and in e$e% and p !p experiments, shown on a
logarithmic scale: FENICE [6], DM2 [5], DM1 [4], BES [8],
CLEO [9], PS170 [10], E835 [12], E760 [11]. The curve corre-
sponds to the QCD fit described in the text.

TABLE VII. The p !p invariant mass (Mp !p), the number of
selected events (N) after background subtraction, the measured
cross section (!p !p), and the effective form factor for e$e% !
p !p. The quoted errors in N and !p !p are statistical and system-
atic. For the effective form factor, the total combined error is
listed.

Mp !p (GeV=c2) N !p !p (pb) jFpj
1.8760–1.8800 18& 5& 1 656& 161& 40 0:574$0:071%0:081
1.8800–1.8850 34& 6& 1 808& 155& 43 0:495$0:047%0:052
1.8850–1.8900 27& 6& 1 656& 154& 36 0:390$0:045%0:050
1.8900–1.8950 37& 7& 1 889& 174& 48 0:419$0:041%0:045
1.8950–1.9000 38& 8& 1 901& 182& 48 0:398$0:040%0:044
1.9000–1.9050 42& 9& 1 995& 207& 56 0:399$0:041%0:046
1.9050–1.9100 31& 8& 1 726& 186& 41 0:326$0:040%0:046
1.9100–1.9150 49& 9& 1 1138& 210& 60 0:397$0:036%0:040
1.9150–1.9250 69& 10& 1 798& 116& 43 0:321$0:024%0:026
1.9250–1.9375 91& 11& 2 831& 102& 44 0:313$0:020%0:022
1.9375–1.9500 90& 11& 2 817& 104& 43 0:298$0:020%0:021
1.9500–1.9625 80& 12& 3 712& 105& 42 0:270$0:021%0:022
1.9625–1.9750 91& 12& 2 802& 105& 43 0:280$0:019%0:020
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√√√√σ
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The e!e" ! p !p cross section is determined over a range of p !pmasses, from threshold to 4:5 GeV=c2,
by studying the e!e" ! p !p! process. The data set corresponds to an integrated luminosity of 232 fb"1,
collected with the BABAR detector at the PEP-II storage ring, at an e!e" center-of-mass energy of
10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, jGE=GMj, is measured
for p !p masses below 3 GeV=c2; its value is found to be significantly larger than 1 for masses up to
2:2 GeV=c2. We also measure J= ! p !p and  #2S$ ! p !p branching fractions and set an upper limit on
Y#4260$ ! p !p production and decay.

DOI: 10.1103/PhysRevD.73.012005 PACS numbers: 13.66.Bc, 13.25.Gv, 13.40.Gp, 14.20.Dh

I. INTRODUCTION

The e!e" ! p !p cross section and the proton form
factor can be measured over a range of center-of-mass
energies by studying the initial state radiation (ISR) pro-
cess e!e" ! p !p! (Fig. 1). The emission of a photon in the
initial state gives rise to the possibility of measuring the
cross section of the nonradiative process e!e" ! p !p over
a range of effective center-of-mass energies, from the
threshold m % 2mp % 1:88 GeV=c2 to the full e!e"
center-of-mass energy (

!!!
s

p
). The Born cross section for

this process, integrated over the nucleon momenta, is given
by

d2"e!e"!p !p!#m$
dmd cos#&!

% 2m
s
W#s; x;#&!$"p !p#m$; (1)

where m is the p !p invariant mass, x ' 2E&
!=

!!!
s

p %
1"m2=s, and E&

! and #&! are the ISR photon energy and
polar angle, respectively, in the e!e" center-of-mass
frame.1 The function W#s; x;#&!$ [1],

W#s; x;#&!$ % $
%x

"
2" 2x! x2

sin2#&!
" x2

2

#
; (2)

is the probability of ISR photon emission for #&! (
me=

!!!
s

p
, where $ is the fine-structure constant and me is

the electron mass. The cross section for the e!e" ! p !p
process is given by

"p !p#m$ % 4%$2&C
3m2

$
jGM#m$j2 !

2m2
p

m2 jGE#m$j2
%
; (3)

with & %
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" 4m2

p=m2
q

, C % y=#1" e"y$, and y %
%$mp=#&m$ is the Coulomb correction factor [2], which
makes the cross section nonzero at threshold. The cross
section depends on the magnetic form factor (GM) and the
electric form factor (GE); at threshold, jGEj % jGMj. The
modulus of the ratio of electric and magnetic form factors

can be determined from the distribution of #p, the angle
between the proton momentum in the p !p rest frame and the
momentum of the p !p system in the e!e" center-of-mass
frame. This distribution can be expressed as a sum of terms
proportional to jGMj2 and jGEj2. The full differential cross
section for e!e" ! p !p! can be found, for example, in
Ref. [3]. The #p dependencies of the GE and GM terms are
reminiscent of the sin2#p and 1! cos2#p angular distribu-
tions for electric and magnetic form factors in the e!e" !
p !p process.

Measurements of the e!e" ! p !p cross section have
been performed in e!e" experiments [4–9] with (20–
30)% precision. The cross section and proton form factor
were deduced assuming jGEj % jGMj, and the measured
proton angular distributions [5,6] did not contradict this
assumption. More precise measurements of the proton
form factor have been performed in p !p! e!e" experi-
ments [10–12]. In the PS170 experiment [10] at LEAR, the
proton form factor was measured from threshold (p !p
annihilation at rest) up to a mass of 2:05 GeV=c2. The
ratio jGE=GMj was measured using the angular depen-
dence of the cross section and was found to be compatible
with unity. The LEAR data show a strong dependence of
the form factor on the p !p mass near threshold, and very
little dependence in the range 1:95–2:05 GeV=c2.
Analyses from Fermilab experiments E760 [11] and
E835 [12] show a strong decrease in the form factor at
higher masses, in agreement with perturbative QCD, which
predicts a $2

s#m2$=m4 dependence.

e

e

p

p

FIG. 1. The diagram for the e!e" ! p !p! process.

1Throughout this paper, the asterisk denotes quantities in the
e!e" center-of-mass frame. All other variables except #p and
#K are defined in the laboratory frame.
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dσ

dΩγdEγ
(e+e− → ppγ) = P (s, Eγ , Ωγ) · σ(Q2

pp), (3)

where s is the e+e− total c.m. energy squared, Eγ and Ωγ are energy and angles of
the ISR photon in the e+e− c.m. frame, P is the density function for ISR emission,
computed according to QED, and σ(Q2

pp) is the e+e− → pp cross section at the pp
c.m. energy squared Q2

pp. In the Born approximation it is given by [6]:

dσ(e+e− → pp)
d cos θ

=
πα2βC

2Q2
pp

[
(1 + cos2 θ)|Gp

M (Q2
pp)|2 +

4M2
N

Q2
sin2 θ|Gp

E(Q2
pp)|2

]
.(4)

All quantities are evaluated in the pp c.m. frame: θ is the azimuthal proton emission
angle, β is the proton velocity, C is a factor introduced in the final state distorted
wave approximation to take into account the Coulomb interaction [14], Gp

E and
|Gp

M | the analytical time-like continuation of the corresponding space-like FF. As
mentioned already at Q2

pp = 4M2
p it is expected Gp

E/Gp
M = 1. So far this expectation

has been extended to the whole Q2
pp explored range [5,15–20], lacking high statistics

measurements in particular concerning GE . Actually what is quoted is |Gp
M |, also

because at high Q2
pp its contribution is the dominant one. Concerning time-like Q2

pp

the first [15] and the most relevant measurements at low [16] and at high Q2
pp [17],

previous to BaBar, have been performed by means of the inverse process pp → e+e−.
Under the aforementioned hypothesis concerning |Gp

M | they have shown a very steep
increase approaching the threshold and a 1/Q4

pp overall behaviour, quite earlier than
asymptotically expected according to PQCD [21] as in the space-like region.

In the following ISR events have been selected by asking the ISR photon is de-
tected, to get rid of the non ISR multihadronic background. A rather large fraction
of events is lost in this way, however in this case BaBar has the advantage over
a conventional c.m. e+e− collider that the cross section can be measured even at
threshold, with a ∼ 1 MeV/c2 Qpp invariant mass resolution and with almost full
pp angular coverage.

The B-factory PEP II (9 GeV/c2 e− colliding with 3.1 GeV/c2 e+) and the
BaBar detector have been described in detail several times [22]. For the present
purposes charged particle identification is mostly done by means of an internally
reflecting ring imaging Cherenkov (DIRC). The Monte Carlo (MC) event genera-
tor is based on the code described in [23]. Extra ISR soft photons are generated
according to the structure function method [24].

At present a data sample related to 232 fb−1 total integrated luminosity has
been analyzed. Event selection has required an energetic photon and two opposite
sign charged tracks, originated from the interaction point with a polar angle within
the DIRC acceptance. To get rid of the huge ISR π+π−γ, µµγ, K+K−γ background
both charged tracks are required to be well identified as proton candidates by means
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Baryon Form Factors

• Coupling of the extended AdS mode with an external gauge field Aµ(x, z)

ig5

∫
d4x dz

√
g Aµ(x, z) Ψ(x, z)γµΨ(x, z),

where

Ψ(x, z) = e−iP ·x [ψ+(z)u+(P ) + ψ−(z)u−(P )] ,

ψ+(z) = Cz2J1(zM), ψ−(z) = Cz2J2(zM),

and

u(P )± =
1± γ5

2
u(P ).

• In the large P+ limit

ψ+(z) ≡ ψ↑(z), ψ−(z) ≡ ψ↓(z),

the LC± spin projection along ẑ.

• Constant C determined by charge normalization:

C =
√

2ΛQCD

R3/2 [−J0(β1,1)J2(β1,1)]1/2
.

CAQCD, Minneapolis, May 11-14, 2006 Page 26
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AdS/QCD G. F. de Téramond

• Consider the spin non-flip form factors in the infinite wall approximation

F+(Q2) = g+R3
∫

dz

z3
J(Q, z) |ψ+(z)|2,

F−(Q2) = g−R3
∫

dz

z3
J(Q, z) |ψ−(z)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(z) and ψ−(z) correspond
to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) = R3

∫
dz

z3
J(Q, z)|ψ+(z)|2,

Fn
1 (Q2) = −1

3
R3

∫
dz

z3
J(Q, z)

[|ψ+(z)|2 − |ψ−(z)|2] ,

where F p
1 (0) = 1, Fn

1 (0) = 0.

• LargeQ power scaling: F1(Q2)→ [
1/Q2

]2
.

Caltech High Energy Seminar, Feb 6, 2006 Page 31

Nucleon Form Factors 

60

G. de Teramond, sjb 



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

61
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Dirac Proton Form Factor

(Valence Approximation)

Q4F p
1 (Q2) [GeV4]
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Prediction forQ4F p
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Analysis of the data

is from Diehl (2005). Red points are from Sill (1993). Superimposed Green points are from Kirk (1973).
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Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
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Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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ψ(x,k⊥)

HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c
Light-Front Wavefunctions

Invariant under boosts.   Independent of Pµ

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

n
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

measure of the phase space integration is
defined by

[dxi d2!k⊥i] = (16π3) δ

1−
n∑

j=1
xj

 δ(2)

 n∑
$=1

!k⊥$

 n∏
i=1

dxi

xi

d2!k⊥i

16π3 ,

(3)
and a normalized hadronic state 〈ψ|ψ〉 = 1,
can be expressed as a sum of overlap inte-
grals of light-front wavefunctions∑

n

∫
[dxi d2!k⊥i] |ψn/h(xi,!k⊥i, λi)|2 = 1. (4)
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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Light-Front Wave Functions ψn(xi,"k⊥i, λi)

Parton distributions " Light-Front Probabil-
ities
modulo FSI effects

All spin, flavor distributions
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom

Nonzero Anomalous Moment requires
Nonzero orbital angular momentu$
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Hadronization at the Amplitude Level
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g

q̄

q
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)
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Event amplitude 
generator



 
UCD

March 13, 2007  Stan Brodsky,  SLAC
AdS/QCD

73

Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

74

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

F.T. < 0|ψ(y1)ψ(y2)ψ(y3)|p > |τi=0

φπ(x, Q) = P+
π

∫ dz−
4π eiπP+

π z−/2

< 0|ψ(0) γ+γ5

2
√

2nC
ψ(z)|π >(Q) |z+=&z⊥=0

p4
T

d3σ
d3p/E

p8
T

d3σ
d3p/E

d3σ
d3p/E

= AF (xT )
pn
T
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Hadronization at the Amplitude Level
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Hadronization at the Amplitude Level
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C= +    Gluonium Trajectory 

Bjorken, Lu, sjb
Kopeliovich, 
Schmidt, sjb
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Crossing analog of Diffractive DIS
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Hadronization at the Amplitude Level
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is
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[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(σ,∆⊥) = 1

2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥
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graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

81

Hwang, Schmidt, sjb; 
Holstein et al

Okun et al:  B(0) Must vanish because of 
Equivalence Theorem 
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Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor F3(q2) in the light-front
formalism of QCD, to complement earlier studies of the Dirac and Pauli
form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980]

Recall

〈P ′, S′
z |Jµ(0)|P, Sz〉 =

Ū(P ′,λ′)
[

F1(q2)γµ + F2(q2)
i

2M
σµαqα + F3(q2)

−1
2M

σµαγ5qα

]
U(P,λ)

We ignore the anapole form factor and define

κ =
e

2M
[F2(0)] , d =

e
M

[F3(0)]

κ d
[Bigi, Uralstev, NPB 1991]

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 18
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Electromagnetic Form Factors on the Light Front

Interaction picture for J+(0), q+ = 0 frame, and assumed simple vacuum
imply (qR/L ≡ q1 ± iq2):

F2(q2)

2M
=

∑
a

∫
[dx ][d2k⊥]

∑
j

ej
1
2
×

[
− 1

qL ψ↑∗
a (xi , k′⊥i ,λi) ψ↓

a(xi , k⊥i ,λi) +
1

qR ψ↓∗
a (xi , k′⊥i ,λi) ψ↑

a(xi , k⊥i ,λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx ][d2k⊥]

∑
j

ej
i
2
×

[
− 1

qL ψ↑∗
a (xi , k′⊥i ,λi) ψ↓

a(xi , k⊥i ,λi)− 1
qR ψ↓∗

a (xi , k′⊥i ,λi) ψ↑
a(xi , k⊥i ,λi)

]
,

k′⊥j = k⊥j + (1− xj)q⊥ for the struck constituent j and k′⊥i = k⊥i − xiq⊥ for
each spectator (i $= j). q+ = 0 =⇒ only n′ = n.
Both F2(q2) and F3(q2) are helicity-flip form factors.

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 19Gardner, Hwang, sjb, 
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F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

Gardner, Hwang, sjb, 

CP-violating phas&
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Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥∣∣ψ̃(x, b)

∣∣2
= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

85
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Hadronic Form Factor in Space and Time-Like Regions
SJB and GdT in preparation

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming

and outgoing hadron ΦI and ΦF and the non-normalizable mode J , dual to the external

source (hadron spin σ):

F (Q2)I→F = R3+2σ
∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z)

! R3+2σ
∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

• J(Q, z) has the limiting value 1 at zero momentum transfer, F (0) = 1, and has as boundary
limit the external current, Aµ = εµeiQ·xJ(Q, z). Thus:

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1.

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and z → 0:

J(Q, z) = zQK1(zQ).

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 2186
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• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x,"b⊥) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0

(√
x(1− x)|"b⊥|β0,1ΛQCD

)
θ

(
"b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)

the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 34

Identical DYW and AdS5 Formulae: Two parton cas"
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• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

F (q2) =
∫ 1

0
dx

∫
d2!η⊥ei!η⊥·!q⊥ ρ̃(x, !η⊥)

• From DYW expression for the FF in transverse position space:

ρ̃(x, !η⊥) =
∑
n

n−1∏
j=1

∫
dxj d2!b⊥j δ(1− x−

n−1∑
j=1

xj) δ(2)(
n−1∑
j=1

xj
!b⊥j − !η⊥)|ψn(xj ,!b⊥j)|2

• Compare with the the form factor in AdS space for arbitrary Q:

F (Q2) = R3
∫ ∞

0

dz

z3
e3A(z)ΦP ′(z) J(Q, z) ΦP (z)

• Holographic variable z is expressed in terms of the average transverse separation distance of the

spectator constituents !η =
∑n−1

j=1 xj
!b⊥j

z =
√

x

1− x

∣∣ n−1∑
j=1

xj
!b⊥j

∣∣

Caltech High Energy Seminar, Feb 6, 2006 Page 38
88
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥
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from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Map AdS/CFT  to  3+1 LF Theory
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The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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Two-parton holographic LFWF in impact space ψ̃(x, ζ) for ΛQCD = 0.32 GeV: (a) ground state
L = 0, k = 1; (b) first orbital exited state L = 1, k = 1; (c) first radial exited state L = 0, k = 2.
The variable ζ is the holographic variable z = ζ = |b⊥|√x(1− x).
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AdS/CFT Prediction for Meson LFWF

AdS/QCD G. F. de Téramond

• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x, ζ) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0 (ζβ0,1ΛQCD) θ

(
z ≤ Λ−1

QCD

)
the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 36
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where

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
, (66)

and its adjoint

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)
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2.10 Self-Adjoint Operators and Boundary Conditions

The adjoint A† of an operator A is defined by∫
dxφ∗A†χ =

∫
dx(Aφ)∗χ. (60)

For example (
d

dx

)†
= − d

dx
. (61)

Consider the expectation value of the kinetic energy operator T = − d2

dx2 in the

finite interval 0 ≤ x ≤ a∫ a

0

dxφ∗
(
− d2

dx2

)
φ =

∫
dx

∣∣∣∣dφ

dx

∣∣∣∣2 − [
φ∗dφ

dz

]a

0

. (62)

The operator T is self-adjoint or hermitian T = T † if φ or dφ
dx vanishes at x = 0 or

x = a. In an interval 0 ≤ x ≤ ∞ the wave function or its derivative must vanish at

infinity: φ(x)→ 0 or dφ(x)
dx → 0 as x→∞.

3 The Transverse Harmonic Oscillator Holographic

Model: Mesons

We consider a transverse oscillator model of holographic confinement where a ζ2 term

is added to the conformal effective potential. We write the effective Hamiltonian

Hν
LF (ζ) = − d2

dζ2
− 1− 4ν2

4ζ2
+ κ4ζ2 + 2(ν + 1)κ2, (63)

The constant term 2(ν + 1)κ2 is introduced so that the Hamiltonian is expressible

exactly as a product of operators. The spectrum of hadronic mass eigenstates is

determined by the eigenvalue equation

Hν
LF φν =M2

νφν . (64)

If ν2 > 0 the light-front Hamiltonian (63) can be expressed as

Hν
LF = Π†

νΠν , (65)
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where

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
, (66)

and its adjoint

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)
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where
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12

with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)
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In the ζ light-front coordinate representation

φL(ζ) = cL〈ζ|L〉 = 〈ζ|(b†)L|0〉 (93)

= CL

(
− d

dζ
+

1

2ζ
+ κ2z

)L

ζ1/2e−κ2ζ2/2, (94)

Thus

φL(ζ) = CLζ1/2+Le−κ2ζ2/2, (95)

with

CL = κ1+L

√
2

L!
(96)

The solutions φL are eigenfunctions of the light-front equation [1][
− d2

dζ2
− 1− L2

4ζ2
+ κ4ζ2 + 2κ2(L + 1)

]
φ(z) = M2φ(ζ). (97)

with L = 0,±1,±2, · · · . The same procedure applies for a state with arbitrary n.

3.4 Holographic Meson Spectrum

The normalizable solution to (97) including the radial nodes is

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
, (98)

with eigenvalues

M2 = 4κ2(n + ν + 1). (99)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 2κ2, (100)

thus

M2 = 4κ2(n + ν +
1

2
). (101)

The J = L + 1 leading Regge trajectory for the ρ − ω states is shown in Fig. 3.

The linear prediction from (101) corresponds to κ % 0.54 GeV.
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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