

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB

AdS/QCD

Baryon Spectrum

- Baryon: twist-three, dimension

$$
\frac{9}{2}+L
$$

$$
\mathcal{O}_{\frac{9}{2}+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i} .
$$

Wave Equation : $\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-\mathcal{L}_{ \pm}^{2}+4\right] f_{ \pm}(z)=0$
with $\mathcal{L}_{+}=L+1, \mathcal{L}_{-}=L+2$, and solution

$$
\Psi(x, z)=C e^{-i P \cdot x} z^{2}\left[J_{1+L}(z \mathcal{M}) u_{+}(P)+J_{2+L}(z \mathcal{M}) u_{-}(P)\right]
$$

- 4- d mass spectrum $\Psi\left(x, z_{o}\right)^{ \pm}=0 \quad \Longrightarrow \quad$ parallel Regge trajectories for baryons !

$$
\mathcal{M}_{\alpha, k}^{+}=\beta_{\alpha, k} \Lambda_{Q C D}, \quad \mathcal{M}_{\alpha, k}^{-}=\beta_{\alpha+1, k} \Lambda_{Q C D}
$$

- Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

Predictions of AdS/CFT

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The 56 trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Guy de Teramond

SJB

Stan Brodsky, SLAC

Glueball Spectrum

- AdS wave function with effective mass μ :

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] f(z)=0
$$

where $\Phi(x, z)=e^{-i P \cdot x} f(z)$ and $P_{\mu} P^{\mu}=\mathcal{M}^{2}$.

- Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimension $\quad 4+L$

$$
\mathcal{O}_{4+L}=F D_{\left\{\ell_{1}\right.} \ldots D_{\left.\ell_{m}\right\}} F,
$$

where $L=\sum_{i=1}^{m} \ell_{i}$ is the total internal space-time orbital momentum.

- Normalizable scalar AdS mode ($\mathrm{d}=4$):

$$
\Phi_{\alpha, k}(x, z)=C_{\alpha, k} e^{-i P \cdot x} z^{2} J_{\alpha}\left(z \beta_{\alpha, a} \Lambda_{Q C D}\right)
$$

with $\alpha=2+L$ and scaling dimension $\quad 4+L$.

Glueball Regge trajectories from gauge/string duality and the

Pomeron

Henrique Boschi-Filho,* Nelson R. F. Braga, ${ }^{\dagger}$ and Hector L. Carrion ${ }^{\ddagger}$ Instituto de Física, Universidade Federal do Rio de Janeiro,

Neumann Boundary Conditions

Dirichlet Boundary Conditions

Hadronic Form Factor in Space and Time-Like Regions

- The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_{I} and Φ_{F} and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$
\begin{aligned}
F\left(Q^{2}\right)_{I \rightarrow F} & =R^{3+2 \sigma} \int_{0}^{\infty} \frac{d z}{z^{3+2 \sigma}} e^{(3+2 \sigma) A(z)} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \simeq R^{3+2 \sigma} \int_{0}^{z_{o}} \frac{d z}{z^{3+2 \sigma}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

- $J(Q, z)$ has the limiting value 1 at zero momentum transfer, $F(0)=1$, and has as boundary limit the external current, $A^{\mu}=\epsilon^{\mu} e^{i Q \cdot x} J(Q, z)$. Thus:

$$
\lim _{Q \rightarrow 0} J(Q, z)=\lim _{z \rightarrow 0} J(Q, z)=1
$$

- Solution to the AdS Wave equation with boundary conditions at $Q=0$ and $z \rightarrow 0$:

$$
J(Q, z)=z Q K_{1}(z Q)
$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

AdS/QCD

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS.
- At large Q^{2} the important integration region is $z \sim 1 / Q$.

$$
\begin{aligned}
& \mathbf{J}(\mathbf{Q}, \mathbf{z}), \mathbf{\Phi}(\mathbf{z}) \\
& F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \text { Polchinski, Strassler } \\
& \text { de Teramond, sjb }
\end{aligned}
$$

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \quad \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb

One parameter set by pion decay constant

Harmonic Oscillator
Confinement
Current modified by metric

AdS/QCD
57

Stan Brodsky, SLAC

Baryon Form Factors

- Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x, z)$

$$
i g_{5} \int d^{4} x d z \sqrt{g} A_{\mu}(x, z) \bar{\Psi}(x, z) \gamma^{\mu} \Psi(x, z)
$$

where

$$
\begin{aligned}
& \Psi(x, z)=e^{-i P \cdot x}\left[\psi_{+}(z) u_{+}(P)+\psi_{-}(z) u_{-}(P)\right] \\
& \psi_{+}(z)=C z^{2} J_{1}(z M), \quad \psi_{-}(z)=C z^{2} J_{2}(z M)
\end{aligned}
$$

and

$$
\begin{gathered}
u(P)_{ \pm}=\frac{1 \pm \gamma_{5}}{2} u(P) \\
\psi_{+}(z) \equiv \psi^{\uparrow}(z), \quad \psi_{-}(z) \equiv \psi^{\downarrow}(z)
\end{gathered}
$$

the LC \pm spin projection along \hat{z}.

- Constant C determined by charge normalization:

$$
C=\frac{\sqrt{2} \Lambda_{\mathrm{QCD}}}{R^{3 / 2}\left[-J_{0}\left(\beta_{1,1}\right) J_{2}\left(\beta_{1,1}\right)\right]^{1 / 2}}
$$

Nucleon Form Factors

- Consider the spin non-flip form factors in the infinite wall approximation

$$
\begin{aligned}
& F_{+}\left(Q^{2}\right)=g_{+} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
& F_{-}\left(Q^{2}\right)=g_{-} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{-}(z)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(z)$ and $\psi_{-}(z)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left[\left|\psi_{+}(z)\right|^{2}-\left|\psi_{-}(z)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Large Q power scaling: $F_{1}\left(Q^{2}\right) \rightarrow\left[1 / Q^{2}\right]^{2}$.
G. de Teramond, sjb

AdS/QCD

Stan Brodsky, SLAC

Harmonic Oscillator Confinement

Dirac Proton Form Factor

(Valence Approximation) Truncated Space Confinement

Prediction for $Q^{4} F_{1}^{p}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Analysis of the data is from Diehl (2005). Red points are from Sill (1993). Superimposed Green points are from Kirk (1973).

AdS/QCD

Dirac Neutron Form Factor
(Valence Approximation)

$$
Q^{4} F_{1}^{n}\left(Q^{2}\right) \quad\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

AdS/QCD
64
Stan Brodsky, SLAC

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi_{\mathrm{n}}\left(x, k_{\perp}\right)
$$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Invariant under boosts. Independent of P^{μ}

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

$$
H_{L C}^{Q C D}=P_{\mu} P^{\mu}=P^{-} P^{+}-\vec{P}_{\perp}^{2}
$$

The hadron state $\left|\Psi_{h}\right\rangle$ is expanded in a Fockstate complete basis of non-interacting n particle states $|n\rangle$ with an infinite number of components

$$
\begin{gathered}
\left|\Psi_{h}\left(P^{+}, \vec{P}_{\perp}\right)\right\rangle= \\
\sum_{n, \lambda_{i}} \int\left[d x_{i} d^{2} \vec{k}_{\perp i}\right] \psi_{n / h}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
\times\left|n: x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i}, \lambda_{i}\right\rangle \\
\sum_{n} \int\left[d x_{i} d^{2} \vec{k}_{\perp i}\right]\left|\psi_{n / h}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right|^{2}=1
\end{gathered}
$$

AdS/QCD

$$
\text { Light-Front QCD } \quad H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

Heisenberg Equation

	$n \quad$ Sector	1 $q \bar{q}$	$\begin{gathered} 2 \\ \mathrm{gg} \end{gathered}$	$\begin{gathered} 3 \\ q \bar{q} g \end{gathered}$	4 $q \bar{q} q \bar{q}$	$\begin{gathered} 5 \\ g g \mathrm{~g} \end{gathered}$	$\begin{gathered} 6 \\ q \bar{q} g g \end{gathered}$	7 $q \bar{q} q \bar{q} g$	8 $q \bar{q} q \bar{q} q \bar{q}$	9 gg gg	10 $q \bar{q} g g \mathrm{~g}$	$\begin{gathered} 11 \\ q \bar{q} q \bar{q} g g \end{gathered}$	$\begin{gathered} 12 \\ q \bar{q} q \bar{q} q \bar{q} g \end{gathered}$	$\begin{gathered} 13 \\ q \bar{q} q \bar{q} q \bar{q} q \bar{q} \end{gathered}$
	$1 \quad \mathrm{q} \overline{\mathrm{q}}$					-		-	-	-	-	-	-	-
	2 gg				-	Mr		-	-		-	-	-	-
	3 q ¢ g								-	-	T~	-	-	-
	$4 \mathrm{q} 9 \mathrm{q} q \bar{q}$		-			-				-	-		-	-
	5 gg g	-	3		-			-	-			-	-	-
	$6 \quad \mathrm{q} \overline{\mathrm{q}} \mathrm{gg}$	w		3					-	Im	$-k_{2}$		-	-
$\mathrm{k}, \lambda \quad \mathrm{p}, \mathrm{s}$ (b)	$7 \mathrm{q} 9 \mathrm{q} q \overline{\mathrm{q}} \mathrm{g}$	-	-	\rightarrow	K-	.						$-\hat{K}_{2}$		-
	$8 \mathrm{q} 9 \mathrm{q}^{9} 9 \mathrm{q} \bar{q}$	-	-	-		-	-			-	-	Im		
	$9 \quad \mathrm{gg} \mathrm{gg}$	-	~ 3	-	-			-	-	4	m	-	-	-
	$10 \mathrm{q} 9 \mathrm{~g} g \mathrm{~g}$	-	-		-				-			\%	-	-
$\overline{\mathrm{k}}, \sigma^{\prime} \quad \mathrm{k}, \sigma$ (c)	11 qव̄ qव̄ gg	-	-	-		.	$\frac{3}{3}$	$3-$		-				-
	$12 \mathrm{q} 9 \bar{q}^{\text {q }} \mathrm{q} 9 \bar{q} \mathrm{~g}$	-	-	-	-	-	-	$\frac{3}{3}$		-	-			\%
	$13 \mathrm{q} 9 \mathrm{q} \bar{q} q \bar{q} q \bar{q}$	-	-	-	-	-	-	-		-	-	-		

AdS/QCD

UCD
March 13, 2007

Stan Brodsky, SLAC

LIGHT-FRONT SCHRODINGER EQUATION

AdS/QCD
69

Stan Brodsky, SLAC

Deep Inelastic Lepton Proton Scattering

Imaginary Part of Forward Virtual Compton Amplitude $q\left(x, Q^{2}\right)=\sum_{n} \int^{k_{\perp}^{2} \leq Q^{2} \perp} d^{2} k_{\perp}\left|\Psi_{n}\left(x, k_{\perp}\right)\right|^{2}$ $x=x_{q}$

All spin, flavor distributions

Light-Front Wave Functions $\psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ AdS/QCD

Angular Momentum on the Light-Front
$\mathbf{A}^{+}=\mathbf{o}$ gauge: \quad No unphysical degrees of freedom
$J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}$.
Conserved
LF Fock state by Fock State

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n-ı orbital angular momenta

Nonzero Anomalous Moment requires
Nonzero orbital angular momentum

March 13, 2007

AdS/QCD $7 \mathbf{I}$

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Event amplitude generator

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Hadronization at the Amplitude Level

Baryon Production

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Construct helicity amplitude using Light-Front
Perturbation theory; coalesce quarks via LFWFs

Light-Front Wavefunctions

$$
\begin{aligned}
& \text { Fixed } \tau=t+z / c \quad \text { F.T. }<0\left|\psi\left(y_{1}\right) \psi\left(y_{2}\right) \psi\left(y_{3}\right)\right| p>\left.\right|_{\tau_{i}=0} \\
& x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i} \\
& \sum_{i}^{n} x_{i}=1 \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp} \\
& \begin{array}{cc}
\\
& \\
& \\
& P^{+}, \vec{P}_{\perp} \\
\hline & \\
\hline
\end{array} \\
& \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

Invariant under Goosts! Independent of \mathcal{P}^{μ}

AdS/QCD
74

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Higher Fock State Coalescence $\mid u u d s \bar{s}>$
Asymmetric Hadronization! $D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)$ B-Q Ma, sjb

Stan Brodsky, SLAC

Timelike Test of Charm Distribution in Proton

$$
D(z)_{c \rightarrow p X}
$$

Gribov-Lipatov crossing at large z $z D(z)_{c \rightarrow p X}=F_{p \rightarrow c X}(x=1 / z)$

Intrinsic charm model: predict proton at same rapidity as charm quark: high z

$$
z_{i} \propto m_{\perp i}=\sqrt{m_{i}^{2}+k_{\perp}^{2}}
$$

$$
D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)
$$

$$
A_{s}^{p \bar{p}}(z)=\frac{D_{s \rightarrow p}(z)-D_{s \rightarrow \bar{p}}(z)}{D_{s \rightarrow p}(z)+D_{s \rightarrow \bar{p}}(z)}
$$

Consequence of $s_{p}(x) \neq \bar{s}_{p}(x) \quad|u u d s \bar{s}>\simeq| K^{+} \wedge>$

Hadronization at the Amplitude Level

$e^{+} e^{-} \rightarrow H^{+} H^{-}+X$
Large $\Delta y=\left|y_{H}-y_{X}\right|$

Timelike Pomeron Large Rapidity Gap Events

Crossing analog of Diffractive DIS $\quad e H \rightarrow e H+X$

Hadronization at the Amplitude Level
$e^{+} e^{-} \rightarrow H^{+} H^{-}+X$
Large $\Delta y=\left|y_{H}-y_{X}\right|$

Timelike Odderon

Large Rapidity Gap Events \quad C=- Gluonium Trajectory
$H^{+} H^{-}$asymmetry from Odderon-Pomeron
interference

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& \text { Drell, sjb } \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$

A nomalous gravitomagnetic moment $\mathcal{B}(0)$

Okun et al: $\mathcal{B}(0)$ Must vanish because of
Equivalence Theorem

Hwang, Schmidt, sjb;
Holstein et al

$$
B(0)=0
$$

Each Fock State

AdS/QCD 8I

March

Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor $F_{3}\left(q^{2}\right)$ in the light-front formalism of QCD, to complement earlier studies of the Dirac and Pauli form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980] Recall

$$
\begin{aligned}
& \left\langle P^{\prime}, S_{z}^{\prime}\right| J^{\mu}(0)\left|P, S_{z}\right\rangle= \\
& \bar{U}\left(P^{\prime}, \lambda^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\mu}+F_{2}\left(q^{2}\right) \frac{i}{2 M} \sigma^{\mu \alpha} q_{\alpha}+F_{3}\left(q^{2}\right) \frac{-1}{2 M} \sigma^{\mu \alpha} \gamma_{5} q_{\alpha}\right] U(P, \lambda) \\
& \kappa=\frac{e}{2 M}\left[F_{2}(0)\right], \quad d=\frac{e}{M}\left[F_{3}(0)\right]
\end{aligned}
$$

We will find a close connection between κ and d, as long anticipated. [Bigi, Urasteve, NPB 1999]

Electromagnetic Form Factors on the Light Front

Interaction picture for $\mathrm{J}^{+}(0), q^{+}=0$ frame,
imply ($q^{R / L} \equiv q^{1} \pm i q^{2}$):

$$
\begin{gathered}
\frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right],} \\
\frac{F_{3}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{i}{2} \times \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)-\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right],}
\end{gathered}
$$

$\mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}$ for the struck constituent j and $\mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp}$ for each spectator $(i \neq j) . q^{+}=0 \Longrightarrow$ only $n^{\prime}=n$.
Both $F_{2}\left(q^{2}\right)$ and $F_{3}\left(q^{2}\right)$ are helicity-flip form factors.

Gardner, Hwang, sjb,
AdS/QCD
83
Stan Brodsky, SLAC

$$
F_{3}\left(q^{2}\right)=F_{2}\left(q^{2}\right) \times \tan \phi
$$

Fock state by Fock state

Holographic Model for QCD Light-Front Wavefunctions

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right)$:

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Hadronic Form Factor in Space and Time-Like Regions

- The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_{I} and Φ_{F} and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$
\begin{aligned}
F\left(Q^{2}\right)_{I \rightarrow F} & =R^{3+2 \sigma} \int_{0}^{\infty} \frac{d z}{z^{3+2 \sigma}} e^{(3+2 \sigma) A(z)} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \simeq R^{3+2 \sigma} \int_{0}^{z_{o}} \frac{d z}{z^{3+2 \sigma}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

- $J(Q, z)$ has the limiting value 1 at zero momentum transfer, $F(0)=1$, and has as boundary limit the external current, $A^{\mu}=\epsilon^{\mu} e^{i Q \cdot x} J(Q, z)$. Thus:

$$
\lim _{Q \rightarrow 0} J(Q, z)=\lim _{z \rightarrow 0} J(Q, z)=1
$$

- Solution to the AdS Wave equation with boundary conditions at $Q=0$ and $z \rightarrow 0$:

$$
J(Q, z)=z Q K_{1}(z Q)
$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Identical DYW and AdS5 Formulae: Two parton case

- Change the integration variable $\zeta=\left|\vec{b}_{\perp}\right| \sqrt{x(1-x)}$

$$
F\left(Q^{2}\right)=2 \pi \int_{0}^{1} \frac{d x}{x(1-x)} \int_{0}^{\zeta_{\max }=\Lambda_{\mathrm{QCD}}^{-1}} \zeta d \zeta J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)|\widetilde{\psi}(x, \zeta)|^{2}
$$

- Compare with AdS form factor for arbitrary Q. Find:

$$
J(Q, \zeta)=\int_{0}^{1} d x J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for the electromagnetic potential in AdS space, and

$$
\widetilde{\psi}\left(x, \vec{b}_{\perp}\right)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\bar{q} q / \pi}$.

- The variable $\zeta, 0 \leq \zeta \leq \Lambda_{Q C D}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta=z$!
- Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \vec{\eta}_{\perp} e^{i \vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)
$$

- From DYW expression for the FF in transverse position space:

$$
\tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \vec{b}_{\perp j} \delta\left(1-x-\sum_{j=1}^{n-1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}-\vec{\eta}_{\perp}\right)\left|\psi_{n}\left(x_{j}, \vec{b}_{\perp j}\right)\right|^{2}
$$

- Compare with the the form factor in AdS space for arbitrary Q :

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} e^{3 A(z)} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z)
$$

- Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta}=\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}$

$$
z=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}\right|
$$

Mapping between LF $(3+1)$ and $A d S_{5}$

$$
\begin{aligned}
& \operatorname{LF}(3+1) \quad A d S_{5} \\
& \psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z) \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
& \square \\
& z \\
& \psi\left(x, \vec{b}_{\perp}\right)=\underset{\sqrt{x(1-x)} \phi(\zeta)}{ }{ }^{-\hat{b}_{\perp}} \\
& \text { AdS/QCD } \\
& 89 \\
& \text { Stan Brodsky, SLAC }
\end{aligned}
$$

$\mathcal{M a p} \mathcal{A} d S / C \mathcal{F T}$ to $3+1$ LF $\mathcal{T h}$ eory

Effective radial equation:

$$
\begin{aligned}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=} & \mathcal{M}^{2} \phi(\zeta) \\
& \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
\end{aligned}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
\left.J_{L}(\sqrt{x(1-x})\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
\end{gathered}
$$

Stan Brodsky, SLAC

$\mathcal{A} d S / C \mathcal{F I}$ Prediction for Meson $\mathcal{L F} W \mathcal{F}$

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x, \zeta)$ for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$: (a) ground state $L=0, k=1$; (b) first orbital exited state $L=1, k=1$; (c) first radial exited state $L=0, k=2$. The variable ζ is the holographic variable $z=\zeta=\left|b_{\perp}\right| \sqrt{x(1-x)}$.

$$
\widetilde{\psi}(x, \zeta)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\zeta \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(z \leq \Lambda_{\mathrm{QCD}}^{-1}\right)
$$

$\mathcal{A} d S / C \mathcal{F T}$ and Integrability

- Conformal Symmetry plus Confinement: Reduce AdS/QCD Equations to Linear Form
- Generate eigenvalues and eigenfunctions using Ladder Operators
- Apply to Covariant Light-Front Radial Dirac and Schrodinger Equations
- L. Infeld, "On a new treatment of some eigenvalue problems", Phys. Rev. 59, 737 (1941).

AdS/CFT LF Equationfor Mesons with HO Confinement

Karch, et al.

$$
\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \kappa^{2}(\nu+1)+\mathcal{M}^{2}\right) \phi_{\nu}(\zeta)=0
$$ LF Hamiltonian

$H_{L F}^{\nu} \phi_{\nu}=\mathcal{M}_{\nu}^{2} \phi_{\nu} \quad$ Bilinear $\quad H_{L F}^{\nu}=\Pi_{\nu}^{\dagger} \Pi_{\nu}$, where

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta}-\kappa^{2} \zeta\right)
$$

and its adjoint
de Teramond, sjb

$$
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta\right)
$$

with commutation relations

$$
\left[\begin{array}{l}
{\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=} \\
\mathbf{A d S} / \mathbf{Q C D}
\end{array}\right.
$$

AdS/CFT LF Equation for Mesons with HO Confinement

$$
\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \kappa^{2}(\nu+1)+\mathcal{M}^{2}\right) \phi_{\nu}(\zeta)=0
$$

Define

$$
\begin{gathered}
b_{\nu}^{\dagger}=-i \Pi_{\nu}=\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta \\
b_{\nu}=\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta \quad \quad b_{\nu}^{\dagger} b_{\nu}=b_{\nu+1} b_{\nu+1}^{\dagger}
\end{gathered}
$$

Ladder Operator $\quad b_{\nu}^{\dagger}|\nu\rangle=c_{\nu}|\nu+1\rangle$

$$
\left(-\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta\right) \phi_{\nu}(\zeta)=c_{\nu} \phi_{\nu+1}(\zeta)
$$

$$
\begin{gathered}
\phi_{\nu}(z)=C z^{1 / 2+\nu} e^{-\kappa^{2} \zeta^{2} / 2} G_{\nu}(\zeta) \\
2 x G_{\nu}(x)-G^{\prime}(x)=x G_{\nu+1}(x)
\end{gathered}
$$

defines the associated Laguerre function $L_{n}^{\nu+1}\left(x^{2}\right)$

$$
\phi_{\nu}(z)=C_{\nu} z^{1 / 2+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right)
$$

Subtract Vacuum

$$
\mathcal{M}^{2} \rightarrow \mathcal{M}^{2}-2 \kappa^{2}
$$

Energy

$$
\underset{\text { AdS/QCD }}{\mathcal{M}^{2}=4 \kappa^{2}\left(n+\nu+\frac{1}{2}\right) .}
$$

Stan Brodsky, SLAC

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space
Harmonic Oscillator

UCD
March 13, 2007
AdS/QCD
96
Stan Brodsky, SLAC

