

Baryon Spectrum

• Baryon: twist-three, dimension $\frac{9}{2} + L$ $\mathcal{O}_{\frac{9}{2}+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i.$

Wave Equation : $\left[z^2 \partial_z^2 - 3z \partial_z + z^2 \mathcal{M}^2 - \mathcal{L}_{\pm}^2 + 4\right] f_{\pm}(z) = 0$

with $\mathcal{L}_+ = L + 1$, $\mathcal{L}_- = L + 2$, and solution

$$\Psi(x,z) = Ce^{-iP \cdot x} z^2 \Big[J_{1+L}(z\mathcal{M}) \, u_+(P) + J_{2+L}(z\mathcal{M}) \, u_-(P) \Big]$$

• 4-*d* mass spectrum $\Psi(x, z_o)^{\pm} = 0 \implies \text{parallel Regge trajectories for baryons !}$

$$\mathcal{M}_{\alpha,k}^+ = \beta_{\alpha,k} \Lambda_{QCD}, \quad \mathcal{M}_{\alpha,k}^- = \beta_{\alpha+1,k} \Lambda_{QCD}.$$

• Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

	AdS/QCD	
UCD March 13, 2007	50	Stan Brodsky, SLAC

Guy de Teramond SJB

	AdS/QCD	
UCD March 13, 2007	51	Stan Brodsky, SLAC

Glueball Spectrum

• AdS wave function with effective mass μ :

$$\left[z^2 \,\partial_z^2 - (d-1)z \,\partial_z + z^2 \,\mathcal{M}^2 - (\mu R)^2\right]f(z) = 0,$$

where $\Phi(x,z) = e^{-iP \cdot x} f(z)$ and $P_{\mu}P^{\mu} = \mathcal{M}^2$.

• Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimension 4 + L

$$\mathcal{O}_{4+L} = FD_{\{\ell_1} \dots D_{\ell_m\}}F,$$

where $L = \sum_{i=1}^{m} \ell_i$ is the total internal space-time orbital momentum.

• Normalizable scalar AdS mode (d = 4):

$$\Phi_{\alpha,k}(x,z) = C_{\alpha,k}e^{-iP\cdot x}z^2 J_{\alpha}\left(z\,\beta_{\alpha,a}\Lambda_{QCD}\right)$$

with $\alpha = 2 + L$ and scaling dimension 4 + L.

	AdS/QCD	
UCD		
March 13, 2007	52	Stan Brodsky, SLAC

Glueball Regge trajectories from gauge/string duality and the Pomeron

Henrique Boschi-Filho,^{*} Nelson R. F. Braga,[†] and Hector L. Carrion[‡]

Instituto de Física, Universidade Federal do Rio de Janeiro,

Hadronic Form Factor in Space and Time-Like Regions

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_I and Φ_F and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$F(Q^{2})_{I \to F} = R^{3+2\sigma} \int_{0}^{\infty} \frac{dz}{z^{3+2\sigma}} e^{(3+2\sigma)A(z)} \Phi_{F}(z) J(Q,z) \Phi_{I}(z)$$

$$\simeq R^{3+2\sigma} \int_{0}^{z_{o}} \frac{dz}{z^{3+2\sigma}} \Phi_{F}(z) J(Q,z) \Phi_{I}(z),$$

• J(Q, z) has the limiting value 1 at zero momentum transfer, F(0) = 1, and has as boundary limit the external current, $A^{\mu} = \epsilon^{\mu} e^{iQ \cdot x} J(Q, z)$. Thus:

$$\lim_{Q \to 0} J(Q, z) = \lim_{z \to 0} J(Q, z) = 1.$$

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and $z \to 0$:

$$J(Q,z) = zQK_1(zQ).$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

	AdS/QCD	
UCD March 13, 2007	54	Stan Brodsky, SLAC

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS.
- At large Q^2 the important integration region is $z \sim 1/Q$.

• Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, $\Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

General result from
AdS/CFT

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$. The twist is equal to the number of partons, $\tau = n$.

LICD	AdS/QCD	
UCD March 13, 2007	55	Stan Brodsky, SLAC

Spacelike and Timelike Pion form factor from AdS/CFT

Baryon Form Factors

• Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x,z)$

$$ig_5 \int d^4x \, dz \, \sqrt{g} \, A_\mu(x,z) \, \overline{\Psi}(x,z) \gamma^\mu \Psi(x,z),$$

where

$$\Psi(x,z) = e^{-iP \cdot x} \left[\psi_+(z)u_+(P) + \psi_-(z)u_-(P) \right],$$

$$\psi_+(z) = Cz^2 J_1(zM), \qquad \psi_-(z) = Cz^2 J_2(zM),$$

and

$$u(P)_{\pm} = \frac{1 \pm \gamma_5}{2} u(P).$$

$$\psi_+(z) \equiv \psi^{\uparrow}(z), \quad \psi_-(z) \equiv \psi^{\downarrow}(z),$$

the LC \pm spin projection along \hat{z} .

• Constant C determined by charge normalization:

$$C = \frac{\sqrt{2}\Lambda_{\rm QCD}}{\frac{R^{3/2} \left[-J_0(\beta_{1,1})J_2(\beta_{1,1})\right]^{1/2}}{\text{AdS/QCD}}}.$$

Nucleon Form Factors

• Consider the spin non-flip form factors in the infinite wall approximation

$$F_{+}(Q^{2}) = g_{+}R^{3} \int \frac{dz}{z^{3}} J(Q,z) |\psi_{+}(z)|^{2},$$

$$F_{-}(Q^{2}) = g_{-}R^{3} \int \frac{dz}{z^{3}} J(Q,z) |\psi_{-}(z)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(z)$ and $\psi_-(z)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = R^3 \int \frac{dz}{z^3} J(Q, z) |\psi_+(z)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} R^3 \int \frac{dz}{z^3} J(Q, z) \left[|\psi_+(z)|^2 - |\psi_-(z)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

• Large Q power scaling: $F_1(Q^2) \rightarrow \left[1/Q^2\right]^2$.

G. de Teramond, sjb

	AdS/QCD	
UCD March 13, 2007	60	Stan Brodsky, SLAC

Dirac Proton Form Factor

(Valence Approximation)

Truncated Space Confinement

Prediction for $Q^4 F_1^p(Q^2)$ for $\Lambda_{QCD} = 0.21$ GeV in the hard wall approximation. Analysis of the data is from Diehl (2005). Red points are from Sill (1993). Superimposed Green points are from Kirk (1973).

UCD	AdS/QCD	
March 13, 2007	63	Stan Brodsky, SLAC

Dirac Neutron Form Factor

(Valence Approximation)

Truncated Space Confinement

Prediction for $Q^4 F_1^n(Q^2)$ for $\Lambda_{\rm QCD}=0.21~{\rm GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

	AdS/QCD	
UCD March 13, 2007	64	Stan Brodsky, SLAC

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x, k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of P^{μ}

 $\mathbf{H}_{LF}^{QCD}|\psi > = M^2|\psi >$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

UCD	AdS/QCD		
March 13, 2007	65	Stan Brodsky, SLAC	

Invariant under boosts. Independent of P^{μ}

AdS/QCD

UCD March 13, 2007

$$H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$$

$$H_{LC}^{QCD} = P_{\mu}P^{\mu} = P^{-}P^{+} - \vec{P}_{\perp}^{2}$$

The hadron state $|\Psi_h\rangle$ is expanded in a Fockstate complete basis of non-interacting *n*-particle states $|n\rangle$ with an infinite number of components

$$\left|\Psi_h(P^+,\vec{P}_\perp)\right\rangle =$$

$$\sum_{n,\lambda_i} \int [dx_i \ d^2 \vec{k}_{\perp i}] \psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)$$

$$\times |n: x_i P^+, x_i \vec{P}_{\perp} + \vec{k}_{\perp i}, \lambda_i \rangle$$

$$\sum_n \int [dx_i \ d^2 \vec{k}_{\perp i}] \ |\psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)|^2 = 1$$
AdS/QCD

UCD March 13, 2007

Light-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n	Sector	1 qq	2 99	3 qq g	4 qq qq	5 99 9	6 qq gg	7 qq qq g	8 qq qq qq	99 99 9	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 ववेववेववेववे
ζ _{κ,λ}	1	qq			-	₩¥	•		•	•	•	•	•	•	•
	2	gg		X	~	•	~~~<`_		•	•		•	•	•	•
p,s p,s	3	qq g	\succ	>		\sim		~~<	L.V.	•	•	Ĩ.	•	•	•
(a)	4	qq qq	¥+↓	•	>		•		-	XH XH	•	•		•	•
$\overline{p},s' \qquad k,\lambda$	5	gg g	•	>		•	X	~	•	•	~~~<		•	•	•
\vec{k}, λ' p,s	6	qq gg	¥;∮		<u>}</u> ~~		>		~	•		-<	H.V.	•	•
κ,λ΄ p,s (b)	7	qq qq g	•	•	,	\succ	•	>	+	~~<	•		-<	The second secon	•
	8	qq qq qq	•	•	•	V-	•	•	>		•	•		-<	X-H
p,s p,s	9	gg gg	•	<u>ک</u>	•	•	<u>ک</u>		•	•	X	~	•	•	•
MXM	10	qq gg g	•	•		•		>		•	>		~	•	•
k,σ' k,σ	11	qq qq gg	•	•	•		•	K	>-		•	>		~	•
(c)	12	qq qq qq g	•	•	•	•	•	•	K	>-	•	•	>		~~<
L	13 (ସବି ସବି ସବି ସବି	•	•	•	•	•	•	•	۲+۲ ۲	•	•	•	>	

AdS/QCD

UCD March 13, 2007

LIGHT-FRONT SCHRODINGER EQUATION

$$\begin{pmatrix} M_{\pi}^{2} - \sum_{i} \frac{\vec{k}_{\perp i}^{2} + m_{i}^{2}}{x_{i}} \end{pmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle q\bar{q} | V | q\bar{q} \rangle & \langle q\bar{q} | V | q\bar{q}g \rangle & \cdots \\ \langle q\bar{q}g | V | q\bar{q}g \rangle & \langle q\bar{q}g | V | q\bar{q}g \rangle & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q}/\pi \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q}/\pi \\ \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}/\pi} \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q}/\pi \\ \psi_{q}/\pi \\ \psi_{q}/\pi \\ \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q}/\pi \\ \psi_{q}/\pi \\$$

Deep Inelastic Lepton Proton Scattering

Angular Momentum on the Light-Front

A⁺=0 gauge:

No unphysical degrees of freedom

Conserved LF Fock state by Fock State

 $l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right) \quad \text{n-1 orbital angular momenta}$

Nonzero Anomalous Moment requires Nonzero orbital angular momentum.

AdS/QCD

UCD March 13, 2007

71

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs AdS/QCD UCD

March 13, 2007

March 13, 2007

UCD March 13, 2007	AdS/QCD 74	Stan Brodsky, SLAC

Timelike Test of Charm Distribution in Proton

Crossing analog of Diffractive DIS $eH \rightarrow eH + X$

UCD March 13, 2007	78	Stan Brodsky, SLAC

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [dx][d^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times \text{Drell, sjb}$$

$$\begin{bmatrix} -\frac{1}{q^{L}} \psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}} \psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} - \mathbf{k}_{\perp j} + \mathbf{q}_{\perp}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} - \mathbf{k}_{\perp j} + \mathbf{q}_{\perp}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{q}'_{\perp}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{q}'_{\perp j}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{q}'_{\perp j}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{q}'_{\perp j}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{k}'_{\perp j}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j}$$

Anomalous gravitomagnetic moment B(0)

Okun et al: B(0) Must vanish because of Equivalence Theorem

Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor $F_3(q^2)$ in the light-front formalism of QCD, to complement earlier studies of the Dirac and Pauli form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980] Recall

 $\langle P', S'_{z} | J^{\mu}(0) | P, S_{z} \rangle =$ $\overline{U}(P', \lambda') \left[F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2}) \frac{i}{2M} \sigma^{\mu\alpha} q_{\alpha} + F_{3}(q^{2}) \frac{-1}{2M} \sigma^{\mu\alpha} \gamma_{5} q_{\alpha} \right] U(P, \lambda)$

$$\kappa = rac{e}{2M} \left[F_2(0)
ight] \;, \qquad d = rac{e}{M} \left[F_3(0)
ight]$$

We will find a close connection between κ and d, as long anticipated. [Bigi, Uralstev, NPB 1991]

	AdS/QCD	
UCD March 13, 2007	82	Stan Brodsky, SLAC

Electromagnetic Form Factors on the Light Front

Interaction picture for $J^+(0)$, $q^+ = 0$ frame, imply $(q^{R/L} \equiv q^1 \pm iq^2)$:

$$\frac{F_2(q^2)}{2M} = \sum_a \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_j e_j \frac{1}{2} \times \left[-\frac{1}{q^L} \psi_a^{\uparrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\downarrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\downarrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\uparrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) \right],$$

$$\frac{F_3(q^2)}{2M} = \sum_a \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_j \mathbf{e}_j \frac{i}{2} \times \left[-\frac{1}{q^L} \psi_a^{\uparrow *}(\mathbf{x}_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\downarrow}(\mathbf{x}_i, \mathbf{k}_{\perp i}, \lambda_i) - \frac{1}{q^R} \psi_a^{\downarrow *}(\mathbf{x}_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\uparrow}(\mathbf{x}_i, \mathbf{k}_{\perp i}, \lambda_i) \right],$$

 $\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j)\mathbf{q}_{\perp}$ for the struck constituent *j* and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i\mathbf{q}_{\perp}$ for each spectator ($i \neq j$). $q^+ = 0 \implies$ only n' = n. Both $F_2(q^2)$ and $F_3(q^2)$ are helicity-flip form factors.

Gardner, Hwang, sjb,

	AdS/QCD	
UCD March 13, 2007	83	Stan Brodsky, SLAC

CP-violating phase $F_3(q^2) = F_2(q^2) \times \tan \phi$

Fock state by Fock state

Gardner, Hwang, sjb,

UCD March 13, 2007

Holographic Model for QCD Light-Front Wavefunctions

• Drell-Yan-West form factor

$$F(q^2) = \sum_{q} e_q \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \psi_{P'}^*(x, \vec{k}_\perp - x\vec{q}_\perp) \psi_P(x, \vec{k}_\perp).$$

• Fourrier transform to impact parameter space \vec{b}_{\perp}

$$\psi(x,\vec{k}_{\perp}) = \sqrt{4\pi} \int d^2 \vec{b}_{\perp} \ e^{i\vec{b}_{\perp}\cdot\vec{k}_{\perp}} \widetilde{\psi}(x,\vec{b}_{\perp})$$

• Find ($b=|ec{b}_{\perp}|$) :

$$F(q^2) = \int_0^1 dx \int d^2 \vec{b}_\perp e^{ix\vec{b}_\perp \cdot \vec{q}_\perp} |\tilde{\psi}(x,b)|^2 \qquad \text{Soper}$$
$$= 2\pi \int_0^1 dx \int_0^\infty b \, db \, J_0 \left(bqx\right) \, \left|\tilde{\psi}(x,b)\right|^2,$$

	AdS/QCD	
UCD March 13, 2007	85	Stan Brodsky, SLAC

Hadronic Form Factor in Space and Time-Like Regions

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_I and Φ_F and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$F(Q^{2})_{I \to F} = R^{3+2\sigma} \int_{0}^{\infty} \frac{dz}{z^{3+2\sigma}} e^{(3+2\sigma)A(z)} \Phi_{F}(z) J(Q,z) \Phi_{I}(z)$$

$$\simeq R^{3+2\sigma} \int_{0}^{z_{o}} \frac{dz}{z^{3+2\sigma}} \Phi_{F}(z) J(Q,z) \Phi_{I}(z),$$

• J(Q, z) has the limiting value 1 at zero momentum transfer, F(0) = 1, and has as boundary limit the external current, $A^{\mu} = \epsilon^{\mu} e^{iQ \cdot x} J(Q, z)$. Thus:

$$\lim_{Q \to 0} J(Q, z) = \lim_{z \to 0} J(Q, z) = 1.$$

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and $z \to 0$:

$$J(Q,z) = zQK_1(zQ).$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

UCD March 13, 2007	AdS/QCD 86	Stan Brodsky, SLAC
March 13, 2007		

Identical DYW and AdS5 Formulae: Two parton case

- Change the integration variable $\zeta = |\vec{b}_{\perp}| \sqrt{x(1-x)}$

$$F(Q^2) = 2\pi \int_0^1 \frac{dx}{x(1-x)} \int_0^{\zeta_{max} = \Lambda_{\text{QCD}}^{-1}} \zeta \, d\zeta \, J_0\left(\frac{\zeta Qx}{\sqrt{x(1-x)}}\right) \left|\widetilde{\psi}(x,\zeta)\right|^2,$$

• Compare with AdS form factor for arbitrary Q. Find:

$$J(Q,\zeta) = \int_0^1 dx J_0\left(\frac{\zeta Qx}{\sqrt{x(1-x)}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for the electromagnetic potential in AdS space, and

$$\widetilde{\psi}(x,\vec{b}_{\perp}) = \frac{\Lambda_{\rm QCD}}{\sqrt{\pi}J_1(\beta_{0,1})} \sqrt{x(1-x)} J_0\left(\sqrt{x(1-x)}|\vec{b}_{\perp}|\beta_{0,1}\Lambda_{QCD}\right) \theta\left(\vec{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right)$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\overline{q}q/\pi}$.

• The variable ζ , $0 \leq \zeta \leq \Lambda_{QCD}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta = z$!

	AdS/QCD	
UCD		
March 13, 2007	87	Stan Brodsky, SLAC

• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$F(q^2) = \int_0^1 dx \int d^2 \vec{\eta}_\perp e^{i\vec{\eta}_\perp \cdot \vec{q}_\perp} \tilde{\rho}(x, \vec{\eta}_\perp)$$

• From DYW expression for the FF in transverse position space:

$$\tilde{\rho}(x,\vec{\eta}_{\perp}) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j \, d^2 \vec{b}_{\perp j} \, \delta(1-x-\sum_{j=1}^{n-1} x_j) \, \delta^{(2)} (\sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} - \vec{\eta}_{\perp}) |\psi_n(x_j,\vec{b}_{\perp j})|^2$$

• Compare with the the form factor in AdS space for arbitrary Q:

$$F(Q^2) = R^3 \int_0^\infty \frac{dz}{z^3} e^{3A(z)} \Phi_{P'}(z) J(Q, z) \Phi_P(z)$$

• Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta} = \sum_{j=1}^{n-1} x_j \vec{b}_{\perp j}$

$$z = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} \right|$$

AdS/QCD

88

UCD March 13, 2007

G. de Teramond and sjb

Stan Brodsky, SLAC

Map AdS/CFT to 3+1 LF TheoryEffective radial equation:
$$\left[-\frac{d^2}{d\zeta^2} + V(\zeta)\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta)$$
 $\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2$.Effective conformal
potential: $V(\zeta) = -\frac{1-4L^2}{4\zeta^2}$.

General solution:

$$\begin{split} \widetilde{\psi}_{L,k}(x,\vec{b}_{\perp}) &= B_{L,k}\sqrt{x(1-x)} \\ J_L\left(\sqrt{x(1-x)}|\vec{b}_{\perp}|\beta_{L,k}\Lambda_{\rm QCD}\right)\theta\left(\vec{b}_{\perp}^{\ 2} \leq \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right), \\ \\ \mathbf{AdS}/\mathbf{QCD} \end{split}$$

UCD March 13, 2007

AdS/CFT Prediction for Meson LFWF

Two-parton holographic LFWF in impact space $\tilde{\psi}(x,\zeta)$ for $\Lambda_{QCD} = 0.32$ GeV: (a) ground state $L = 0, \ k = 1$; (b) first orbital exited state $L = 1, \ k = 1$; (c) first radial exited state $L = 0, \ k = 2$. The variable ζ is the holographic variable $z = \zeta = |b_{\perp}| \sqrt{x(1-x)}$.

$$\left| \widetilde{\psi}(x,\zeta) = \frac{\Lambda_{\text{QCD}}}{\sqrt{\pi}J_1(\beta_{0,1})} \sqrt{x(1-x)} J_0\left(\zeta\beta_{0,1}\Lambda_{QCD}\right) \theta\left(z \le \Lambda_{\text{QCD}}^{-1}\right) \right|$$

UCD March 13, 2007 AdS/QCD

AdS/CFT and Integrability

- Conformal Symmetry plus Confinement: Reduce AdS/QCD Equations to Linear Form
- Generate eigenvalues and eigenfunctions using Ladder Operators
- Apply to Covariant Light-Front Radial Dirac and Schrodinger Equations
- L. Infeld, "On a new treatment of some eigenvalue problems", Phys. Rev. 59, 737 (1941).

UCD March 13, 2007	AdS/QCD 92	Stan Brodelar SI AC
	92	Stan Brodsky, SLAC

AdS/CFT LF Equation for Mesons with HO Confinement. Karch, et al.

$$\begin{pmatrix} \frac{d^2}{d\zeta^2} + \frac{1 - 4\nu^2}{4\zeta^2} - \kappa^4 \zeta^2 - 2\kappa^2(\nu + 1) + \mathcal{M}^2 \end{pmatrix} \phi_{\nu}(\zeta) = 0 \\ \text{LF Hamiltonian} \\ H_{LF}^{\nu} \phi_{\nu} = \mathcal{M}_{\nu}^2 \phi_{\nu} \quad \text{Bilinear} \quad H_{LF}^{\nu} = \Pi_{\nu}^{\dagger} \Pi_{\nu},$$

where

$$\Pi_{\nu}(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta} - \kappa^2\zeta\right),\,$$

and its adjoint

$$\Pi^{\dagger}_{\nu}(\zeta) = -i\left(\frac{d}{d\zeta} + \frac{\nu + \frac{1}{2}}{\zeta} + \kappa^2\zeta\right),\,$$

with commutation relations

$$\begin{bmatrix} \Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta) \end{bmatrix} = \frac{2\nu + 1}{\zeta^2} - 2\kappa^2.$$
AdS/QCD

93

UCD March 13, 2007

Stan Brodsky, SLAC

de Teramond, sjb

AdS/CFT LF Equation for Mesons with HO Confinement.

$$\left(\frac{d^2}{d\zeta^2} + \frac{1-4\nu^2}{4\zeta^2} - \kappa^4\zeta^2 - 2\kappa^2(\nu+1) + \mathcal{M}^2\right)\phi_\nu(\zeta) = 0$$

Define
$$b_{\nu}^{\dagger} = -i\Pi_{\nu} = \frac{d}{d\zeta} + \frac{\nu + \frac{1}{2}}{\zeta} + \kappa^2 \zeta$$

$$b_{\nu} = \frac{d}{d\zeta} + \frac{\nu + \frac{1}{2}}{\zeta} + \kappa^2 \zeta \qquad \qquad b_{\nu}^{\dagger} b_{\nu} = b_{\nu+1} b_{\nu+1}^{\dagger}$$

Ladder Operator $b_{\nu}^{\dagger}|\nu\rangle = c_{\nu}|\nu+1\rangle$

$$\left(-\frac{d}{d\zeta} + \frac{\nu + \frac{1}{2}}{\zeta} + \kappa^2 \zeta\right) \phi_{\nu}(\zeta) = c_{\nu} \phi_{\nu+1}(\zeta)$$

UCD March 13, 2007

 $\phi_{\nu}(z) = C z^{1/2+\nu} e^{-\kappa^2 \zeta^2/2} G_{\nu}(\zeta),$

 $2xG_{\nu}(x) - G'(x) = xG_{\nu+1}(x)$

defines the associated Laguerre function $L_n^{\nu+1}(x^2)$

$$\phi_{\nu}(z) = C_{\nu} z^{1/2+\nu} e^{-\kappa^2 \zeta^2/2} L_n^{\nu}(\kappa^2 \zeta^2).$$

 $\mathcal{M}^2 \to \mathcal{M}^2 - 2\kappa^2,$

Energy

Subtract Vacuum

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+\frac{1}{2}).$$
AdS/QCD

95

UCD March 13, 2007

AdS/CFT Predictions for Meson LFWF $\psi(x,b_{\perp})$

UCD March 13, 2007 96