The Impact of AdS/CFT on QCD Phenomenology

Changes in physical length scale mapped to evolution in the 5th dimension z
U.C. Davis

March 13, 2007

Stan Brodsky
SLAC

QCD Lagrangian

QCD: $N_{C}=3 \quad$ Quarks: 3_{C} Gluons: 8_{C}.

$$
\alpha_{s}=\frac{g^{2}}{4 \pi} \text { is dimensionless }
$$

Classical Lagrangian is scale invariant for massless quarks

$$
\text { If } \beta=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}}=0 \quad \text { then QCD is invariant under conformal trans- }
$$ formations:

Parisi

QCD Lagrangian and Conformal Symmetry

Conformal Symmetry - Property of classical renormalizable Lagrangian
(massless quarks)
Poincare transformations plus

$$
\text { dilatation }: x^{\mu} \rightarrow \lambda x^{\mu}
$$

plus
conformal transformations : inversion $\left[x^{\mu} \rightarrow-\frac{x^{\mu}}{x^{2}}\right] \times$ translation \times inversion
AdS/QCD

Strongly Coupled Conformal QCD and Holography

- Conformal Theories are invariant under the Poincaré and conformal transformations with $M^{\mu \nu}, P^{\mu}, D, K^{\mu}$, the generators of $S O(4,2)$.
- QCD appears as a nearly-conformal theory in the energy regimes accessible to experiment. Invariance of conformal QCD is broken by quark masses and quantum loops.
- Growing theoretical and empirical evidence that $\alpha_{s}\left(Q^{2}\right)$ has an IR fixed point: von Smekal, Alkofer and Hauck, arXiv:hep-ph/9705242; Alkofer, Fischer and Llanes-Estrada, hepth/0412330; Deur, Burkert, Chen and Korsch, hep-ph/0509113 ...
- Phenomenological success of dimensional scaling laws for exclusive processes

$$
d \sigma / d t \sim 1 / s^{n-2}, \quad n=n_{A}+n_{B}+n_{C}+n_{D}
$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Brodsky and Farrar, Phys. Rev. Lett. 31, 1153 (1973); Matveev et al., Lett. Nuovo Cim. 7, 719 (1973).

Maldacena: AdS/CFT: mapping of

$$
A d S_{5} \times S_{5} \text { to conformal } N=4 S U S Y
$$

- QCD not conformal; however, it has some manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- IR fixed point? $\alpha_{s}\left(Q^{2}\right) \simeq$ const at small Q^{2}
- "Semi-classical" approximation to QCD
- Use mapping of conformal group $\mathrm{SO}(4,2)$ to $\operatorname{AdS} 5$
- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances, counting, rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide models of hadron structure: confinement at large distances, near conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semi-classical" approximation to QCD: Remarkable agreement with light hadron spectroscopy
- Mapping to 3+ I Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $\mathrm{H}^{\mathrm{LF}} \mathrm{QCD}$; variational methods

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The 56 trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Guy de Teramond SJB

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

$\underline{S U(6)}$	S	L	Baryon State
56	$\frac{1}{2}$	\bigcirc	$N^{\frac{1}{2}+(939)}$
	$\frac{3}{2}$	-	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N^{\frac{1}{2}}{ }^{-}(1535) N^{\frac{3}{2}}{ }^{-}(1520)$
	${ }_{2}^{2}$	1	$N \frac{1}{2}^{-}(1650) N^{\frac{3}{2}}{ }^{-}(1700) N{ }^{5}{ }^{-}{ }^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N{ }^{\frac{3}{2}}+(1720) N^{\frac{5}{2}}{ }^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}{ }^{+}(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \frac{7}{2}^{+}(1950)$
70	${ }^{\frac{1}{2}}$	3	$N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}$
	$\frac{3}{2}$	3	$N \frac{3}{2}^{-} N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}(2190) N N^{-}{ }^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N \frac{7^{+}}{}{ }^{+} N^{\frac{9}{2}+(2220)}$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^{+} \quad \Delta \Delta^{\frac{7}{2}}{ }^{+} \quad \Delta \frac{9}{2}^{+} \quad \Delta \frac{11}{2}+(2420)$
70	${ }^{\frac{1}{2}}$	5	$N^{\frac{9}{2}}{ }^{-} N^{\frac{11}{2}}{ }^{-}$
	$\frac{3}{2}$	5	$N \mathrm{~T}^{-}{ }^{-} \quad N \mathrm{~g}^{-}{ }^{-} \quad N \frac{11}{2}^{-}(2600) N \frac{13}{2}^{-}$

Dírac'sAmazing Idea:
 The "Front Form"

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions

$$
P^{+}=P^{0}+P^{z}
$$

Fixed $\tau=t+z / c$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

Light-Front Wavefunctions

 Dirac's Front Form: Fixed $\tau=t+z / c$$$
\begin{aligned}
& \Psi_{\mathrm{n}}\left(x, k_{\perp}\right)_{x_{x}=\frac{k^{+}}{p+}} \\
& \mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
\end{aligned}
$$

Intrinsic gluons, sea quarks, asymmetries

Mapping between $L F(3+1)$ and $A d S_{5}$

$$
\begin{aligned}
& \operatorname{LF}(3+1) \quad A d S_{5} \\
& \psi\left(x, \vec{म}_{\perp}\right) \longleftrightarrow \phi(z) \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
& \square \\
& z \\
& \psi\left(x, \vec{b}_{\perp}\right)=\underset{\sqrt{x(1-x)} \phi(\zeta)}{ }(1-x) \\
& \text { AdS/QCD } \\
& \text { Stan Brodsky, SLAC }
\end{aligned}
$$

> Holography: \mathcal{M} ap $\mathcal{A} d S / C \mathcal{F} \mathcal{T}$ to $3+1 \mathcal{L} \mathcal{T}$ heory

Relativistic radial equation:

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$.

$$
(1-x)
$$

G. de Teramond, sjb

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space
Harmonic Oscillator

Stan Brodsky, SLAC

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right)$:

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Space-like pion form factor in holographic model for $\Lambda_{Q C D}=0.2 \mathrm{GeV}$.

Data Compilation from Baldini, Kloe and Volmer

Heuristic Argument for an IR Fixed Point

$$
\alpha_{s}\left(Q^{2}\right) \simeq \mathrm{const} \text { at small } Q^{2}
$$

- Semi-Classical approximation to massless QCD
- No particle creation or absorption $\quad \beta=0$
- Conformal symmetry broken by confinement
- Effective gluon mass: vacuum polarization vanishes at small momentum transfer
- $\quad \Pi\left(Q^{2}\right) \propto \frac{Q^{2}}{m_{g}^{2}} \quad Q^{2} \ll 4 m_{g}^{2} \quad \alpha_{s}\left(Q^{2}\right) \simeq$ const

Analog of Serber-Uehling vacuum polarization in QED:

$$
\Pi\left(Q^{2}\right)=\frac{\alpha}{15 \pi} \frac{Q^{2}}{m_{e}^{2}} \quad Q^{2} \ll 4 m_{e}^{2}
$$

Decoupling of long wavelength gluonic interactions AdS/QCD

Infrared-Finite QCD Coupling?

Shirkov Gribov
Dokshitser Siminov Maxwell

Lattice simulation (MILC)

Furui, Nakajima
DSE: Alkofer, Fischer, von Smekal et al.

AdS/QCD
Stan Brodsky, SLAC

$$
\begin{aligned}
& \text { Define QCD Coupling from } \\
& \text { observable } \\
& R_{e^{+} e^{-} \rightarrow X}(s) \equiv 3 \Sigma_{q} e_{q}^{2}\left[1+\frac{\alpha_{R}(s)}{\pi}\right]^{\text {Kataev }} \\
& \Gamma(\tau \rightarrow X e \nu)\left(m_{\tau}^{2}\right) \equiv \Gamma_{0}(\tau \rightarrow u \bar{d} e \nu) \times\left[1+\frac{\alpha_{\tau}\left(m_{\tau}^{2}\right)}{\pi}\right] \\
& \text { Commensurate scale relations: Relate observable to } \\
& \text { observable at commensurate scales } \begin{array}{c}
\text { A. Kataev, Lu, } \\
\text { Rathsman, sib }
\end{array}
\end{aligned}
$$

Effective Charges: analytic at quark mass thresholds, finite at small momenta

Constituent Counting Rules

Farrar \& sjb; Matveev et al
Conformat symmetry and PQCD predicts leading-twist power behavior

Characteristic scale of QCD: 300 MeV
New J-PARC, GSI, J-Lab, Belle, Babar tests

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const

Determination of the Charged Pion Form Factor at Q2=1.60 and $2.45(\mathrm{GeV} / \mathrm{c}) 2$. By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp. e-Print Archive: nucl-ex/0607005
$Q^{4} F_{1}\left(Q^{2}\right) \rightarrow$ const

G. Huber

Form Factors $\ell p \rightarrow \ell^{\prime} p^{\prime}\left\langle p^{\prime} \lambda^{\prime}\right| J^{+}(0)|p \lambda\rangle$

Lepage, Sjb
Efremov Radyushkin

QCD Factorization Scaling Laws from PQCD or AdS/CFT

AdS/QCD
Stan Brodsky, SLAC

Leading-Twist PQCD Factorization

$$
M=\int \prod d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)
$$

Exclusive

$$
\begin{aligned}
& \text { If } \alpha_{s}\left(\widetilde{Q}^{2}\right) \simeq \mathrm{constant} \\
& Q^{4} F_{1}\left(Q^{2}\right) \simeq \mathrm{constant}
\end{aligned}
$$

Test of PQCD Scaling

Constituent counting rules

Farrar, sjb; Muradyan, Matveev, Taveklidze

$$
\mathrm{s}^{\top} d \sigma / d t\left(\gamma p \rightarrow \pi^{+} n\right) \sim \text { const }
$$ fixed $\theta_{C M}$ scaling

PQCD and AdS/CFT:

$$
\begin{aligned}
& s_{n_{0 u}-2 d \sigma}^{d t}(A+B \rightarrow C+D)= \\
& \mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)
\end{aligned}
$$

$$
s^{7 \frac{d \sigma}{d t}}\left(\gamma p \rightarrow \pi^{+} n\right)=F\left(\theta_{C M}\right)
$$

$$
n_{\text {tot }}=1+3+2+3=9
$$

Conformal invariance at high momentum transfer!

Stan Brodsky, SLAC

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

AdS/QCD

Deuteron Photodisintegration

Fig. 5. Cross section for (a) $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$, (b) $\gamma \gamma \rightarrow K^{+} K^{-}$in the c.m. angular region $\left|\cos \theta^{*}\right|<0.6$ together with a W^{-6} dependence line derived from the fit of $s\left|R_{M}\right|$. (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV . The errors indicated by short ticks are statistical only.

AdS/QCD

$$
\frac{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \pi^{+} \pi^{-}\right)}{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \mu^{+} \mu^{-}\right)} \sim \frac{4\left|F_{\pi}(s)\right|^{2}}{1-\cos ^{4} \theta_{\mathrm{c.m}}}
$$

(a): $\phi_{\pi}(x) \propto x(1-x)$
(b): $\phi_{\pi}(x) \propto[x(1-x)]^{1 / 4}$
(c): $\phi_{\pi}(x) \propto \delta(x-1 / 2)$
AdS/QCD

$$
\frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) \approx \frac{16 \pi \alpha^{2}}{s} \frac{\left|F_{M}(s)\right|^{2}}{\sin ^{4} \theta^{*}},
$$

4. Angular dependence of the cross section, $\sigma_{0}^{-1} d \sigma / d\left|\cos \theta^{*}\right|$, for the $\pi^{+} \pi^{-}$(closed circles) and $K^{+} K^{-}$(open circles) processes. The curves are $1.227 \times \sin ^{-4} \theta^{*}$. The errors are statistical only.

Measurement of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$and
$\gamma \gamma \rightarrow K^{+} K^{-}$processes at energies of $2.4-4.1 \mathrm{GeV}$

UCD March 13, 2007

AdS/QCD

Belle Collaboration
Stan Brodsky, SLAC

QCD Prediction for

Deuteron Form Factor

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]^{5} \sum_{m, n} d_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}{ }^{d}-\gamma_{m}{ }^{d}}\left[1+\boldsymbol{O}\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}^{2}\left(Q^{2} / 4\right)} .
$$

Same large momentum transfer behavior as pion form factor

FIG. 2. (a) Comparison of the asymptotic QCD pre$f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-(2 / 5) C_{F} / B}$ diction $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5)} C_{F} / \beta$ with final data of Ref. 10 for the reduced deuteron form factor, where $F_{N}\left(Q^{2}\right)=\left[1+Q^{2} /\left(0.71 \mathrm{GeV}^{2}\right)\right]^{-2}$. The normalization is fixed at the $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Comparison of the prediction $\left[1+\left(Q^{2} / m_{0}{ }^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left[\ln \left(Q^{2}\right)\right.$ $\left.\Lambda^{2}\right)^{-1-(2 / 5)} C_{F} / \beta$ with the above data. The value $m_{0}{ }^{2}$ $=0.28 \mathrm{GeV}^{2}$ is used (Ref. 8).

Elastic electron-denteron scattering
AdS/QCD

- Evidence for Hidden Color in the Deuteron

Why do dimensional counting rules work so well?

- PQCD predicts log corrections from powers of α_{s}, logs, pinch contributions Lepage, sjb; Efremov, Radyushkin
- DSE: QCD coupling (mom scheme) has IR Fixed point!

Alkofer, Fischer, von Smekal et al.

- Lattice results show similar flat behavior Furui, Nakajima
- PQCD exclusive amplitudes dominated by integration regime where α_{s} is large and flat

Conformal symmetry: Template for QCD

- Take conformal symmetry as initial approximation; then correct for non-zero beta function and quark masses
- Eigensolutions of ERBL evolution equation for distribution amplitudes

V. Braun et al;
Frishman, Lepage, Sachrajda, sjb

- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Use AdS/CFT

$$
\sum_{\text {Anti-de Sitter }}^{\text {Spacetime }}
$$

Truncated AdS Space

全

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}(4,2)$ to AdS_{5}
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $\quad x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0<z<z_{0}$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Identify hadron by its interpolating operator at z -- >o

Action for scalar field in AdS 5

$$
S[\Phi]=\kappa^{\prime} \int d^{4} x d z \sqrt{g}\left[g^{\ell m} \partial_{\ell} \Phi^{*} \partial_{m} \Phi-\mu^{2} \Phi^{*} \Phi\right]
$$

where $\left[\kappa^{\prime}\right]=L^{-2} \quad g^{\ell m}=\frac{z^{2}}{R^{2}} \eta^{\ell m} \quad \sqrt{g}=R^{5} / z^{5}$

Action is invariant under scale $\quad x^{\mu} \rightarrow \lambda x^{\mu}, \quad z \rightarrow \lambda z$. transformations

$$
\Phi\left(x^{\ell}\right)=\Phi\left(\lambda x^{\ell}\right)
$$

Variation wert Φ

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}}\left(\sqrt{g} g^{\ell m} \frac{\partial}{\partial x^{m}} \Phi\right)+\mu^{2} \Phi=0
$$

Solutions of form: $\quad \Phi(x, z)=e^{-i P \cdot x} f(z) \quad P_{\mu} P^{\mu}=\mathcal{M}^{2}$

$$
S=-\kappa R^{3} \int \frac{d z}{z^{3}}\left[\left(\partial_{z} f\right)^{2}-\mathcal{M}^{2} f^{2}+\frac{(\mu R)^{2}}{z^{2}} f^{2}\right]
$$

Variation of Swrt f:

$$
\begin{aligned}
z^{5} \partial_{z}\left(\frac{1}{z^{3}} \partial_{z} f\right)+z^{2} \mathcal{M}^{2} f-(\mu R)^{2} f & =0 \\
{\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] f } & =0
\end{aligned}
$$

Introduce confinement, break conformal invariance P-S Boundary Condition $\quad f\left(z=\frac{1}{\Lambda_{Q C D}}\right)=0$

Normalization in truncated space

$$
R^{3} \int_{0}^{\Lambda_{\mathrm{QCD}}^{-1}} \frac{d z}{z^{3}} f^{2}(z)=1
$$

Identify Orbital Angular Momentum $\quad(\mu R)^{2}=-4+L^{2}$

- Wave equation in AdS for bound state of two scalar partons with conformal dimension $\Delta=2+L$

$$
\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-L^{2}+4\right] \Phi(z)=0
$$

with solution

$$
\Phi(z)=C e^{-i P \cdot x} z^{2} J_{L}(z \mathcal{M})
$$

- For spin-carrying constituents: $\Delta \rightarrow \tau=\Delta-\sigma, \sigma=\sum_{i=1}^{n} \sigma_{i}$.
- The twist τ is equal to the number of partons $\tau=n$.

Introduce confinement, break conformal invariance

$$
f\left(z=\frac{1}{\wedge_{Q C D}}\right)=0
$$

Identify Orbital Angular Momentum $\quad(\mu R)^{2}=-4+L^{2}$

- Wave equation in AdS for bound state of two scalar partons with conformal dimension $\Delta=2+L$

$$
\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-L^{2}+4\right] \Phi(z)=0
$$

with solution

$$
\Phi(z)=C e^{-i P \cdot x} z^{2} J_{L}(z \mathcal{M})
$$

- For spin-carrying constituents: $\Delta \rightarrow \tau=\Delta-\sigma, \sigma=\sum_{i=1}^{n} \sigma_{i}$.
- The twist τ is equal to the number of partons $\tau=n$.

Introduce confinement, break conformal invariance

$$
f\left(z=\frac{1}{\wedge_{Q C D}}\right)=0
$$

Match fall-off at small z to Conformal Dimension of hadron state at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots\right.} \ldots D_{\left.\ell_{m}\right\}} \psi \quad$ ($\Phi_{\mu}=0$ gauge).
- 4- d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

Fig: Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

