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Introduction
? Hybrid inflation a (and Inverted Hybrid Inflation b) models

are attractive from particle physics perspective.

? Appear easy to embed into SUSY, string theory (F-, D-,
P-term inflation, KKLMMT)

? Inflation ends with nonperturbative amplification of
fluctuations called tachyonic preheating.

? Preheating may generate large scale curvature
perturbations without violation of causality.c

? Nonadiabatic pressures at second order may give rise
to large nongaussianity.d

? Nongaussianity can be a powerful tool to discriminate
between (or constrain) models of inflation.

a
Linde, Phys. Rev. D 49, 748 (1994).

b
Lyth & Stewart, Phys. Rev. D 54, 7186 (1996).

c
Brandenberger & Finelli, Phys. Rev. Lett. 82, 1362 (1999).

d
Enqvist et al., Phys. Rev. Lett. 94, 161301 (2005). – p.3/52
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Background and Fluctuations
ϕ(t, ~x) = ϕ0(t) + δϕ(t, ~x)

Classical Background: ϕ0

? Slow Roll: ϕ̇0 � Hϕ0

⇒ ds2 ∼= −dt2 + e2Htd~x2

? Requires flat potentials:

ε ∼=
M2

p

2

(
V ′

V

)2

� 1

η ∼= M2
p
V ′′

V
=

m2
ϕ

3H2
� 1

? We require ε, η � 1 for
Ht ∼= 60 e-folds.

Quantum Fluctuations: δϕ

? Vacuum fluctuations of
δϕ generated on small
scales k � aH.

? Redshifted by the
expansion
kphys = k/a ∼ ke−Ht.

? Become classical at
horizon crossing
k = aH.

? Fluctuations re-enter
horizon after reheating.
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Evolution of Scales During Inflation
t

xt R

t 0

t i

t f (k)

t i (k)

k

H −1

R.Brandenberger, Lect. Notes Phys. 646, 127 (2004).
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Quantum Fields in deSitter
ds2 = −dt2 + e2Htdx2

χ(t, x) =

∫
d3k

(2π)3/2

[

ak χk(t) e
ikx + a†k χ

?
k(t) e

−ikx
]

? Mode functions satisfy KG equation:

χ̈k + 3Hχ̇k +

[
k2

a2
+m2

]

χk = 0

? Initial data fixes the vacuum ak|0〉 = 0.

? Bunch-Davies vacuum choice corresponds to small
scale Minkowski space fluctuations:

χk
∼= e−ikt/

√
2k for k � aH

? Large scale behaviour depends crucially on m/H.
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Heavy and Light Fields in deSitter

? On large scales k � aH have:

|χk(t)| ∼=
{

H√
2k

if m� H;

a−3/2
√

m
if m� H.

? Inflaton fluctuations are light (η � 1) so have scale
invariant large scale fluctuations:

〈(δϕ)2〉 =

∫
d3k

(2π)3
|χk(t)|2 ∼=

∫

d ln k

(
H

2π

)2

︸ ︷︷ ︸

=Pϕ(k)

? Heavy fields have exponentially damped (∼ e−3Ht/2)
large scale fluctuations.
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Curvature Perturbation

? Quantum matter fluctuations induce metric fluctuation:

ϕ(t, ~x) = ϕ0(t) + δϕ(t, ~x)

⇒ gµν(t, ~x) = g
(0)
µν (t) + δgµν(t, ~x).

? Can induce fictitious metric fluctuations by performing
small coordinate transformations: xµ → xµ + ξµ.

? Physical observables must be gauge invariant.

? Introduce the curvature perturbation (φ = δg00):

ζ ∼= −φ− H

ϕ̇0
δϕ

? The basic observables are the correlators: 〈ζζ · · · ζ〉.
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Spectrum and Gaussianity

? The spectrum (two-point function) is almost scale
invariant on large scales k � aH:

〈ζkζk′〉 =
1

2ε

(
H

Mp

)2
1

2k3

(
k

aH

)n−1

δ3(k + k′)

? Spectral index: n− 1 = 2η − 6ε� 1.

? To linear order ζ contains only one ak, a
†
k:

〈ζk1
ζk2
ζk3

〉 = 0

〈ζk1
ζk2
ζk3
ζk4

〉 = 〈ζk1
ζk2

〉〈ζk3
ζk4

〉 + perms

· · ·

? Two-point correlator is the only independent statistics.
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Nongaussianity

? Gaussian fluctuations: the connected part of the n-point
functions vanishes for n ≥ 3.

? At linear order in perturbation theory the fluctuations
are exactly gaussian.

? Nongaussianity is expected due to nonlinearities in the
KG and gravity equations.

? The three-point function (bispectrum) is the lowest
order statistics which can discriminate between
gaussianity and nongaussianity:

〈ζk1
ζk2
ζk3

〉 = (2π)−3/2B(ki) δ
3(k1 + k2 + k3)
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Nonlinearity Parameter
? Usually nongaussianity is parametrized in terms of the

nonlinearity parameter fNL as

ζ = ζg −
3

5
fNL

(
ζ2
g − 〈ζ2

g 〉
)

? Yields a nontrivial bispectrum:

B(ki) ∼= −6

5
fNL [P (k1)P (k2) + perms ]

〈ζk1
ζk2
ζk3

〉 = (2π)−3/2B(ki) δ
3(k1 + k2 + k3)

〈ζk1
ζk2

〉 = P (ki) δ
3(k1 + k2)

? WMAP analysis constrains |fNL| <∼ 100. a

a
Komatsu et al., Astrophys. J. Suppl. 148, 119 (2003).
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Nonlinearity Parameter
? Various scenarios for generating ζ give distinct

predictions for fNL.

? Measurement of fNL can discriminate between different
models.

? Expect fNL ∼ n− 1 for the simplest models, which is
unlikely to ever be detectable.

? Can get observably large nongaussianity from:
− Curvaton mechanism.a

− Single field models with small inflaton sound speed.b

(For example the D-celleration model.c)
− Preheating.d

− · · ·
a

Lyth et al., Phys. Rev. D 67, 023503 (2003)
b

Chen et al.,arXiv:hep-th/0605045
c

Silverstein & Tong, Phys. Rev. D 70, 103505 (2004)
d

Enqvist et al., Phys. Rev. Lett. 94, 161301 (2005); NB & Cline Phys. Rev. D 73, 106012 (2006). – p.13/52
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Copeland et al., Phys. Rev. D

65, 103517 (2002).
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Hybrid Inflation: Potential

V (ϕ, σ) =
λ

4
(σ2 − v2)2 +

g2

2
ϕ2σ2 +

m2
ϕ

2
ϕ2

=
λv4

4
+

1

2

(
g2ϕ2 − λv2

)

︸ ︷︷ ︸

=m2
σ

σ2 +
λ

4
σ4 +

m2
ϕ

2
ϕ2

-1

0

1

0

1

2

3

4

0

0.1

0.2

-1

0

1

Herdeiro et al., JHEP 0112, 027 (2001).

-1 0 1

σ

V
(φ

,σ
)

φ > φ
c

φ = φ
c

φ < φ
c
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Inflationary Dynamics

? The tachyon is trapped in the false vacuum:
〈σ〉 ≡ σ0 = 0.

? Potential along the inflationary trajectory:

Vinf =
λv4

4
+

1

2
m2

ϕϕ
2 ∼= λv4

4

? Slow roll solutions:

〈ϕ〉 ≡ ϕ0(t) ∼= λ1/2v

g

(
a(tc)

a(t)

)η

3H2 ∼= λv4/(4M2
p )

? Slow roll parameters never get large: ε̇ < 0, η = const.
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Tachyonic Preheating
? Tachyon mass-squared:

m2
σ = g2ϕ2

0 − λv2 ∼= −2λv2η H(t− tc) ≡ −cH2N

? Tachyonic preheating: transfer of energy from the false
vacuum λv4/4 to the fluctuations δ(1)σk.

Felder et al., Phys. Rev. Lett. 87,

011601 (2001).
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Domain Walls

? Symmetry breaking
leads to domain walls.

? At late times universe
consists of many
domains with σ ∼ ±v.

? Even at late times the
tachyon averages to
zero 〈σ〉 = σ0 = 0 over
many domains.

-2 -1 0 1 2

t=14

-2 -1 0 1 2

t=19

-2 -1 0 1 2

t=10

-2 -1 0 1 2

t=13

-2 -1 0 1 2

t=0

-2 -1 0 1 2

t=8

Felder et al., Phys. Rev. Lett. 87,
011601 (2001).

? Domain walls will overclose the universe so one should
add symmetry breaking terms or consider a complex
tachyon which gives cosmic strings...
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Tachyon Dynamics

? The tachyon mass-squared varies linearly with the
number of e-foldings:

m2
σ
∼= −cH2N

? At early times m2
σ > 0:

− Large scale tachyon fluctuations get damped as
a−3/2 during any e-foldings where m2

σ > H2.

− Scale invariant large scale fluctuations for m2
σ < H2.

? At late times m2
σ < 0:

− Large scale tachyon fluctuations are exponentially
amplified.

− Within a time t? the energy from the false vacuum is
transfered into the large scale fluctuations δσk.
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Tachyon Fluctuations

? During both inflation and the (early) instability phase the
tachyon mode functions obey:

d2

dN2
δ(1)σk + 3

d

dN
δ(1)σk +

[
k2

H2
e−2N − cN

]

δ(1)σk = 0

where N = H(t− tc), c = 2ηλv2/H2.

? In the far UV where the k2/a2 term dominates
(k2H−2e−2N � c|N |) have Minkowski space modes.

? In the far IR where the m2
σ term dominates

(k2H−2e−2N � c|N |) are exponentially damped if m2
σ > 0

or amplified if m2
σ < 0.

? Match solutions at N = Nk defined by: k2

cH2 e−2Nk = |Nk|.
– p.20/52



Matching Conditions

-1 -0.5 0 0.5 1

N = H(t-tc)

k
2
/(cH

2
)e

-2N
,  k = 0.5 c

1/2
H

k
2
/(cH

2
)e

-2N
,  k = 0.4 c

1/2
H

|N|

? Modes which cross |mσ| while m2
σ > 0 are damped

exponentially as a−3/2 before the instability sets in.

? Modes which cross |mσ| when m2
σ < 0 were light

throughout inflation and experience no damping.
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Tachyon Mode Functions
? Modes in the UV N < Nk (k � a|mσ|) feel only

Minkowski space: a δ(1)σk ∼ e−ikτ/
√

2k.

? These are red-shifted into the IR region N > Nk

(k � a|mσ|) where the mass term becomes important:

|δ(1)σk(N)| ∼ |bk| exp

[

−3

2
N +

9

4c

(

1 +
4

9
cN

)3/2
]

N = H(t-tc)

δσ
k

N

ln
( 

δ 
σ k )
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The End of Exponential Growth
? Once the tachyon fluctuations become sufficiently large,

the exponential growth is replaced by oscillations about
the minima ±v.

? Our condition for the end of tachyonic growth:

〈(δ(1)σ)2〉1/2
∣
∣
∣
N=N?

=
v

2

? Numerical solutions of this equation agree with previous
authors.a

? NOTE: For a very slowly rolling inflaton can have
N?

>∼ 1.

a
Garcia-Bellido et al., Phys. Rev. D 67, 103501 (2003).
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Cosmological Perturbations
? Expand the metric in longitudinal gauge as:

g00 = −a(τ)2
[

1 + 2φ(1) + φ(2)
]

g0i = 0

gij = a(τ)2
[(

1 − 2ψ(1) − ψ(2)
)

δij

+
1

2

(

∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)]

? Expand the matter fields as:

ϕ(τ, ~x) = ϕ0(τ) + δ(1)ϕ(τ, ~x) +
1

2
δ(2)ϕ(τ, ~x)

σ(τ, ~x) = δ(1)σ(τ, ~x) +
1

2
δ(2)σ(τ, ~x)

? Neglect vectors, tensors at first order.

? Recall that 〈σ〉 ≡ σ0 = 0.
– p.25/52



First Order Einstein Equations

? At first order there are two independent scalar degrees
of freedom: φ(1), δ(1)σ.

? Can write a master equation for φ(1):

φ
′′(1)
k − 2

τ
(η − ε)φ

′(1)
k +

[
2

τ2
(η − 2ε) + k2

]

φ
(1)
k = 0

? Tachyon fluctuation does not couple to the metric
fluctuations:

δ(1)σ̈k + 3Hδ(1)σ̇k +

[
k2

a2
+m2

σ

]

δ(1)σk = 0

? Constraint equations fix δ(1)ϕ, ψ(1).

– p.26/52



First Order Curvature Perturbation

? Physical quantity of interest is the curvature
perturbation

ζ = ζ(1) +
1

2
ζ(2)

defined so that 〈ζ〉 = 0.

? For σ0 = 0 the first order piece depends only on the
inflaton:

ζ(1) ∼= −φ(1) − H
ϕ′

0

δ(1)ϕ

? First order curvature perturbation is conserved on large
scales:

∂

∂τ
ζ
(1)
k

∼= 0 for k � aH

? Have the usual scale invariant spectrum from 〈ζk1
ζk2

〉.
– p.27/52



Second Order Einstein Equations

? Second order fluctuations are sourced by first order
fluctuations.

? Two independent scalar fluctuations at second order:
φ(2), δ(2)σ.

? Can write a master equation for φ(2):

φ
′′(2)
k − 2

τ
(η − ε)φ

′(2)
k +

[
2

τ2
(η − 2ε) + k2

]

φ
(2)
k = Jk(τ)

where the source J is constructed from δ(1)σ, δ(1)ϕ, φ(1).

? Can solve for the other second order fluctuations using
constraints.

? Curvature perturbation does not depend on δ(2)σ up to
second order.

– p.28/52



Second Order Curvature Perturbation

? Split the curvature perturbation into inflaton and
tachyon contributions:

ζ(2) = ζ
(2)
ϕ + ζ

(2)
σ

? The inflaton part has already been studied and yields
negligible nongaussianity a

ζ
(2)
ϕ

∼= 1

4
(2η − 6ε)

(

ζ(1)
)2 ∼= const for k � aH

? Non-adiabatic pressures at second order will amplify

large scale ζ(2)
σ during the instability phase so that

ζ(2) ∼= ζ
(2)
σ after preheating.

a
Maldacena, JHEP 0305, 013 (2003).
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Calculation of ζ (2)
σ

ζ(2) 3 −φ
′(2)

εH −
(

1

ε
+ 1

)

φ(2) +
1

3 − ε

∂k∂kφ
(2)

εH2

+
1

εH4−1γ′ + 4−1γ − 1

3 − ε

1

εH2
γ

+
1

3 − ε

1

(ϕ′
0)

2

[(

δ(1)σ′
)2

+ a2m2
σ

(

δ(1)σ
)2

]

+ · · ·

φ
(2)
k (τ) =

∫

dτ ′Gk(τ, τ
′)(−τ ′)2(ε−η)Jk(τ

′)

Gk(τ, τ
′) =

π

2
Θ(τ − τ ′)(ττ ′)1/2+η−ε

×
[
Jν(−kτ)Yν(−kτ ′) − Jν(−kτ ′)Yν(−kτ)

]

ν ∼= 1/2 + 3ε− η
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Calculation of ζ (2)
σ

J(τ, ~x) = a2κ2m2
σ

(

δ(1)σ
)2

− 2κ2
(

δ(1)σ′
)2

+ 2κ2H(1 + η − ε)4−1∂i

(

δ(1)σ′∂iδ(1)σ
)

+ 4κ24−1∂τ∂i

(

δ(1)σ′∂iδ(1)σ
)

− H(1 + 2ε− 2η)4−1γ′ + 4−1γ′′

+ inflaton contributions

γ = −3κ24−1∂i

(

∂k∂kδ
(1)σ∂iδ(1)σ

)

− κ2

2

(

∂iδ
(1)σ∂iδ(1)σ

)

+ · · · .
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Large Scale ζ(2)
σ

? The leading contribution to ζ(2)
σ on large scales:

ζ
(2)
σ

∼= κ2

ε

∫ τ

−1/aiH
dτ ′






(

δ(1)σ′
)2

H(τ ′)

− H(τ ′)2

H(τ)3

((

δ(1)σ′
)2

− a2m2
σ

(

δ(1)σ
)2

)]

? The result is manifestly local consistent with the results
of other authors.a

? We explicitly identify the error in previous calculations
which leads to a nonlocal result.

a
Malik, JCAP 0511, 005 (2005); Lyth & Rodriguez, Phys. Rev. Lett. 95, 121302 (2005); Jokinen & Mazumdar

JCAP 0604, 003 (2006). – p.32/52
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Generating ζ

? The gauge invariant curvature perturbation:

ζ = ζ(1) +
1

2
ζ(2) ∼ ζ(1) +

3

5
fNL(ζ(1))2

? The first order curvature perturbation ζ(1) is the usual
scale invariant and conserved quantity.

? The second order curvature perturbation is split into

ζ(2) = ζ
(2)
ϕ

︸︷︷︸

∝ (2η−6ε)(ζ(1))2

+ ζ
(2)
σ

︸︷︷︸

amplified by instability

? After the symmetry breaking completes only one field is
dynamical so ζ is conserved on large scales for t > t?.
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Tachyon Bispectrum
? The bispectrum is dominated by the tachyon part of ζ:

〈ζk1
ζk2
ζk3

〉 ∼= 1

23
〈ζ(2)

σ,k1
ζ
(2)
σ,k2

ζ
(2)
σ,k3

〉

≡ (2π)−3/2B(ki) δ
3(~k1 + ~k2 + ~k3)

? Should be compared to the usual inflationary spectrum:

〈ζ(1)
k1
ζ
(1)
k2

〉 = Pϕ(ki) δ
3(~k1 + ~k2)

where P 1/2
ϕ ∼ (2π)10−5k−3/2.

? Nonlinearity parameter fNL:

B(ki) ≡ −6

5
fNL [Pϕ(k1)Pϕ(k2) + perms ]

? Demand that |fNL| < 100.
– p.35/52



The Linearity Parameter
? The two-point function also gets contributions from the

tachyon:

〈ζk1
ζk2

〉 ∼= 〈ζ(1)
k1
ζ
(1)
k2

〉 +
1

22
〈ζ(2)

σ,k1
ζ
(2)
σ,k2

〉

? Should compare the second order tachyon spectrum to
the first order inflaton spectrum:

1

22
〈ζ(2)

σ,k1
ζ
(2)
σ,k2

〉 ≡ S(ki) δ
3(~k1 + ~k2)

? Define the linearity parameter:

fL ≡ S(ki)

Pϕ(ki)

? Demand that |fL| < 1 so that the spectrum is due to the
inflaton.
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(non)Scale-Invariant Fluctuations

If m2
σ varies slowly:

? Tachyon is almost
massless throughout
inflation.

? Instability sets in very
slowly.

? Have N? � 1.

? Tachyon fluctuations,
bispectrum are scale
invariant and can have
|fNL| > 1.

If m2
σ varies quickly:

? Tachyon curvature
perturbation is blue
(n = 4).

? ζ
(2)
σ gets contributions

from all tachyon modes
in the instablity band.

? Preheating distorts the
power spectrum on small
scales: strongest con-
straint from |fL| < 1.
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Hybrid Inflation: v/Mp = 10
−3

? Spectral index: n− 1 ∼ 1.84g.

– p.38/52



Hybrid Inflation
? The size of the excluded region depends sensitively on
v/Mp.

? Larger effect for smaller v/Mp since the amplification
goes like v/H ∼Mp/v.

invariant
scale

region 10 plog  v/M

excluded
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Inverted Hybrid Inflation
? Simple modification of hybrid inflation which gives

spectral index n < 1.

? SUSY, string theory embeddings of hybrid inflation are
more similar to inverted model.

? Inverted hybrid inflation potential:

V (ϕ, σ) =
λ

4
(σ2+v2)2−g

2

2
ϕ2σ2−

m2
ϕ

2
ϕ2

? Obtained from hybrid inflation by flipping the sign of m2
ϕ,

v2, g2.

? Potential is unbounded from below without the addition
of a λ̃ϕ4 term...

– p.40/52



Inverted vs. non-Inverted Model
? Potential along

inflationary trajectory:

Vinf =
λv4

4
± 1

2
m2

ϕϕ
2

0 50 100
m φ

0

0.5

1

1.5

2

V
 / 

V
0

Hybrid Inflation

? n > 1

? Inflaton rolls towards the
flat point ϕ = 0.

? Still have slow roll as
ϕ→ ϕc.

? Possible to have a light
tachyon, scale invariant
fluctuations.

Inverted Hybrid Inflation

? n < 1

? Inflaton rolls away from
the flat point ϕ = 0.

? As ϕ→ ϕc the inflaton
need not be slowly
rolling.

? Requires more tuning to
keep the tachyon light.
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Inverted Hybrid Inflation
? Constraints weakened: new allow regions correspond

to fast roll through the instability point ϕ = ϕc.
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Brane Inflation

? Brane inflation is a particularly appealing embedding of
hybrid inflation into string theory.

? Inflation is driven by potential between D3/D3̄ which are
parallel to our 3 large dimensions and separated in the
extra dimensions.

? Inter-brane separation, y, plays the role of the inflation.

? Lightest stretched string mode between the branes
becomes tachyonic at y ∼ ls (open string tachyon).

? Open string tachyon plays the role of the waterfall field
σ.

? Tachyon in the spectrum signals instability of the
system to annihilate.

– p.44/52



Flux Compactifications
? Realistic models of brane inflation are embedded in

GKP-KKLT flux vacua.

? Complex structure moduli and dilaton are fixed by
addition of fluxes of the NS-NS and R-R gauge fields.

? Kahler modulus fixed by nonperturbative effects (eg -
gaugino condensation).

�����
������� ����� ���		 
 



���� ����

�����
� �� �� �� �� �� �� �� � � �� � � �� �� �� � � �� �

NS Fluxes

Throat

RR Fluxes

RR fluxes

NS fluxes

D7 branes
wrapped

throat
warped

? Compactification has
warped throat regions
where exponentially
large hierarchy can
be generated from a
small hierarchy in the
ratio of fluxes.
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Brane Inflation in Flux Vacua

? In the throat the geometry is locally AdS5 × S5:

ds2 ∼= e−2k|y|ηµνdx
µdxν + dy2 + y2dΩ2

5.

? Geometry is identical to Randall-Sundrum I.

? Set-up: mobile D3 falling down the throat from the UV
(y = 0) end towards a fixed D3̄ in the IR (y = yi > 0) end.

? Exchange of massless gauge fields gives rise to a
Coulomb potential between the branes.

? The large warping ai = e−kyi � 1 flattens inter-brane
potential.
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The η-problem
? Coulomb potential between the branes:

V = a4
i τ3

[

1 − 1

N

(
ϕ0

ϕ

)4
]

is extremely flat.

? Unfortunately consistent introduction of volume
stabilization introduces an O(H) contribution to the
inflaton mass.

? Can salvage inflation to adding some corrections to the
superpotential which cancel the large inflaton mass
coming from volume stabilization.

? Inflation is fine tuned in this scenario.a

a
Kachru et al., JCAP 0310, 013 (2003); Burgess et al., JHEP 0409, 033 (2004).
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The End of Inflation

? Lightest stretched string mode between the branes has
mass:

M2
T =

M2
s

2

[
(Msy)

2

(2π)2
− 1

2

]

which becomes tachyonic at y <∼ ls.

? Brane annihilation is described by the tachyon
condensation:a

− Field theory about the tachyon false vacuum T = 0
describes the coincident brane-antibrane system

− The tachyon rolls to |T | = ∞ and field theory about
this point describes the vacuum with no
brane-antibrane

a
Sen, Phys. Rev. D 68, 066008 (2003).
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Brane Inflation and Nongaussianity

? Brane inflation is similar to inverted hybrid inflation:

Vinf = V0

[

1 − 1

N

(
ϕ0

ϕ

)4

− β

3

(
ϕ

Mp

)2
]

? Some differences:
− tachyon field is complex
− the tachyon potential is minimized at T = ±∞:
V (T, y = 0) = τ3 e

−|T |2

− tachyon DBI action: a

Ltac = −V (T, y)

√

1 +M−2
s |∂µT |2

a
Sen, Int. J. Mod. Phys. A 20, 5513 (2005).
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Excluded Regions
? Dimensionally reduce the DBI action on AdS5 and

expand to quadratic order in fields.

? Match reduced action to inverted hybrid inflation to
estimate g, λ, v in terms of stringy quantities gs,Ms, ai.
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Conclusions

? Variation of the second order curvature perturbation
from tachyonic preheating puts interesting constraints
on hybrid inflation.

? Strongest constraints for small symmetry breaking
scale v/Mp � 1.

? Constraints on inverted hybrid inflation are weaker since
it is harder to keep the tachyon light during inflation.

? Nontrivial constraints on KKLMMT.
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Future Directions
? This model leads to domain walls which will overclose

the universe.

? Generalization to D-term inflation, D3/D7, ...

? Inveresting hint of excess power on small scales in the
CBI and ACBAR CMB data...
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