Naturalness and Higgs decays in the MSSM with a singlet– searching for a stealthy Higgs

Patrick Fox Spencer Chang & Neal Weiner (NYU)

hep-ph/0511250

LBNL

Layout

- SUSY little hierarchy problem and a possible solution
- Higgs limits from LEP
- MSSM+S≠NMSSM and its new operators
- New phenomenology
- Conclusions and the future

EWSB in SM driven by fundamental scalar, the Higgs

$$V_{classical} = \lambda (|\phi|^2 - v^2)^2$$

Higgs potential receives large radiative corrections

- Naturalness arguments tell us $\Lambda \sim TeV$
- New physics at a TeV
- Technicolour, Little Higgs, Extra Dimensions, Supersymmetry

Low scale SUSY introduces superpartners below the TeV scale to cut off quadratic divergences

The good: Superpartners soften divergence

$$\frac{\lambda^2}{16\pi^2}\Lambda^2 \to \frac{y^2}{16\pi^2}m_{\tilde{t}}^2\log\frac{\Lambda}{m_{\tilde{t}}}$$

The good: Superpartners soften divergence

$$\frac{\lambda^2}{16\pi^2}\Lambda^2 \to \frac{y^2}{16\pi^2}m_{\tilde{t}}^2\log\frac{\Lambda}{m_{\tilde{t}}}$$

• The bad: Higgs quartic interactions from D-terms. No longer a free parameter, $\lambda \to g$

$$m_h^2 \le m_z^2 \cos^2 2\beta$$

The good: Superpartners soften divergence

$$\frac{\lambda^2}{16\pi^2}\Lambda^2 \to \frac{y^2}{16\pi^2}m_{\tilde{t}}^2\log\frac{\Lambda}{m_{\tilde{t}}}$$

• The bad: Higgs quartic interactions from D-terms. No longer a free parameter, $\lambda \to g$

$$m_h^2 \le m_z^2 \cos^2 2\beta$$

The ugly(?): Need to raise Higgs mass, e.g. increase quartics. Loop corrections, NMSSM, Fat higgs, non-decoupling D-terms, little supersymmetry etc.

SUSY little hierarchy problem

One loop corrections to Higgs quartic increase Higgs mass

$$\delta \lambda \to \Delta m_h^2 = \frac{3y_t^2}{4\pi^2} m_t^2 \log\left(\frac{\mathbf{m}_{\tilde{t}}^2}{m_t^2}\right)$$

Compare

$$\Delta m_H^2 = -\frac{3y_t^2}{4\pi^2} \mathbf{m}_{\tilde{t}}^2 \log \frac{\Lambda}{m_{\tilde{t}}}$$

SUSY little hierarchy problem

- LEP bound on SM-like Higgs (much of MSSM parameter space) $m_h > 114 \text{GeV}$
- Requires heavy stops ($\mathcal{O}(400 \text{GeV})$), large quartic corrections
- Fine-tuning ($\mathcal{O}(5\%)$) of soft Higgs mass against μ -term to get v = 174 GeV
- Alternative ways of raising quartic? e.g. NMSSM, little SUSY, fat Higgs, non-decoupling D-terms.....

Or, keep Higgs (and stops) light and instead evade LEP constraints

Non-standard Higgs decays \rightarrow new states coupled to Higgs, **not** invisible decays.

MSSM + singlet

- Extend the Higgs sector in the simplest possible way: MSSM + S \neq NMSSM [Gunion et al.]
- NMSSM assumes $\langle S \rangle = \mu$. Make assumptions about UV theory
- We are interested in phenomenological questions about Higgs decays
- New, previously ignored operators, new decays
 - Supersoft [Nelson, Weiner and PF]
 - New vector-like matter coupled to S [Dobrescu, Landsberg, Matchev]

•
$$S = s + ia + \theta \psi_s + \dots$$

Rough calculation

Can non-standard decays dominate? $\Gamma_{h\to 2a} \gtrsim 4 \times \Gamma_{h\to bb}$

$$\mathcal{L} \supset \frac{c}{\sqrt{2}} vha^2$$

$$\Gamma_{h\to 2a} = \frac{c^2 v^2}{16\pi m_h} \left(1 - 4\frac{m_a^2}{m_h^2}\right)^{1/2}$$

$$\Gamma_{h\to 2b} = \frac{3m_b^2}{16\pi v^2} m_h \left(1 - 4\frac{m_a^2}{m_h^2}\right)^{3/2}$$

 $\Gamma_{h\to 2a} \gtrsim 4 \times \Gamma_{h\to bb} \Rightarrow \frac{cv}{\sqrt{2}} \gtrsim 5 \text{GeV}$

Rough calculation

Can non-standard decays dominate? $\Gamma_{h\to 2a} \gtrsim 4 \times \Gamma_{h\to bb}$

$$\mathcal{L} \supset \frac{c}{\sqrt{2}} vha^2$$

$$\Gamma_{h\to 2a} = \frac{c^2 v^2}{16\pi m_h} \left(1 - 4\frac{m_a^2}{m_h^2}\right)^{1/2}$$

$$\Gamma_{h\to 2b} = \frac{3m_b^2}{16\pi v^2} m_h \left(1 - 4\frac{m_a^2}{m_h^2}\right)^{3/2}$$

$$\Gamma_{h \to 2a} \gtrsim 4 \times \Gamma_{h \to bb} \Rightarrow \frac{cv}{\sqrt{2}} \gtrsim 5 \text{GeV}$$

Yes!

Effects of mixing

Mass eigenstates related to interaction eigenstates by,

$$\begin{pmatrix} \tilde{s} \\ \tilde{h} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} s \\ h \end{pmatrix}$$

$$m_{\tilde{h}}^2 = \frac{m_{mssm}^2 - m_{\tilde{s}}^2 \sin^2 \theta}{\cos^2 \theta}$$

An increase in mass through mixing without radiative corrections, alleviates tuning.

LEP limits

LEP limits usually quoted as limits on ξ^2 (or c^2 or k or ...)

$$\xi_X^2 \equiv \frac{\sigma(e^+e^- \to hZ)}{\sigma(e^+e^- \to hZ)}_{SM} \times BR(h \to X)$$

 $\begin{pmatrix} \text{SM higgs} : & m_h \ge 114.4 \text{GeV} \\ \text{Invis. higgs} : & m_h \ge 114 \text{GeV} \\ \text{Model indep. : } & m_h \ge 81 \text{GeV} \end{pmatrix}$

@ 95% $CL \ (\xi^2 = 1)$

We will be most interested in the constraints on cascade decays

LEP constraints–SM like

$m_h \ge 114.4 \text{GeV}$ [André Sopczak, SUSY05]

Model Independent

 $m_h \ge 81 \text{GeV}$

[Eur. Phys. J. C27 (2003) 311-329; hep-ex/0206022]

Cascade decays

$m_h \ge 110 \text{GeV}$ for 4b final state [André Sopczak, SUSY05]

Cascade decays

 $m_h \ge 86 \text{GeV}, \text{ if } m_a \lesssim 12 \text{GeV}$

OPAL

[Eur. Phys. J. C27 (2003) 483-495; hep-ex/0209068].

UC Davis, May 2006 - p.15/3

New Operators with singlets

NMSSM

$$\begin{split} W &= \lambda_S S H_u H_d + \kappa_S S^3 \leftarrow \text{Supersymmetric} \\ V &= \lambda_S A_\lambda S H_u H_d + \kappa_S A_\kappa S^3 + m_S^2 |S|^2 + c.c. \leftarrow \text{soft SUSY} \\ \text{breaking} \end{split}$$

Additional possible terms

- $\delta_s^2 s^2$, $\delta_a^2 a^2$ -Scalar/pseudo-scalar masses
- Mixing term: $m_{CP}^2 sa$
- $\lambda_Q SQ\bar{Q} + M_Q Q\bar{Q}$ -Fermiophobic decays
- Supersoft operator: $W'_{\alpha}W^{\alpha}S$

NMSSM-like operators

Superpotential: $\lambda_s SH_u H_d$ Leads to mixing

$$\begin{pmatrix} \lambda_h^2 v^2 + \delta_s^2 & -2\lambda_h v \tilde{\mu} s_{\alpha-\beta} & 2\lambda_h v \tilde{\mu} c_{\alpha-\beta} \\ -2\lambda_h v \tilde{\mu} s_{\alpha-\beta} & m_h^2 & 0 \\ 2\lambda_h v \tilde{\mu} c_{\alpha-\beta} & 0 & m_H^2 \end{pmatrix}$$

Decays $h \to 2s, 2a$ and $s \to 2a$

NMSSM-like operators

A-term: $A_h S H_u H_d$

- Generated at the loop level if $\lambda_h S H_u H_d$ is present
- Mixes A^0 and a, allows $a \rightarrow 2b/2\tau$

• Have $h \to 2s, 2a$ and $s \to 2a$

$$\begin{pmatrix} \delta_s^2 & A_h v \cos(\alpha + \beta) & A_h v \sin(\alpha + \beta) \\ A_h v \cos(\alpha + \beta) & m_h^2 & 0 \\ A_h v \sin(\alpha + \beta) & 0 & m_H^2 \end{pmatrix}$$

$$\begin{pmatrix} m_a^2 & -A_h v \\ -A_h v & m_A^2 \end{pmatrix}$$

NMSSM-like operators

Superpotential and A-term have similar affect on Higgs physics $A_S S^3$

- Alone this does little, (opposite) contribution to scalar masses.
- With another source of mixing gives $h \rightarrow 2s, 2a$

Other Operators

Mixing term: $m_{CP}^2 sa$

- Does not violate CP by itself, only if a couples to fermions or gauge bosons, or mixes with A⁰-no EDM problems.
- Can induce $h \rightarrow sa$ if $h \rightarrow 2s$ forbidden. e.g. with supersoft

Other Operators

 $\lambda_O SQ\bar{Q} + M_O Q\bar{Q}$

- Integrate out heavy coloured matter, loop induced $s, a \rightarrow 2g/2\gamma$ decays
- Dominant for a, if small mixing between a and A⁰ through loop-induced A_h
- Branching ratios for
 $h \rightarrow 2a \rightarrow (4g, 2g2\gamma, 4\gamma) =$ $(0.99, 7.6 \times 10^{-3}, 1.5 \times 10^{-5})$
 - Viable search channel at TeVatron/LHC?—possibly [Dobrescu, Landsberg. Matchev]

Fermiophobic decays

Other operators–Supersoft

Source of SUSY breaking is a D-term in a hidden sector U(1). [Nelson, Weiner and PF] In presence of SM adjoints, (e.g. S),

$$\int d^2\theta \sqrt{2} \frac{W'_{\alpha} W^{\alpha}_j A_j}{M} + \text{h.c.} \rightarrow$$

$$\mathcal{L} \supset -m_D \lambda_j \tilde{a}_j - \sqrt{2} m_D (a_j + a_j^*) D_j - D_j (\sum_i g_k q_i^* t_j q_i) - \frac{1}{2} D_j^2$$

offshell, and onshell $(m_D = D'/M)$

$$\mathcal{L} \supset -m_D \lambda_j \tilde{a}_j - m_D^2 (a_j + a_j^*)^2 - m_D (a_j + a_j^*) (\sum_i g_k q_i^* t_j q_i)$$

Supersoft

- ESPs marry gauginos → Dirac gaugino masses
- Real scalar piece of ESP gets a tree level mass
- New scalar trilinear interaction, no analogue in MSSM
- Scalar masses not even log sensitive to high scale, running stops at gaugino mass.

Supersoft

In MSSM+S we have an adjoint.

$$\mathcal{L} = \int d^2\theta \frac{W'_{\alpha}}{M} W^{\alpha}_Y S + h.c. \to -\frac{1}{2} (m_D s + D_Y)^2 + \frac{m_D}{2} \psi_S \lambda$$

 $D_Y = \sum_i g_Y q_i \phi_i^* \phi_i$ Mixing from this operator leads to,

$$\begin{pmatrix} m_D^2 + \Delta_s^2 & \frac{gm_D v s_{\alpha+\beta}}{\sqrt{2}} & -\frac{gm_D v c_{\alpha+\beta}}{\sqrt{2}} \\ \frac{gm_D v s_{\alpha+\beta}}{\sqrt{2}} & m_h^2 & 0 \\ -\frac{gm_D v c_{\alpha+\beta}}{\sqrt{2}} & 0 & m_H^2 \end{pmatrix}$$

Also leads to $h \rightarrow ss$ decays

Necessary operators

- a should decay: A_h , m_{CP}^2 , M_Q^{-1}
- In should have cascade decays: m_D , λ_h , A_s (with source of mixing from another operator), A_h
- If *s* is light it also needs cascade decays (unless below 12 GeV): λ_h (with source of mixing from another operator), A_s , A_h (with source of mixing from another operator), m_{CP}^2

Some operators better than others

Scenarios

- Mixing with *s* pushes higgs heavy, $m_h ≥ 114 \text{GeV}$, or 110 GeV for 4b final state
- Single stage higgs decays $h \to 2a \to 2X$. If $X = b\overline{b}$, $m_h \ge 110 \text{GeV}$, if $X = 2\tau$ (tuned?), $m_h \gtrsim 86 \text{GeV}$ or $X = 2g \ m_h \gtrsim 82 \text{GeV}$
- Double stage decay h → 2s → 4a → 4X or
 h → as → 3a → 3X,
 $m_h \ge 82 \text{GeV}$

Two types of tuning

Spectral tuning to avoid experimental constraints

Single stage cascades

 $h \to 2a \to 4b$

Least tuning with supersoft: m_D , A_s , $m_{\tilde{t}} = 325 \text{GeV} \Rightarrow$

$\sin^2 \theta$	$m_{ ilde{h}}$	$m_{ ilde{s}}$	$m_{ ilde{a}}$	$B(\tilde{h} \to 2\tilde{a})$	$B(\tilde{s} \to 2\tilde{a})$	tuning
0.1	109	73.8	32.6	0.86	.99	3%

Light stops, but still "tuned"–Just so region

Single stage cascades

$$h \to 2a \to 4g, 4\tau$$

- **Possible with** λ_h and M_Q^{-1} but need A_h small.
- Less tuned with m_D , A_s and M_Q^{-1} (A_h for 4τ), $m_{\tilde{t}} = 175 \text{GeV} \Rightarrow$

$\sin^2 \theta$	$m_{ ilde{h}}$	$m_{ ilde{s}}$	$m_{ ilde{a}}$	$B_{\tilde{h} \to 2\tilde{a}}$	$B_{\tilde{s} \to 2\tilde{a}}$	tuning
.22	94.9	76.2	28.3	.92	.99	100%
			(8.37)	(.93)		(10%)

Tuning comes about from making $m_a < 12 \text{GeV}$

Fermiophobic Higgs

$h \rightarrow 2a \rightarrow 4g, 2g2\gamma, 4\gamma$

- Very hard to see at TeVatron/LHC
- To reconstruct Higgs at LHC need 4γ channel
- Dominant backgrounds (small) are $n jets + (4 n)\gamma$, pileup events
- Consistent pairs trick
- $\mathbf{Br} \gtrsim few \times 10^{-4}$ discoverable with $300 fb^{-1}$

Double stage cascades

$$h \to 2s \to 4a \to 8g, 8b, 8\tau$$

- **•** Tough to get with λ_h since *s* lighter than *a*.
- Final states never searched for, complicated

•
$$m_D$$
, A_s and M_Q^{-1} or A_h , $m_{\tilde{t}} = 360 \text{GeV} \Rightarrow$

$\sin^2 \theta$	$m_{ ilde{h}}$	$m_{ ilde{s}}$	$m_{ ilde{a}}$	$B_{\tilde{h} \rightarrow 2\tilde{a}}$	$B_{\tilde{h} \to 2\tilde{s}}$	$B_{\tilde{s}} \rightarrow 2\tilde{a}$	tuning
.06	111	39.3	16.2	.35	.50	.99	4%
			(7.13)	(0.36)	(0.49)		(2%)

$$\tilde{h} \to \tilde{a}\tilde{s} \to 3\tilde{a} \to 6b, 6\tau$$

$\sin^2_{\theta_{sh}}$	$\sin^2_{\theta_{ah}}$	$m_{ ilde{h}}$	$m_{ ilde{s}}$	$m_{ ilde{a}}$	$B_{\tilde{h} \to \tilde{a}\tilde{s}}$	$B_{\tilde{s} \to 2\tilde{a}}$	tuning
0.10	.01	103	67.0	18.4	.70	.91	100%
			(66.6)	(9.87)	(0.69)	(0.96)	18%

Benchmark summary

Simple(st?) extension of MSSM greatly enhances Higgs phenomenology, different from NMSSM.

- $h \rightarrow 2a \rightarrow 4b$ Just so, less tuned with supersoft
- $h \rightarrow 2s/2a \rightarrow 4\tau$ Requires spectral tuning. OPAL limits
 stop at 86GeV−Why?−new analysis
- h → 2a → 4g Higgs as light as 82GeV, only OPAL did model independent. Possible 2g2γ or 4γ signals
- $\tilde{h} \rightarrow \tilde{a}\tilde{s} \rightarrow 3\tilde{a} \rightarrow 6b, 6\tau$ little tuning with supersoft, not present in NMSSM. Higgs as light as 82GeV
- $h \rightarrow 2s \rightarrow 4a \rightarrow 8g, 8b, 8\tau$ only with supersoft, not in NMSSM

Lesson: pheno first model later.

Conclusions and the future

- MSSM suffers from LHP
- Lowering Higgs mass and giving it novel decays also solves problem, allows for light stops
- MSSM+S≠NMSSM
- Consider all operators, in particular supersoft and new coloured matter
- Tunings come in two forms

Conclusions and the future

- New signals from general analysis
- New signals demand new analyses e.g. model independent, low a mass
- New scenarios with light (stealthy) higgs <u>and</u> light superpartners
- New analyses for LHC and beyond e.g. 4γ final state

Allowed regions

Allowed regions if $h \rightarrow 2a \rightarrow 4b$, $s \rightarrow 4b$, $m_{\tilde{t}} = 300 \text{GeV}$

Possible realisations

μ .9 8 6 5 4 .150 100 150 200 .2 . 3

Using supersoft operator darkest to lightest–20,25,50,65,80,90,95 GeV Using superpotential ($\lambda_h = 0.25$) darkest to lightest-20,40,60,80,90,96 GeV