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Dark Matter as a hint of new physics
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✓DM existence, abundance 
✓Has gravitational interaction

“Known”
✓DM mass 
✓Non-gravitational interactions

“Unknown”
Wikipedia “Galaxy rotation curve”, E. Corbelli, P. Salucci (2000) Wikipedia “Cosmic microwave background”, 9 years of WMAP data
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DM mass window

‣ WIMP miracle w/ thermal production of  
‣ Other interaction and production mechanisms allow a broader mass range 
• freeze-in 
• misalignment mechanism for light bosonic DM

𝒪(1) TeV

3

Nelson+ ’11, Arias+ ‘12
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Light bosonic DM
‣ QCD axion 
‣ Axion-like particles (ALPs) 

‣ Dark photon
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DM-induced electromagnetic field
‣ QCD axion / axion-like particles (ALPs) 

     

 

‣ Dark photon

 

‣ Behaves as an effective EM field with 
coherence time 

 

ℒ = gaff
∂μa
2mf

f̄γμγ5 f → Heff =
gaff

mf
∇a ⋅ Sf

Beff ≃ 2ρDM
gaff

e
vDM cos(mt + δ) ∼ 3 aT ( gaff

10−10 )

Beff = 2ρDM ϵ (vDM × Ĥ) cos(mt + δ) ∼ 1 aT ( ϵ
10−10 )

τDM =
2π

mDMv2
DM

∼ 6s ( 10−10 eV
mDM )

5

a(t) ≃ a0 cos (mat +
1
2

mav2
at − ⃗v a ⋅ ⃗x + δ)
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Spin dynamics for DM search
‣ Spin dynamics in various condensed matter systems can be used 

6

Brief summary of my works in this direction
Today’s topics

Electron spins

‣ Magnons:  

‣ Application of the NV center magnetometry 
with diamond samples

gaee ‣ Axions: gaγγ

2001.10666 2102.06179

2302.12756

‣ superfluid  ‣ hyperfine interaction3He

Nuclear spins
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Magnon as a DM signal
‣ Light bosonic DM converts into a collective excitation of spin = magnon

7

2001.10666
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Table of contents
‣ Introduction to light bosonic DM 

‣ Introduction to NV center 
• What is it? How does it work as a quantum sensor? 

‣ NV center magnetometry for DM detection 
• DC magnetometry + application to axion DM 
• AC magnetometry + application to axion DM 
• Shielding effect for dark photon DM 

‣ Experimental status 

‣ Conclusion

8



Introduction to NV center
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NV center in diamond

‣ The stable complex of substitutional nitrogen (N) and vacancy (V) in diamond 
‣ The charged state  has two extra s localized at V 
‣ The ground state:  orbital singlet,  spin triplet  system

NV− e−

e− e− S = 1

10

application of resonant microwaves (MWs) near 2.87 GHz.
Upon optical excitation, nonradiative decay through a spin-
state-dependent intersystem crossing (Goldman, Doherty
et al., 2015; Goldman, Sipahigil et al., 2015) produces both
spin-state-dependent fluorescence contrast and optical spin
initialization into the NV− center’s ms ¼ 0 ground state; see
Fig. 1(b).
Relative to alternative technologies (Grosz, Haji-Sheikh,

and Mukhopadhyay, 2017), sensors employing NV− centers
excel in technical simplicity and spatial resolution (Grinolds et
al., 2014; Arai et al., 2015; Jaskula, Bauch et al., 2017). Such
devices may operate as broadband sensors, with bandwidths
up to ∼100 kHz (Acosta, Jarmola et al., 2010; Barry et al.,
2016; Schloss et al., 2018), or as high-frequency detectors for
signals up to several GHz (Shin et al., 2012; Cai et al., 2013;
Loretz, Rosskopf, and Degen, 2013; Steinert et al., 2013;
Tetienne et al., 2013; Pelliccione et al., 2014; Boss et al.,
2016, 2017; Hall et al., 2016; Lovchinsky et al., 2016; Pham
et al., 2016; Shao et al., 2016; Wood et al., 2016; Aslam et al.,
2017; Schmitt et al., 2017; Casola, van der Sar, and Yacoby,
2018; Horsley et al., 2018). Importantly, effective optical
initialization and readout of NV− spins does not require
narrow-linewidth lasers; rather, a single free-running 532-nm
solid-state laser is sufficient. NV-diamond sensors operate at
ambient temperatures, pressures, and magnetic fields and thus
require no cryogenics, vacuum systems, or tesla-scale applied
bias fields. Furthermore, diamond is chemically inert, making
NV− devices biocompatible. These properties allow sensors to
be placed within ∼1 nm of field sources (Pham et al., 2016),
which enables magnetic-field imaging with nanometer-scale
spatial resolution (Grinolds et al., 2014; Arai et al., 2015;
Jaskula, Bauch et al., 2017). NV-diamond sensors are also
operationally robust and may function at pressures up to
60 GPa (Doherty et al., 2014; Ivády et al., 2014; Hsieh et al.,

2019) and temperatures from cryogenic to 600 K (Toyli
et al., 2012, 2013; Plakhotnik et al., 2014).
Although single NV− centers find numerous applications in

ultra-high-resolution sensing due to their angstrom-scale size
(Balasubramanian et al., 2008; Maze et al., 2008; Casola, van
der Sar, and Yacoby, 2018), sensors employing ensembles of
NV− centers provide improved signal-to-noise ratio (SNR) at
the cost of spatial resolution by virtue of statistical averaging
over multiple spins (Taylor et al., 2008; Acosta et al., 2009).
Diamonds may be engineered to contain concentrations of
NV− centers as high as 1019 cm−3 (J. Choi et al., 2017), which
facilitates high-sensitivity measurements from single-channel
bulk detectors as well as wide-field parallel magnetic imaging
(Taylor et al., 2008; Steinert et al., 2010, 2013; Pham et al.,
2011; Le Sage et al., 2013; Glenn et al., 2015; Davis et al.,
2018; Fescenko et al., 2019). These engineered diamonds
typically contain NV− centers with symmetry axes distributed
along all four crystallographic orientations, each primarily
sensitive to the magnetic-field projection along its axis. Thus,
ensemble-NV− devices provide full vector magnetic-field
sensing without heading errors or dead zones (Maertz
et al., 2010; Steinert et al., 2010; Pham et al., 2011; Le
Sage et al., 2013; Schloss et al., 2018). NV− centers have also
been employed for high-sensitivity imaging of temperature
(Kucsko et al., 2013), strain, and electric fields (Dolde et al.,
2011; Barson et al., 2017). Recent examples of ensemble-
NV− sensing applications include magnetic detection of
single-neuron action potentials (Barry et al., 2016); magnetic
imaging of living cells (Le Sage et al., 2013; Steinert et al.,
2013), malarial hemozoin (Fescenko et al., 2019), and
biological tissue with subcellular resolution (Davis et al.,
2018); nanoscale thermometry (Kucsko et al., 2013; Neumann
et al., 2013); single protein detection (Shi et al., 2015;
Lovchinsky et al., 2016); nanoscale and micron-scale NMR
(Staudacher et al., 2013; Loretz et al., 2014; Sushkov et al.,
2014; DeVience et al., 2015; Rugar et al., 2015; Kehayias
et al., 2017; Bucher et al., 2018; Glenn et al., 2018); and
studies of meteorite composition (Fu et al., 2014) and
paleomagnetism (Farchi et al., 2017; Glenn et al., 2017).
Despite demonstrated utility in a number of applications,

the present performance of ensemble-NV− sensors remains far
from theoretical limits. Even the most sensitive ensemble-
based devices demonstrated to date exhibit readout fidelities
F ∼ 0.01, limiting sensitivity to at best ∼100 times worse than
the spin-projection limit. Additionally, reported dephasing
times T"

2 in NV-rich diamonds remain 100 to 1000 times
shorter than the theoretical maximum of 2T1 (Jarmola et al.,
2012; Bauch et al., 2018, 2019). As a result, whereas
present state-of-the-art ensemble-NV− magnetometers exhibit
pT=

ffiffiffiffiffiffi
Hz

p
-level sensitivities, competing technologies such as

superconducting quantum interference devices (SQUIDs) and
spin-exchange relaxation-free magnetometers exhibit sensi-
tivities at the fT=

ffiffiffiffiffiffi
Hz

p
level and below (Kitching, 2018). This

∼1000 times sensitivity discrepancy corresponds to a
∼106 times increase in required averaging time, which
precludes many envisioned applications. In particular, the
sensing times required to detect weak static signals with an
NV-diamond sensor may be unacceptably long; for example,
biological systems may have only a short period of viability.

N

V

NV || [111]

(a) (b)

FIG. 1. Overview of the nitrogen-vacancy (NV) center quantum
system. (a) Diagram of diamond lattice containing an NV center,
which consists of a substitutional nitrogen adjacent to a lattice
vacancy. The green arrow marks the NV symmetry axis, oriented
along the ½11̄ 1̄$ diamond crystallographic axis for the particular
NV center shown here. From Pham, 2013. (b) Energy level
diagram for the negatively charged NV− center in diamond, with
zero-field splitting D between the ground-state electronic spin
levels ms ¼ 0 and ms ¼ %1. The ms ¼ %1 energy levels
experience a Zeeman shift in the presence of a magnetic field
B⃗, which forms the basis for NV− magnetometry. Adapted from
Schloss et al., 2018.

John F. Barry et al.: Sensitivity optimization for NV-diamond …

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015004-3

L. M. Pham ‘13 “pink diamond”
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Fluorescence
‣ Can distinguish spin states  and  by fluorescence measurement 

‣ Governed by following processes  selection rules 
•  + 532 nm photon   

•    + 600 ̶ 850 nm photon 

•   ( )   + infrared photon 

‣ The spin state  is read from 

strength of the red (pink) fluorescence light 

|ms = 0⟩ |ms = ± ⟩

+
3A2 → 3E

3E → 3A2

3ES≠0 → 1A1 → 1E → |ms = ± ⟩

|ψ⟩ = cos
θ
2

|0⟩ + sin
θ
2

| ± ⟩
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NV center as a quantum sensor
‣ NV center works as a multimodal quantum sensor 

1. Temperature 
2. Electric field 
3. Strain 
4. Magnetic field (explain later) 
• No cryogenics 
• No vacuum system 
• No tesla-scale applied bias fields are required 

‣ Two options 
• Single NV center (high spacial resolution) 
• Ensemble of NV centers (high sensitivity) with  concentration∼ 1 − 20 ppm

12

M. W. Doherty+ [1302.3288]

G. Kucsko+ ‘13

F. Dolde+ ‘11

M. Barson+ ‘17

LETTER
doi:10.1038/nature12373

Nanometre-scale thermometry in a living cell
G. Kucsko1*, P. C. Maurer1*, N. Y. Yao1, M. Kubo2, H. J. Noh3, P. K. Lo4, H. Park1,2,3 & M. D. Lukin1

Sensitive probing of temperature variations on nanometre scales is
an outstanding challenge in many areas of modern science and
technology1. In particular, a thermometer capable of subdegree
temperature resolution over a large range of temperatures as well
as integration within a living system could provide a powerful new
tool in many areas of biological, physical and chemical research.
Possibilities range from the temperature-induced control of gene
expression2–5 and tumour metabolism6 to the cell-selective treat-
ment of disease7,8 and the study of heat dissipation in integrated
circuits1. By combining local light-induced heat sources with sensi-
tive nanoscale thermometry, it may also be possible to engineer
biological processes at the subcellular level2–5.Herewe demonstrate
a new approach to nanoscale thermometry that uses coherentmani-
pulation of the electronic spin associated with nitrogen–vacancy
colour centres indiamond.Our techniquemakes it possible todetect
temperature variationsas small as 1.8mK(a sensitivityof 9mKHz21/2)
in anultrapure bulk diamond sample.Usingnitrogen–vacancy centres
in diamond nanocrystals (nanodiamonds), we directly measure the
local thermal environment on length scales as short as 200nano-
metres. Finally, by introducing both nanodiamonds and gold nano-
particles into a single human embryonic fibroblast, we demonstrate

temperature-gradient control and mapping at the subcellular level,
enabling unique potential applications in life sciences.
Many promising approaches to local temperature sensing1 are being

explored at present. These include scanning probe microscopy1,9,
Raman spectroscopy10, and fluorescence-based measurements using
nanoparticles11,12 andorganicdyes13,14. Fluorescentpolymers13 andgreen
fluorescent proteins14 have recently beenused for temperaturemapping
within a living cell. However, many of these existing methods are
limited by drawbacks such as low sensitivity and systematic errors
due to fluctuations in the fluorescence rate11,12, the local chemical
environment13 and the optical properties of the surroundingmedium14.
Moreover, although promising, methods based on green fluorescent
proteins rely on cellular transfection14 that proves to be difficult to
achieve in certain primary cell types15. Our new approach to nanoscale
thermometryuses thequantummechanical spin associatedwithnitrogen–
vacancy colour centres in diamond. As illustrated in Fig. 1b, in its
electronic ground state each nitrogen–vacancy centre constitutes a
spin-1 system. These spin states can be coherently manipulated using
microwave pulses and efficiently initialized and detected by means of
laser illumination (Supplementary Information). In the absence of an
external magnetic field, the precise value of the transition frequency

*These authors contributed equally to this work.

1Department of Physics, HarvardUniversity, Cambridge,Massachusetts 02138, USA. 2Department of Chemistry andChemical Biology, HarvardUniversity, Cambridge,Massachusetts 02138, USA. 3Broad
Institute ofMIT andHarvardUniversity, 7CambridgeCenter, Cambridge,Massachusetts 02142,USA. 4Department ofBiology andChemistry, CityUniversity ofHongKong, TatCheeAvenue, Kowloon,Hong
Kong SAR, China.
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Figure 1 | Nitrogen–vacancy-based nanoscale thermometry. a, Schematic
image depicting nanodiamonds (grey diamonds) and a gold nanoparticle
(yellow sphere) within a living cell (central blue object; others are similar) with
coplanar waveguide (yellow stripes) in the background. The controlled
application of local heat is achieved by laser illumination of the gold
nanoparticle, and nanoscale thermometry is achieved by precision
spectroscopy of the nitrogen–vacancy spins in the nanodiamonds. b, Simplified
nitrogen–vacancy level diagram showing a ground-state spin triplet and an

excited state. At zero magnetic field, the |61æ sublevels are split from the |0æ
state by a temperature-dependent zero field splitting D(T). Pulsed microwave
radiation is applied (detuning, d) to perform Ramsey-type spectroscopy.
c, Comparison of sensor sizes and temperature accuracies for the nitrogen–
vacancy quantum thermometer and other reported techniques. Red circles
indicate methods that are biologically compatible. The open red circle indicates
the ultimate expected accuracy for our measurement technique in solution
(Methods).
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Applications of NV center magnetometory
‣ Single NV center 
•  

•

Bac ∼ 9.1 nT Hz−1/2

Bdc ∼ 10 nT Hz−1/2

13

磁場センサ：𝑇𝑇2が長く、室温で超伝導量子干渉計センサ並みの高
感度化．単一系での観測より、ナノレベルの空間分解能期待

𝑇𝑇2が長いほど感度よくなる．

𝜂𝜂 ∝
1

𝑛𝑛𝑁𝑁𝑁𝑁𝑇𝑇2
NVn : NV中心の個数

磁場感度（𝜂𝜂）

NV中心の濃度を高めるとT2

が短くなり、濃度を一定にし
て𝑛𝑛𝑁𝑁𝑁𝑁を増やせば、空間分
解能が落ちるというトレード
オフの関係

水落, 応用物理, 87, 251-261(2018).

脳磁

心磁

細胞内
計測

タンパクの
構造解析

1

なぜ感度や空間分解能を良くできるか？

Spatial resolution

Se
ns

iti
vi
ty Magnetoencephalography

MagnetocardiographyStructural analysis 
of protein

Intracellular 
measurement

Hall Effect Sensor

DM detection :)

‣ Ensemble 
•  

•

Bac ∼ 210 fT Hz−1/2

Bdc ∼ 460 fT Hz−1/2

J. F. Barry+ ‘23D. Herbschleb+ ‘19



DC magnetometry
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Rabi cycle
‣ Energy gap  
‣ Inject oscillating driving field with 

frequency   

•  is irrelevant 

• qubit system of  and  

‣ Under the transverse magnetic field 
 

Time evolution is described by the Rabi cycle 

ΔE ∼ 2π × 2.87 GHz

f = D +
1

2π
γeBz

| − ⟩

|0⟩ | + ⟩

B1 = B1y ŷ sin(2πft),

|ψ(t)⟩ = cos ( 1

2
γeB1y t) |0⟩ + sin ( 1

2
γeB1y t) | + ⟩
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H0=h ¼ DS2z þ
geμB
h

ðB⃗ · S⃗Þ; ð2Þ

where ge ≈ 2.003 is the NV electronic g factor, μB is the Bohr
magneton, h is Planck’s constant, and S⃗ ¼ ðSx; Sy; SzÞ is the
dimensionless electronic spin-1 operator. H0 is the simplest
Hamiltonian sufficient to model basic NV− spin behavior in
the presence of a magnetic field.
The NV− center’s nitrogen nuclear spin (I ¼ 1 for 14N and

I ¼ 1=2 for 15N) creates additional coupling terms charac-
terized by

Hnuclear=h ¼ AkSzIz þ A⊥ðSxIx þ SyIyÞ

þ P½I2z − IðI þ 1Þ=3&

−
gIμN
h

ðB⃗ · I⃗Þ; ð3Þ

where Ak and A⊥ are the axial and transverse magnetic
hyperfine coupling coefficients, respectively, P is the nuclear
electric quadrupole parameter, gI is the nuclear g factor for the
relevant nitrogen isotope, μN is the nuclear magneton, and
I⃗ ¼ ðIx; Iy; IzÞ is the dimensionless nuclear spin operator.
Experimental values of Ak, A⊥, and P are reported in
Table XIV. Note that the term proportional to P vanishes
for I ¼ 1=2 in 15NV−, as no quadrupolar moment exists for
spins I < 1.
The NV− electron spin also interacts with electric fields E⃗

and crystal stress (with associated strain) (Kehayias et al.,
2019). In terms of the axial dipole moment dk, transverse
dipole moments d⊥ and d0⊥, and spin-strain coupling param-
eters fMz;Mx;My;N x;N yg, the interaction is presently
best approximated by (van Oort and Glasbeek, 1990; Doherty
et al., 2012; Barfuss et al., 2019; Udvarhelyi et al., 2018)

Helecjstr=h ¼ ðdkEz þMzÞS2z
þ ðd⊥Ex þMxÞðS2y − S2xÞ
þ ðd⊥Ey þMyÞðSxSy þ SySxÞ
þ ðd0⊥Ex þN xÞðSxSz þ SzSxÞ
þ ðd0⊥Ey þN yÞðSySz þ SzSyÞ: ð4Þ

Experimental values of d⊥ and dk are given in Table XIV. In
magnetometry measurements, the terms proportional to
d0⊥Ei þN i for i ¼ x, y are typically ignored, as they are
off diagonal in the Sz basis, and the energy level shifts they
produce are thus suppressed by D (Kehayias et al., 2019).
Furthermore, many magnetometry implementations operate
with an applied bias field B⃗0 satisfying

d⊥Ei þMi ≪
geμB
h

B0 ≪ D ð5Þ

for i ¼ x, y in order to operate in the linear Zeeman regime,
where the energy levels are maximally sensitive to magnetic-
field changes (see the Appendix, Sec. 9). In the linear Zeeman
regime, the terms in Helecjstr proportional to d⊥Ei þMi can
also be ignored. The sole remaining term inHelecjstr acts on the

NV− spin in the same way as the temperature-dependent D
and is often combined into the parameter D for a given NV−

orientation (Glenn et al., 2017). Except for extreme cases such
as sensing in highly strained diamonds or in the presence
of large electric fields, the values of all the electric field
and strain parameters in Helecjstr are ∼1 MHz or lower.
Consequently, for most magnetic sensing applications, H0

can be taken as the Hamiltonian describing the NV− ground-
state spin for each of the hyperfine states.
In the presence of a magnetic field oriented along the NV

internuclear axis B⃗ ¼ ð0; 0; BzÞ,H0 is given in matrix form by

HðzÞ
0 =h ¼

0

B@
Dþ geμB

h Bz 0 0

0 0 0

0 0 D − geμB
h Bz

1

CA ð6Þ

with eigenstates jms ¼ 0i, jms ¼ −1i, and jms ¼ þ1i and
magnetic-field-dependent transition frequencies

ν' ¼ D' geμB
h

Bz; ð7Þ

which are depicted in Fig. 2. For the general case of a
magnetic field B⃗ with both axial and transverse components
Bz and B⊥, the transition frequencies are given to third order
in ðgeμB=hÞðB=DÞ by

ν' ¼ D
!
1'

"
geμB
h

B
D

#
cos θB þ 3

2

"
geμB
h

B
D

#
2

sin2θB

'
"
geμB
h

B
D

#
3
"
1

8
sin3θB tan θB −

1

2
sin2θB cos θB

#$
; ð8Þ

where tan θB ¼ B⊥=Bz.
Magnetic sensing experiments utilizing NV− centers

often interrogate one of these two transitions, allowing the

FIG. 2. Energy level diagram for the NV− ground-state spin in
the presence of an axial magnetic field Bz and ignoring nuclear
spin, as described by Eq. (6). Population in the jms ¼ 0i state
results in higher fluorescence under optical illumination than
population in the jms ¼ '1i states. In this diagram, resonant
MWs (gray oval) address the jms ¼ 0i → jms ¼ þ1i transition.
Equation (9) describes the pseudo-spin-1=2 subspace occupied
by these two levels.

John F. Barry et al.: Sensitivity optimization for NV-diamond …

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015004-5

J. F. Barry+ ‘20
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Bloch sphere

‣ Map from SU(2) group elements to the sphere  S2

|ψ⟩ = cos
θ
2

|0⟩ + sin
θ
2

eiφ | + ⟩ = ( |0⟩ | + ⟩)
cos θ

2 −sin θ
2 e−iφ

sin θ
2 eiφ cos θ

2
(1

0)
16

x
 

y

z

φ

θ

 

1

0

ψ

| + ⟩

1

2
( |0⟩ + | + ⟩)

1

2
( |0⟩ + i | + ⟩)
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Rabi cycle on Bloch sphere

‣ Rotation around  

 with 

⃗B 1 ∝ ŷ

|ψ(t)⟩ = cos
θ(t)
2

|0⟩ + sin
θ(t)
2

| + ⟩ θ(t) = 2γeB1y t

17
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Free precession

‣ Magnetic field  causes free precession = rotation around  

 with  (for DC-like signal)

⃗B ∝ ̂z ̂z

|ψ(τ)⟩ =
1

2
( |0⟩ + eiφ(τ) | + ⟩) φ(τ) = γe ∫

τ

0
dt Bz

DM(t) ≃ γeBz
DMτ

18
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Ramsey sequence
Ramsey sequence for DC magnetometry 
1.  pulse 

• Rabi cycle with  

2. Free precession under  for duration  

•  : spin relaxation (dephasing) time 

3.  pulse 

4. Fluorescence measurement 
• DM signal is population difference between  and  

   

(π/2)y

θ = 2γeB1yt = π/2

BDM τ ∼ T*2 /2

T*2 ∼ 1 μs

(π/2)x

|0⟩ | + ⟩

S ≡
1
2

⟨ψfin. |σz |ψfin.⟩ ∝ φ(τ) = γeBz
DMτ (φ(τ) ≪ 1)

19
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Sensitivity on axion DM
‣ Assume spin-projection noise limits the sensitivity 

 

 

‣ Large statistics reduce noise 
•  : # of NV centers 

•  : total observation time 

‣ (Roughly) universally sensitive to dc-like 
signal with 

|x⟩ ≡
1

2
( |0⟩ + | + ⟩)

ΔS ≡
1
2 [⟨x |σ2

z |x⟩ − (⟨x |σz |x⟩)2]
1/2

=
1
2

N

tobs

m ≲ 2π/τ ∼ 10−8 eV

20
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Effects of DM coherence time
‣  and  change randomly with  

‣ For  
• Fixed  and  

• (# of observations)  

• (Sensitivity)  

‣ For  

• We measure the variance of  

• Comparison of  and  

• (Sensitivity) 

Bz
DM δ τDM ∼ 2π/mDMv2

DM

tobs ≪ τDM

Bz
DM δ

≃ N (tobs/τ)
∝ N1/2 (tobs/τ)1/2

tobs ≫ τDM

Sobs

ΔSDM ΔS N−1/2 (τDM/τ)−1/2

∝ N1/2 (τDM/τ)1/2 (tobs/τDM)1/4

21

SC+ [2302.12756]

Consistent with Dror+ [2210.06481] in the context of CASPEr
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Insensitive to fast-oscillating signals

‣ Fast oscillation leads to cancellation 

S ∼ ∫
τ

0
dt Bz

DM sin(mt) ∝
1 − cos(mτ)

mτ

22

SC+ [2302.12756]
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DM on resonance
If , DM field itself works as a driving field 

“Resonance’’ sequence for  
1.  pulse 

2. Free precession for duration  

3. Fluorescence measurement 

m/2π ≃ f

m/2π ≃ f

(π/2)y

τ ∼ T*2 /2

S ∝ By
DMτ

23
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On resonance sensitivity

‣ Resonance position 

 

• Tunable with e.g., external magnetic field   

‣ Resonant enhancement of sensitivity w/ 

m
2π

≃ 2.87 GHz ⇔ m ≃ 11.9 μeV

B

mτ ∼ 2 × 104 ( τ
1 μs )

24

SC+ [2302.12756]
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Insensitive to fast-oscillating signals
‣ Fast oscillation leads to cancellation 

when m ≲ 2π/τ

26
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Hahn echo
Hahn echo for ac magnetometry 
1.  pulse 

2. Free precession for  
3.  pulse 

4. Free precession for  
5.  pulse 
6. Fluorescence measurement 

   ⇨ Targeted at the frequency 

(π/2)y

τ/2
πy

τ/2

(π/2)x

φ(τ) = γe(∫
τ/2

0
dt Bz

DM(t) − ∫
τ

τ/2
dt Bz

DM(t)) ∼ 1/τ

27
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Prolonged relaxation time

28

‣ Any DC effect cancels out from φ(t)

‣ No dephasing from inhomogeneous DC fields 
‣ Relaxation time  

‣ Optimized choice 

T2 ∼ 50 μs ≫ T*2 ∼ 1 μs

τ ∼ T2/2
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Sensitivity on axion DM

‣ Peak position 

 

• Better sensitivity around the peak than 
DC thanks to  

‣ Tunable peak position with shorter 

m
2π

∼
1
τ

∼ 20 kHz

T2 ≫ T*2

τ

29
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Towards sensitivity improvement
‣ Using More  pulses prolongs  

• Upper limit on  

• target frequency  

‣ Lower temperature prolongs  
( With  ) 

•  

•  

•  

•

πy T2

T2 < T1

× Nπ

T2, T1

Nπ = 1023

300 K : T2 = 100 μs, T1 ∼ 1 ms

77 K : T2 = 1 ms, T1 ∼ 1 s

4 K : T2 = 10 ms, T1 ≫ 1 s

0.1 K : T2 = 0.1 s, T1 ≫ 1 s

30
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Shielding effect

‣ Electric interaction of the dark photon creates current in the conductor and 
induces a magnetic field  

‣ The effective magnetic field may be canceled and “shielded” if 

Bind

λDM > L

32

L

Dark photon

e−

Conductor

Bind

BDM

H0=h ¼ DS2z þ
geμB
h

ðB⃗ · S⃗Þ; ð2Þ

where ge ≈ 2.003 is the NV electronic g factor, μB is the Bohr
magneton, h is Planck’s constant, and S⃗ ¼ ðSx; Sy; SzÞ is the
dimensionless electronic spin-1 operator. H0 is the simplest
Hamiltonian sufficient to model basic NV− spin behavior in
the presence of a magnetic field.
The NV− center’s nitrogen nuclear spin (I ¼ 1 for 14N and

I ¼ 1=2 for 15N) creates additional coupling terms charac-
terized by

Hnuclear=h ¼ AkSzIz þ A⊥ðSxIx þ SyIyÞ

þ P½I2z − IðI þ 1Þ=3&

−
gIμN
h

ðB⃗ · I⃗Þ; ð3Þ

where Ak and A⊥ are the axial and transverse magnetic
hyperfine coupling coefficients, respectively, P is the nuclear
electric quadrupole parameter, gI is the nuclear g factor for the
relevant nitrogen isotope, μN is the nuclear magneton, and
I⃗ ¼ ðIx; Iy; IzÞ is the dimensionless nuclear spin operator.
Experimental values of Ak, A⊥, and P are reported in
Table XIV. Note that the term proportional to P vanishes
for I ¼ 1=2 in 15NV−, as no quadrupolar moment exists for
spins I < 1.
The NV− electron spin also interacts with electric fields E⃗

and crystal stress (with associated strain) (Kehayias et al.,
2019). In terms of the axial dipole moment dk, transverse
dipole moments d⊥ and d0⊥, and spin-strain coupling param-
eters fMz;Mx;My;N x;N yg, the interaction is presently
best approximated by (van Oort and Glasbeek, 1990; Doherty
et al., 2012; Barfuss et al., 2019; Udvarhelyi et al., 2018)

Helecjstr=h ¼ ðdkEz þMzÞS2z
þ ðd⊥Ex þMxÞðS2y − S2xÞ
þ ðd⊥Ey þMyÞðSxSy þ SySxÞ
þ ðd0⊥Ex þN xÞðSxSz þ SzSxÞ
þ ðd0⊥Ey þN yÞðSySz þ SzSyÞ: ð4Þ

Experimental values of d⊥ and dk are given in Table XIV. In
magnetometry measurements, the terms proportional to
d0⊥Ei þN i for i ¼ x, y are typically ignored, as they are
off diagonal in the Sz basis, and the energy level shifts they
produce are thus suppressed by D (Kehayias et al., 2019).
Furthermore, many magnetometry implementations operate
with an applied bias field B⃗0 satisfying

d⊥Ei þMi ≪
geμB
h

B0 ≪ D ð5Þ

for i ¼ x, y in order to operate in the linear Zeeman regime,
where the energy levels are maximally sensitive to magnetic-
field changes (see the Appendix, Sec. 9). In the linear Zeeman
regime, the terms in Helecjstr proportional to d⊥Ei þMi can
also be ignored. The sole remaining term inHelecjstr acts on the

NV− spin in the same way as the temperature-dependent D
and is often combined into the parameter D for a given NV−

orientation (Glenn et al., 2017). Except for extreme cases such
as sensing in highly strained diamonds or in the presence
of large electric fields, the values of all the electric field
and strain parameters in Helecjstr are ∼1 MHz or lower.
Consequently, for most magnetic sensing applications, H0

can be taken as the Hamiltonian describing the NV− ground-
state spin for each of the hyperfine states.
In the presence of a magnetic field oriented along the NV

internuclear axis B⃗ ¼ ð0; 0; BzÞ,H0 is given in matrix form by

HðzÞ
0 =h ¼

0

B@
Dþ geμB

h Bz 0 0

0 0 0

0 0 D − geμB
h Bz

1

CA ð6Þ

with eigenstates jms ¼ 0i, jms ¼ −1i, and jms ¼ þ1i and
magnetic-field-dependent transition frequencies

ν' ¼ D' geμB
h

Bz; ð7Þ

which are depicted in Fig. 2. For the general case of a
magnetic field B⃗ with both axial and transverse components
Bz and B⊥, the transition frequencies are given to third order
in ðgeμB=hÞðB=DÞ by

ν' ¼ D
!
1'

"
geμB
h

B
D

#
cos θB þ 3

2

"
geμB
h

B
D

#
2

sin2θB

'
"
geμB
h

B
D

#
3
"
1

8
sin3θB tan θB −

1

2
sin2θB cos θB

#$
; ð8Þ

where tan θB ¼ B⊥=Bz.
Magnetic sensing experiments utilizing NV− centers

often interrogate one of these two transitions, allowing the

FIG. 2. Energy level diagram for the NV− ground-state spin in
the presence of an axial magnetic field Bz and ignoring nuclear
spin, as described by Eq. (6). Population in the jms ¼ 0i state
results in higher fluorescence under optical illumination than
population in the jms ¼ '1i states. In this diagram, resonant
MWs (gray oval) address the jms ¼ 0i → jms ¼ þ1i transition.
Equation (9) describes the pseudo-spin-1=2 subspace occupied
by these two levels.

John F. Barry et al.: Sensitivity optimization for NV-diamond …

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015004-5

S. Chaudhuri+ [1411.7382] “DM Radio” paper
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NV center works without shielding
‣ AC magnetometry is insensitive 

to DC(-like) noises 
• Applicable for  

‣ “Low-frequency quantum sensing” 
possible with Fourier analysis 

• Applicable for  

‣ Must be careful with AC magnetic noises with the target frequency

m
2π

≳ 1 kHz

m
2π

≳
1

tobs

33
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Sensitivities on dark photon DM
‣ DC magnetometry

34

SC+ [2302.12756]

‣ AC magnetometry
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Assumptions on magnetic shielding
‣ We put shielding for  

• Sensitivity is significantly suppressed 

‣ Even without magnetic shielding, 
the inner core of the Earth/ionosphere 
are conducting and shielding fields 
• M. A. Fedderke+ [2106.00022] 
• Suppression factor 

m
2π

≲
1

tobs

∝ mREarth

35
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Standard-deviation quantum sensing
‣ Working on experimental validation of our statistical treatment

37
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‣ Obtained expected dependence on # of data points  
‣ Can estimate signal amplitude and frequency

N

Standard-deviation quantum sensing

6
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Regular

Phase jumps

Bmeasured ⇡ 12.1 nT

Bmeasured ⇡ 12.0 nT

f ⇡ 100 Hz

f ⇡ 75 Hz

(a) (b)

(c) (d)

FIG. 5. Measurements. (a) FID data points (black dots) versus time for a region of the total measurement (1 s window). The
red dashed line is a guide to the eye to illustrate that there are no random phase jumps. (b) Signal std (magenta circles) versus
averaged time. Fit with Eq. (C4) (black dashed line) estimates f ⇡ 100 Hz. (c) FID data points (black dots) versus time as in
(a). Now, the guide to the eye illustrates that the signal is not regular. Here, there are random phase jumps once per period.
(d) Signal std (magenta circles) versus averaged time. The fit (black dashed line) estimates f ⇡ 75 Hz. This inaccuracy is due
to the high frequency of the phase jumps, which lowers the temporal structure of the signal.

dow (which, including overhead, sets N = 2361), and
to demonstrate a way to limit �n, we accumulate pho-
tons for 5000 iterations of this 1 s window. Since pho-
ton shot-noise is the main source of noise, this sets �n to
1/

p
5000Nphotons/grad with Nphotons the number of pho-5

tons read out per FID subsequence [19]. In order to study
the e↵ect of limited signal coherence times, we choose a
frequency of 100 Hz which allows us to change its phase
over several periods. The amplitude of the applied mag-
netic field is 12 nT. With �n ⇡ 5 nT (see Fig. 3), we10

have �n ⇡ �y, which behaves as the �n ⌧ �y regime [see
Fig. 2(d)].

The results for a regular signal (infinite signal coher-
ence time) are plotted in Fig. 5(a) and (b). It finds a
field amplitude of 12.1+0.1

�0.1 nT, and an estimate of the15

frequency of 100.0+0.4
�0.4 Hz. Next, we change the phase of

the field at random each 10 ms, so once per period, within
the 1 s window. The results for this case are shown in
Fig. 5(c) and (d). Here, the measured field amplitude
is 12.0+0.1

�0.1 nT, and the frequency estimate 74.8+1.4
�1.3 Hz.20

This exemplifies that the less temporal structure of the
signal remains, as here the phase changes once per pe-
riod, the harder it becomes to find the frequency, while
the amplitude detection is not a↵ected. Note that for
both measurements, there is a slow change in the back-25

ground (which e↵ectively means that the local mean at
t = 0 s and at t = 1 s are not the same) as there is no
insulation in our experimental setup, which degrades the
results slightly.

III. DISCUSSION30

The first advantage of the std method is that the coher-
ence time of the measured signal is allowed to be limited.
The e↵ective coherence time we use in our measurement
(1 period) is rather short, yet the amplitude is found ac-
curately still. Thus, the method is resistant to changes35

in phase, and in principle to frequency changes as well.
There can be data points at the moment a phase changes,
but as long as coherence time � interaction delay, these
have little e↵ect. As example, for dark matter the coher-
ence time is about 1.6 ⇥ 105 periods of the signal, thus40

there would be few such edge data points [12]. If the
sensor would be moving with respect to the source con-
stantly, and/or no precise time synchronization is avail-
able, then both the amplitude and the e↵ective phase can
change over time randomly. The amplitude can still be45

estimated (when its distribution is known), and for just
detection of whether there is a signal at all (say a mineral
or dark matter), it works robustly. Note that although
the averaged amplitude of a randomly oriented sinusoidal
goes to zero, its std does not.50

The second advantage is the limited memory require-
ment. Ideally, when single-shot readout of the spin would
be applied, there are only two possible results: state |0i
or either of states |±1i. Hence, only the number of each
needs to be counted to find the std in the end, limiting55

the required storage to two numbers in total only, instead
of two numbers per data point. For single N-V centers,

38
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FIG. 2. Noise and sensitivity. (a) Simulated data points (black dots) measured over time. Here, there is only noise which has
a normal distribution with �n = 10 (indicated with horizontal magenta dashed lines around the teal-dashed-line mean). (b)
Histogram of a large number of data points as in (a). The expected Gaussian shape is visible. (c) Simulation results giving the
data std �D for N = 103. The N data points are generated according to Eq. (2) while adding random noise as in (a), and this
is repeated 105 times to get the plotted distributions. This distribution of �D depends on the signal’s std �y. For �n � �y,
�D is close to �n (vertical olive dotted lines in left three plots), while for �n ⌧ �y, �D is close to �y (vertical blue dotted
lines in right two plots). By finding the change �� (middle plot), the signal’s �y and hence its amplitude can be found. (d)
Simulation results for ��y by varying �y. The behavior at small and large �y (compared to �n) is di↵erent. The horizontal

black dashed lines on the left follow Eq. (13) with a constant ⇡� 1
2 , and the one on the right Eq. (8). Note that since ��y is

considered to be the detection limit, �y < ��y (left of slanted red dash-dotted line) is below the functional region. (e) As (d),
but the uncertainty is converted to the sensitivity via Eq. (9).

a sampled std, as each time we repeat this measurement,
the resulting std will be slightly di↵erent given the ran-
dom nature of noise. The longer we measure, the more
accurately we can find the properties of the noise. This
accuracy is given by the std of �n itself, which follows5

from the distribution of the sampled �n. The sampled
variance follows a chi-squared distribution [18], and the
std a chi distribution, leading to the std of �n of

��n =
�n

p
N � 1

s

N � 1� 2
�2 (N/2)

�2 ((N � 1) /2)
⇡

�n
p
2N

,

(4)
with � the gamma function and the approximation valid
for N � 1, which is generally the case for the envisaged10

long measurements [see Fig. 2(c)]. This shows that for
longer measurements, which have a larger N , the accu-
racy increases, as expected.

C. Signal and noise

Actual data consist of noise added to the signal, thus15

the datum at time ti is Di = ni + yi, with ni the noise
at time i. When the noise and signal are independent,
which we reasonably assume is the case, the variances
add as well. Thus,

VARD = VARn +VARy = �
2
n + �

2
y, (5)

Pre
limi
nar
y



11/13/2023  So Chigusa ＠ UC Davis/ 39

Discussions and conclusions
‣ We explored the potential of NV center magnetometry for DM search 

‣ Benefits of this approach include: 
• Wide dynamic range = broad DM mass range is searched for 
• Not always need magnetic shielding 

‣ Some applications of advanced quantum sensing techniques can be considered 
• e.g.) Use of entanglement 

     

‣ Now setting up an experimental environment at QUP with NV + cryogenic

|ψ⟩ = ⊗c
1

2
( |0⟩c + eiφ |1⟩c) → |ψ⟩ =

1

2
( |000…⟩ + eiNφ |111…⟩)

39
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Sensitivity estimation

41

‣ The outcome of the spin-projection noise 

 

 

‣ Noise contribution is  

‣ Sensitivity curve is 

|x⟩ ≡
1

2
( |0⟩ + | + ⟩)

ΔS ≡
1
2 [⟨x |σ2

z |x⟩ − (⟨x |σz |x⟩)2]
1/2

=
1
2

ΔSsp ∼

1
2

1

N(tobs/τ)
(tobs < τa)

1
2

1

N(τa/τ)
1

(tobs/τa)1/4 (tobs > τa)

(SNR) ≡
S

ΔSsp
= 1
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Sensitivity estimation
‣ The axion-induced effective magnetic field has an unknown velocity  and phase  

 

Random velocity  

‣ The signal is proportional to  , which is averaged to  

Random phase  

‣ The signal is estimated as a function of  :  

‣ We obtain the average  and the standard deviation  , which should be 

compared with the noise

vDM δ

BDM ≃ 2ρDM
gaee

e
vDM sin(mDMt + δ)

vDM

(vi
DM)2 (i = x, y, z) ∼

1
3

v2
DM

δ ∈ [0,2π)

δ S(δ) ∝ cos ( mτ
2

+ δ)
⟨S⟩δ = 0 ⟨S2⟩ ≠ 0
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Technical noise mitigation

43

J. M. Schloss+ ‘18


