

Structures of Neural Network Effective Theories

Zhengkang "Kevin" Zhang (UC Santa Barbara)

I. Banta, T. Cai, N. Craig, ZZ, 2305.02334.

field theories

 \mathbb{R}^{n}

DUCK

Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks.
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

Outline

1. Neural networks \leftrightarrow field theories (high-level summary).

- 2. EFT of deep neural networks.
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

What is a (deep) neural network?

Goal (supervised learning): learn a function $y = f(\vec{x})$ from training dataset $(\vec{x}_{\alpha}, y_{\alpha})$.

What is a (deep) neural network?

Archetype: multilayer perceptron.

input layer

hidden layer 1

hidden layer 2

output layer

Goal (supervised learning): learn a function $y = f(\vec{x})$ from training dataset $(\vec{x}_{\alpha}, y_{\alpha})$.

nonlinear activation $\phi_i^{(1)}(\vec{x}) = \sum_{j=1}^{n_0} W_{ij}^{(1)} x_j + b_i^{(1)},$ function (e.g. tanh) $\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + \frac{b_i^{(\ell)}}{\ell} \quad (\ell \ge 2) \,.$ weights biases

trainable parameters:

O randomly initialized

O then updated by gradient descent to minimize a loss, e.g. $\sum (f(x_{\alpha}) - y_{\alpha})^2$

Neural networks \leftrightarrow field theories (1/2)

Ensemble of networks, randomly initialized.

Neurons \leftrightarrow scalar fields $\phi(\vec{x})$.

Ensemble statistics \leftrightarrow action: $P(\phi) = e^{-S[\phi]}$.

Infinitely-wide networks* $(n \rightarrow \infty) \leftrightarrow$ free theories. Wide networks $(n \gg L) \leftrightarrow$ weakly-interacting theories (perturbation theory!).

* Neal '96. Williams '96.

Neural networks \leftrightarrow field theories (2/2)

Information flow \leftrightarrow RG flow.

Low level features

Mid level features

Eyes, ears, nose

High level features

Facial structure

Neural networks \leftrightarrow field theories (2/2)

Information flow \leftrightarrow RG flow.

Exponential scaling (generic) \leftrightarrow flow to trivial fixed point. Tune to criticality* \Rightarrow power-law scaling \leftrightarrow nontrivial fixed point.

* Raghu et al '16. Poole et al '16. Schoenholz et al '16.

Dreams

A theory of everything deep learning (opening the black box)?

- Lee et al '17-19. Matthews et al '18. Yang '19-23.
- Jacot, Gabriel, Hongler '18.
- Antognini '19. Huang, Yau '19.
- Yaida '19, '22. Hanin, Nica '19. Hanin '21, '22.
- Dyer, Gur-Ari '19. Aitken, Gur-Ari '20. Andreassen, Dyer '20.
- Naveh, Ringel et al '20, '21. Zavatone-Veth et al '21.

Roberts, Yaida, Hanin '21. (Our work largely builds on this book.)

THE PRINCIPLES OF DEEP LEARNING THEORY

An Effective Theory Approach to Understanding Neural Networks

Daniel A. Roberts and Sho Yaida based on research in collaboration with Boris Hanin

Dreams

A theory of everything deep learning (opening the black box)?

A new angle to learn about field theories?

Schoenholz, Pennington, Sohl-Dickstein '17.

Cohen, Malka, Ringel '19.

Halverson, Maiti, Stoner '20+'21. Halverson '21.

Erbin, Lahoche, Samary '21+'22.

Bachtis, Aarts, Lucini '21.

Erdmenger, Grosvener, Jefferson '21. Grosvenor, Jefferson '21.

Outline

1. Neural networks \leftrightarrow field theories (high-level summary).

2. EFT of deep neural networks.

- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

Initializing a deep neural network

Network depth (number of layers): *L*.

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$. input $x \in \mathbb{R}^{n_0}$ widths $\gg 1$ $y \in \mathbb{R}^{n_L}$

hidden layer output

architecture hyperparameters

Initializing a deep neural network

Network depth (number of layers): L.

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$.

Weights and biases drawn from Gaussian distributions with mean 0, variances $C_W^{(\ell)}/n_{\ell-1}$, $C_h^{(\ell)}$.

architecture hyperparameters

$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + b_i^{(\ell)}$$

Initializing a deep neural network an ensemble of networks

Network depth (number of layers): L.

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$.

Weights and biases drawn from Gaussian distributions with mean 0, variances $C_W^{(\ell)}/n_{\ell-1}$, $C_b^{(\ell)}$.

_ architecture hyperparameters

$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + b_i^{(\ell)}$$

Statistics of the ensemble (at initialization)

We can derive the field theory action $S[\phi]$ (next slide).

Then observables (neuron correlators) can be calculated as in field theory:

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \right\rangle = \int \mathcal{D}\phi \, \phi_{i_1}^{(\ell)}(\vec{x}_1) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \, e^{-S[\phi]} \, .$$

And we can study e.g. how they evolve from layer to layer \Rightarrow RG flow. (which can tell us a lot about how deep neural networks process information)

 $P(\phi) = e^{-S[\phi]}$

Deriving the EFT action $S[\phi]$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P$$

$$P\left(\phi^{(\ell)} \middle| \phi^{(\ell-1)}\right) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)$$

$$\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) \qquad \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \qquad \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x})\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij}\sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)\right]$$

 $P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(\phi^{(L)}|\phi^{(L-1)})$

Deriving the EFT action $S[\phi]$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P$$

$$P\left(\phi^{(\ell)} \middle| \phi^{(\ell-1)}\right) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)$$

$$\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) \qquad \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \qquad \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x}) \left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)\right]$$

Complete the squares, integrate out W, b, then integrate out Λ (all Gaussian integrals!) \Rightarrow

$$P(\phi^{(\ell)}|\phi^{(\ell-1)}) = \left[\det\left(2\pi \mathcal{G}^{(\ell)}\right)\right]^{-\frac{n_{\ell}}{2}} \exp\left[-\int d\vec{x}_{1}d\vec{x}_{2} \frac{1}{2}\sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1}(\vec{x}_{1},\vec{x}_{2}) \phi_{i}^{(\ell)}(\vec{x}_{2})\right]$$

$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2), \qquad \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \frac{\sigma_{j, \vec{x}_1}^{(\ell-1)} \sigma_{j, \vec{x}_2}^{(\ell-1)}}{\sigma_{j, \vec{x}_2}^{(\ell-1)}}$$
operator built from $\phi^{(\ell-1)} \Rightarrow$ interactions between adjacent-lay

 $P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(\phi^{(L)}|\phi^{(L-1)})$

ajacent-layer neurons!

Derivin

$$\begin{aligned} \text{action } S[\phi] \\ e^{-S} &= P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(\ell)$$

Deriving the EFT action
$$S[\phi]$$

$$e^{-S} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(\ell)}|\phi^{(\ell)}) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)$$

$$\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) = \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x})\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij}\sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)\right]$$

Complete the squares, integrate out W, b, then integrate out Λ (all Gaussian integrals!) \Rightarrow

$$P\left(\phi^{(\ell)} \middle| \phi^{(\ell-1)}\right) = \left[\det\left(2\pi \mathcal{G}^{(\ell)}\right)\right]^{-\frac{n_{\ell}}{2}} \exp\left[-\int d\vec{x}_1 d\vec{x}_2 \ \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)}\right)^{-1}\!(\vec{x}_1, \vec{x}_2) \ \phi_i^{(\ell)}(\vec{x}_2)\right]$$

$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2), \qquad \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \frac{\sigma_{j, \vec{x}_1}^{(\ell-1)} \sigma_{j, \vec{x}_2}^{(\ell-1)}}{\sigma_{j, \vec{x}_2}^{(\ell-1)}}$$
operator built from $\phi^{(\ell-1)} \Rightarrow$ interactions between adjacent-lay

ajacent-layer neurons!

Derivin

$$e^{-S} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(\ell)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(\ell)$$

Deriving the EFT action
$$S[\phi]$$

$$e^{-S} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(p^{(\ell)}|\phi^{(\ell)}|\phi^{(\ell)}|\phi^{(\ell)}|) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)$$

$$\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) \qquad \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \qquad \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x})\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij}\sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)\right]$$

Complete the squares, integrate out W, b, then integrate out Λ (all Gaussian integrals!) \Rightarrow

$$P(\phi^{(\ell)} | \phi^{(\ell-1)}) = \left[\det\left(2\pi \mathcal{G}^{(\ell)}\right) \right]^{-\frac{n_{\ell}}{2}} \exp\left[-\int d\vec{x}_{1} d\vec{x}_{2} \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)} \right)^{-1}\!\!(\vec{x}_{1}, \vec{x}_{2}) \phi_{i}^{(\ell)}(\vec{x}_{2}) \right] \\ \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \exp\left[\sum_{i'=1}^{n_{\ell}/2} \bar{\psi}_{i'}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)} \right)^{-1}\!\!(\vec{x}_{1}, \vec{x}_{2}) \psi_{i'}^{(\ell)}(\vec{x}_{2}) \right] \qquad \text{ghosts!}$$

Deriving the EFT action $S[\phi]$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P$$

$$= \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-\sum_{\ell=1}^{L} \left(\mathcal{S}_{0}^{(\ell)}[\phi] + \right)}$$

$$\mathcal{S}_{0}^{(\ell)} = \int d\vec{x}_{1} d\vec{x}_{2} \, \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1}(\vec{x}_{1}, \vec{x}_{2}) \, \phi_{i}^{(\ell)}(\vec{x}_{2})$$

• • •

$P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(\phi^{(L)}|\phi^{(L-1)})$

 $+\mathcal{S}_{\psi}^{(\ell)}[\phi,\psi,ar{\psi}]\Big)$

Deriving the EFT action $S[\phi]$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P$$

$$= \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-\sum_{\ell=1}^{L} \left(\mathcal{S}_{0}^{(\ell)}[\phi] + \right)}$$

Network has directionality! (Loop correction When calculating neuron correlators $\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \rangle$

$P(\phi^{(1)}) P(\phi^{(2)}|\phi^{(1)}) \dots P(\phi^{(L)}|\phi^{(L-1)})$

 $+\mathcal{S}_{\psi}^{(\ell)}[\phi,\psi,ar{\psi}]\Big)$

Network has directionality! (Loop corrections cancel between ϕ and ψ when going backward.)

$$_{l}) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \rangle$$
, ghosts do not enter.

Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks.
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

$$\mathcal{S}_{0}^{(\ell)} = \int d\vec{x}_{1} d\vec{x}_{2} \frac{1}{2} \sum_{i=1}^{n_{\ell}}$$

$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2),$$

$$\uparrow$$
operator built from $\phi^{(\ell-1)}$

If $\phi^{(\ell-1)}$ were classical background \Rightarrow free theory for $\phi^{(\ell)}$.

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \, \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2)$$

 $\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \ \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}^{(\ell)}(\vec{x}_3, \vec{x}_4) \ + \text{perms.}$

 $\left(\phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)}\right)^{-1}(\vec{x}_1, \vec{x}_2) \phi_i^{(\ell)}(\vec{x}_2)\right)$

 $\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \,\sigma_{j,\vec{x}_{1}}^{(\ell-1)} \,\sigma_{j,\vec{x}_{2}}^{(\ell-1)} = \mathcal{G}_{j}^{(\ell)}(\vec{x}_{2},\vec{x}_{1})$

$$\mathcal{S}_{0}^{(\ell)} = \int d\vec{x}_{1} d\vec{x}_{2} \frac{1}{2} \sum_{i=1}^{n_{\ell}}$$

$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2),$$

$$\uparrow$$
operator built from $\phi^{(\ell-1)}$

If $\phi^{(\ell-1)}$ were classical background \Rightarrow free theory for $\phi^{(\ell)}$. In reality $\phi^{(\ell-1)}$ have statistical fluctuations.

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle = \delta_{i_1 i_2} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

 $\left(\phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_1, \vec{x}_2) \phi_i^{(\ell)}(\vec{x}_2)\right)$

$$\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \,\sigma_{j,\vec{x}_{1}}^{(\ell-1)} \,\sigma_{j,\vec{x}_{2}}^{(\ell-1)} = \mathcal{G}_{j}^{(\ell)}(\vec{x}_{2},\vec{x}_{1})$$

 $\phi_i^{(\ell)}(\vec{x}_1) = \phi_i^{(\ell)}(\vec{x}_2)$

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \varphi_{i_4}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

Effectively, we can simply use the following Feynman rule to build up diagrams.

$$\frac{1}{n_{\ell-1}} \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \quad \longleftarrow \text{ just be sure to attach th}$$
(no external wavy

his to a blob (7) lines) $\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \sigma_{j,\vec{x}_{1}}^{(\ell-1)} \sigma_{j,\vec{x}_{2}}^{(\ell-1)}$

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \varphi_{i_4}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

Effectively, we can simply use the following Feynman rule to build up diagrams. Further decompose into vev + fluctuation.

Only fluctuation piece (Δ , single wavy line) contributes to connected correlators.

$$\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \sigma_{j,\vec{x}_{1}}^{(\ell-1)} \sigma_{j,\vec{x}_{2}}^{(\ell-1)}$$

$$\overline{\phi}_{j}^{(\ell)}(\vec{x}_{2}) = \Delta_{j}^{(\ell-1)}(\vec{x}_{1},\vec{x}_{2}) \equiv \sigma_{j,\vec{x}_{1}}^{(\ell-1)} \sigma_{j,\vec{x}_{2}}^{(\ell-1)} - \left\langle \sigma_{j,\vec{x}_{1}}^{(\ell-1)} \sigma_{j,\vec{x}_{2}}^{(\ell-1)} \right\rangle$$

1/n expansion

Infinitely-wide network $(n \to \infty) \Rightarrow$ free theory. Finitely-wide network (most relevant in practice) \Rightarrow weakly-interacting theory. Observables calculated order by order in 1/n. Interested in RG flows of connected correlators $\langle \phi^{2k} \rangle_c \sim \mathcal{O}(n^{1-k})$.

2-point correlator

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \, \sum_j$$

Expand in 1/n:
$$\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \sum_{p=0}^{\infty} \frac{1}{n_{\ell-1}^p} \mathcal{K}_p^{(\ell)}(\vec{x}_1, \vec{x}_2)$$

Recall:
$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2),$$

Leading order (LO): use LO (free-theory) propagators to evaluate $\langle \cdots \rangle$.

$$\mathcal{K}_{0}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) = \sum_{j} \frac{1}{n_{\ell-1}} \left\langle \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \right\rangle_{\mathcal{K}_{0}^{(\ell-1)}} = C_{b}^{(\ell)} + C_{W}^{(\ell)} \left\langle \sigma_{\vec{x}_{1}}\sigma_{\vec{x}_{2}} \right\rangle_{\mathcal{K}_{0}^{(\ell-1)}}$$

"Kernel recursion" (RG flow of \mathcal{K}_0 , UV boundary condition $\mathcal{K}_0^{(1)}(\vec{x}_1, \vec{x}_2) = C_b^{(1)} + \frac{C_W^{(1)}}{n_0} \vec{x}_1 \cdot \vec{x}_2$). (well-known in ML literature)

 \vec{x}_{1}, \vec{x}_{2}

$$\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \,\sigma_{j,\vec{x}_{1}}^{(\ell-1)} \,\sigma_{j,\vec{x}_{2}}^{(\ell-1)} \quad \text{(operators of } \phi^{(\ell-1)})$$

Connected 4-point correlator

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \,\phi_{i_2}^{(\ell)}(\vec{x}_2) \,\phi_{i_3}^{(\ell)}(\vec{x}_3) \,\phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle_{\mathcal{C}} = \delta_{i_1 i_2} \delta_{i_3 i_4} \,\frac{1}{n_{\ell-1}} \,V_4^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4) + \text{perms.}$$

symmetry
factor
$$\frac{\left(C_{W}^{(\ell)}\right)^{2}}{4 n_{\ell-2}} \prod_{\alpha=1}^{4} \int d\vec{y}_{\alpha} d\vec{z}_{\alpha} \left(\mathcal{K}_{0}^{(\ell-1)}\right)^{-1} (\vec{y}_{\alpha}, \vec{z}_{\alpha}) V_{4}^{(\ell-1)} (\vec{y}_{1}, \vec{y}_{2}) = \frac{\left(C_{W}^{(\ell)}\right)^{2}}{4 n_{\ell-2}} \prod_{\alpha=1}^{4} \int d\vec{y}_{\alpha} V_{4}^{(\ell-1)} (\vec{y}_{1}, \vec{y}_{2}; \vec{y}_{3}, \vec{y}_{4}) \left\langle \frac{\delta^{2} \Delta(\vec{x}_{1}, \vec{y}_{2})}{\delta \phi(\vec{y}_{1}) \delta \phi} \right\rangle$$

(in agreement with Yaida '19, Roberts, Yaida, Hanin '21)

Progressing to higher orders

Basic building blocks are *-blobs:

$$= \left(\frac{C_W^{(\ell)}}{n_{\ell-1}}\right)^m \int \prod_{\alpha=1}^{2r} d\vec{z}_\alpha \, \mathcal{K}_0^{(\ell-1)}(\vec{y}_\alpha, \vec{z}_\alpha) \left\langle \frac{\delta^{2r} \left(\Delta(\vec{x}_1, \vec{x}_2) \, \cdots \, \Delta(\vec{x}_{2m-1}, \vec{x}_{2m})\right)}{\delta \phi(\vec{z}_1) \, \cdots \, \delta \phi(\vec{z}_{2r})} \right\rangle_{\mathcal{K}_0^{(\ell-1)}}$$

$$(y_1)$$

- $\begin{pmatrix} \text{diagrams where the } \phi^{2r} \Delta^m \text{ blob becomes} \\ \text{disconnected due to contractions among } \phi's \end{pmatrix}$
 (y_{2r})

2-point correlator, NLO

$$\left\langle \mathcal{G}^{(\ell)}(\vec{x}_1,\vec{x}_2) \right\rangle$$
 :

Connected 6-point correlator

Connected 8-point correlator

$^{2}\langle\Delta^{2}\rangle$			$rac{1}{16} \cdot rac{V_8^{(\ell-1)}}{n_{\ell-2}^3} \left< \partial^2 \Delta \right>^4$
	4	+ perms.	$\frac{1}{32} \cdot \frac{V_6^{(\ell-1)} V_4^{(\ell-1)}}{n_{\ell-2}^3} \cdot 12 \left< \partial^4 \Delta \right> \left< \partial^2 \Delta \right>^3$
$^{2}\Delta\rangle^{4})$		+ perms.	$\frac{1}{64} \cdot \frac{\left(V_4^{\left(\ell-1\right)}\right)^3}{n_{\ell-2}^3} \cdot 4 \left<\partial^6 \Delta\right> \left<\partial^2 \Delta\right>^3$
\rangle		+ perms.	$\frac{1}{64} \cdot \frac{\left(V_4^{\left(\ell-1\right)}\right)^3}{n_{\ell-2}^3} \cdot 12 \left<\partial^4 \Delta\right>^2 \left<\partial^2 \Delta\right>^2$

Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks.
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

Criticality

input (UV)

$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_\ell}$$

Exponential behavior is generic \Rightarrow numerical instability or loss of information. To avoid this, need to fine-tune network hyperparameters to critical values.

2-point correlator

$$\left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1, \vec{x}_2) \right\rangle \to \left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1, \vec{x}_2) \right\rangle + \delta \left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1, \vec{x}_2) \right\rangle$$

Roughly speaking,
$$\begin{cases} \chi > \mathbf{1} \Rightarrow |\langle G^{(\ell)} \rangle - K^{\star}| \sim e^{\ell} \\ \chi < \mathbf{1} \Rightarrow |\langle G^{(\ell)} \rangle - K^{\star}| \sim e^{-\ell} \\ & \uparrow \\ \text{RG fixed poin} \\ \text{Tune to criticality:} \quad \chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_2) \Big|_{\mathcal{K}_0^{(\ell-1)} = \mathcal{K}^{\star}} = \frac{1}{2} \end{cases}$$

 $\Rightarrow \delta \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \delta \langle \mathcal{G}^{(\ell-1)}(\vec{x}_1, \vec{x}_2) \rangle \Rightarrow \text{power-law scaling: } |\langle G^{(\ell)} \rangle - K^{\star}| \sim \ell^{\gamma} \leftarrow \text{critical exponent}$

$$\begin{array}{c} \underbrace{\delta}_{\varphi_{\vec{j}}} & \text{susceptibility} \\ = \int d\vec{y}_{1}d\vec{y}_{2} \underbrace{\chi^{(\ell)}(\vec{x}_{1},\vec{x}_{2};\vec{y}_{1},\vec{y}_{2})}_{=} \delta \langle \mathcal{G}^{(\ell-1)}(\vec{y}_{1},\vec{y}_{2}) \rangle \\ & \stackrel{\uparrow}{=} \frac{C_{W}^{(\ell)}}{2} \langle \frac{\delta^{2}\Delta(\vec{x}_{1},\vec{x}_{2})}{\delta\phi(\vec{y}_{1})\delta\phi(\vec{y}_{2})} \rangle_{\mathcal{K}_{0}^{(\ell-1)}} + \mathcal{O}\left(\frac{1}{n}\right) \\ e^{\ell} \\ \end{array}$$

$= \frac{1}{2} \Big[\delta(\vec{x}_1 - \vec{y}_1) \, \delta(\vec{x}_2 - \vec{y}_2) + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big]$

Hyperparameter tuning

critical point where $\chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_2)$

Phase diagram for activation function $\sigma(\phi) = \tanh \phi$

(Different activation functions fall into different universality classes; see Roberts, Yaida, Hanin '21)

Schoenholz, Gilmer, Ganguli, Sohl-Dickstein '16

$$\kappa_0^{(\ell-1)} = \kappa^{\star} = \frac{1}{2} \Big[\delta(\vec{x}_1 - \vec{y}_1) \, \delta(\vec{x}_2 - \vec{y}_2) + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big] + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big]$$

Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$\frac{n_{\ell-2}}{n_{\ell-1}} \frac{\delta V_4^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4)}{\delta V_4^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \vec{y}_3, \vec{y}_4)} = \frac{1}{2} \Big[\chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_4) \Big]$$

 \Rightarrow

same susceptibility introduced in the 2-point correlator analysis!

$\vec{y}_2 \left(\chi_{1}^{(\ell)} \left(\vec{x}_3, \vec{x}_4; \vec{y}_3, \vec{y}_4 \right) + \chi^{(\ell)} \left(\vec{x}_1, \vec{x}_2; \vec{y}_3, \vec{y}_4 \right) \chi^{(\ell)} \left(\vec{x}_3, \vec{x}_4; \vec{y}_1, \vec{y}_2 \right) \right)$

Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$\Rightarrow \quad \left(\frac{n_{\ell-2}}{n_{\ell-1}}\right)^{k-1} \frac{\delta V_{2k}^{(\ell)}(\vec{x}_1, \vec{x}_2; \dots; \vec{x}_{2k-1}, \vec{x}_{2k})}{\delta V_{2k}^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \dots; \vec{y}_{2k-1}, \vec{y}_{2k})} = \text{sym.} \left[\prod_{k'=1}^k \chi^{(\ell)}(\vec{x}_{2k'-1}, \vec{x}_{2k'}; \vec{y}_{2k'-1}, \vec{y}_{2k'})\right]$$

same susceptibility introduced in the 2-point correlator analysis!

Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$\Rightarrow \quad \left(\frac{n_{\ell-2}}{n_{\ell-1}}\right)^{k-1} \frac{\delta V_{2k}^{(\ell)}(\vec{x}_1, \vec{x}_2; \dots; \vec{x}_{2k-1}, \vec{x}_{2k})}{\delta V_{2k}^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \dots; \vec{y}_{2k-1}, \vec{y}_{2k})} = \text{sym.} \left[\prod_{k'=1}^k \chi^{(\ell)}(\vec{x}_{2k'-1}, \vec{x}_{2k'}; \vec{y}_{2k'-1}, \vec{y}_{2k'})\right]$$

Single criticality condition: $\chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_2) \Big|_{\mathcal{K}_0^{(\ell-1)} = \mathcal{K}^{\star}} = \frac{1}{2} \Big[\delta(\vec{x}_1 - \vec{y}_1) \, \delta(\vec{x}_2 - \vec{y}_2) + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big]$ \Rightarrow Power-law scaling for all connected correlators!

Summary

Diagrammatic approach to EFTs corresponding to neural networks.

Structures of RG calculation \Rightarrow successful tuning to criticality.

field theories

Summary

Diagrammatic approach to EFTs corresponding to neural networks.

Structures of RG calculation \Rightarrow successful tuning to criticality.

field theories

