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What is a (deep) neural network?

Goal (supervised learning): learn a function   from training dataset .y = f( ⃗x) ( ⃗xα, yα)
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What is a (deep) neural network?

Goal (supervised learning): learn a function   from training dataset . 

Archetype: multilayer perceptron.

y = f( ⃗x) ( ⃗xα, yα)
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then updated by gradient descent to 
minimize a loss, e.g.∑

α
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Neural networks  field theories (1/2)↔

Ensemble of networks, randomly initialized. 

Neurons  scalar fields  . 

Ensemble statistics  action:   . 

Infinitely-wide networks* ( )  free theories. 

Wide networks ( )  weakly-interacting theories (perturbation theory!). 

* Neal '96. Williams '96.

↔ ϕ( ⃗x)

↔ P(ϕ) = e−S[ϕ]

n → ∞ ↔

n ≫ L ↔
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Neural networks  field theories (2/2)↔

Information flow  RG flow.↔
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Neural networks  field theories (2/2)↔

Information flow  RG flow. 

Exponential scaling (generic)  flow to trivial fixed point. 

Tune to criticality*  power-law scaling  nontrivial fixed point. 

* Raghu et al '16. Poole et al '16. Schoenholz et al '16.

↔

↔

⇒ ↔
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Dreams

A theory of everything deep learning (opening the black box)? 

Lee et al '17-19. Matthews et al '18. Yang '19-23.  

Jacot, Gabriel, Hongler '18. 

Antognini '19. Huang, Yau '19. 

Yaida '19, '22. Hanin, Nica '19. Hanin '21, '22. 

Dyer, Gur-Ari '19. Aitken, Gur-Ari '20. Andreassen, Dyer '20. 

Naveh, Ringel et al '20, '21. Zavatone-Veth et al '21. 

Roberts, Yaida, Hanin '21. (Our work largely builds on this book.)
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Dreams

A theory of everything deep learning (opening the black box)? 

A new angle to learn about field theories? 

Schoenholz, Pennington, Sohl-Dickstein '17. 

Cohen, Malka, Ringel '19.  

Halverson, Maiti, Stoner '20+'21. Halverson '21. 

Erbin, Lahoche, Samary '21+'22. 

Bachtis, Aarts, Lucini '21.  

Erdmenger, Grosvener, Jefferson '21. Grosvenor, Jefferson '21.
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Initializing a deep neural network

Network depth (number of layers):  . 

Widths (number of neurons per layer):  . 

L

n0, n1, …, nL−1, nL
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Initializing a deep neural network

Network depth (number of layers):  . 

Widths (number of neurons per layer):  . 

Weights and biases drawn from Gaussian distributions with 
mean 0, variances /   ,  .

L

n0, n1, …, nL−1, nL

C(ℓ)
W nℓ−1 C(ℓ)

b
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Initializing a deep neural network an ensemble of networks

Network depth (number of layers):  . 

Widths (number of neurons per layer):  . 

Weights and biases drawn from Gaussian distributions with 
mean 0, variances /   ,  .

L

n0, n1, …, nL−1, nL

C(ℓ)
W nℓ−1 C(ℓ)

b
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Statistics of the ensemble (at initialization)

  

We can derive the field theory action  (next slide). 

Then observables (neuron correlators) can be calculated as in field theory: 

 . 

And we can study e.g. how they evolve from layer to layer  RG flow.

P(ϕ) = e−S[ϕ]

S[ϕ]

⟨ϕ(ℓ)
i1

( ⃗x1) … ϕ(ℓ)
i2k

( ⃗x2k)⟩ = ∫ 𝒟ϕ ϕ(ℓ)
i1

( ⃗x1) … ϕ(ℓ)
i2k

( ⃗x2k) e−S[ϕ]

⇒
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(which can tell us a lot about how deep neural networks process information)



Deriving the EFT action S[ϕ]
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Deriving the EFT action S[ϕ]

Complete the squares, integrate out , then integrate out  (all Gaussian integrals!) W, b Λ ⇒
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Complete the squares, integrate out , then integrate out  (all Gaussian integrals!) W, b Λ ⇒

15

operator built from   interactions between adjacent-layer neurons!ϕ(ℓ−1) ⇒

Faddeev-Popov? 
(this looks like gauge fixing...)



Deriving the EFT action S[ϕ]

Complete the squares, integrate out , then integrate out  (all Gaussian integrals!) W, b Λ ⇒

16

Faddeev-Popov? 
(this looks like gauge fixing...)

ghosts!



Deriving the EFT action S[ϕ]
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Deriving the EFT action S[ϕ]
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Network has directionality! (Loop corrections cancel between  and  when going backward.) 

When calculating neuron correlators , ghosts do not enter.

ϕ ψ

⟨ϕ(ℓ)
i1

( ⃗x1) … ϕ(ℓ)
i2k

( ⃗x2k)⟩

ϕ(ℓ−1)

ψ(ℓ−1)

ϕ(ℓ)

ψ(ℓ)

ϕ(ℓ+1)

ψ(ℓ+1)

... ...
S(ℓ)

0 S(ℓ+1)
0

S(ℓ)
ψ S(ℓ+1)

ψ
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Deriving Feynman rules
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Deriving Feynman rules
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operator built from ϕ(ℓ−1)

If  were classical background  free theory for . 

In reality  have statistical fluctuations.

ϕ(ℓ−1) ⇒ ϕ(ℓ)

ϕ(ℓ−1)



Deriving Feynman rules
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Effectively, we can simply use the following Feynman rule to build up diagrams.

just be sure to attach this to a blob 
(no external wavy lines)



Only fluctuation piece ( , single wavy line) contributes to connected correlators.Δ

Deriving Feynman rules
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Effectively, we can simply use the following Feynman rule to build up diagrams. 
Further decompose into vev + fluctuation.



1/n expansion

Infinitely-wide network ( )  free theory. 

Finitely-wide network (most relevant in practice)  weakly-interacting theory. 

Observables calculated order by order in 1/n. 

Interested in RG flows of connected correlators  .

n → ∞ ⇒

⇒

⟨ϕ2k⟩c ∼ 𝒪(n1−k)
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Each interaction vertex is ∼ 1
n



2-point correlator

Expand in 1/n: 

Recall: 

Leading order (LO): use LO (free-theory) propagators to evaluate . 

"Kernel recursion" (RG flow of      , UV boundary condition                                          ).

⟨⋯⟩

24

(operators of )ϕ(ℓ−1)

(well-known in ML literature)



Connected 4-point correlator
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= +

symmetry 
factor Wick contraction

(in agreement with Yaida '19, Roberts, Yaida, Hanin '21)



Progressing to higher orders
Basic building blocks are *-blobs:
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2-point correlator, NLO

27

(in agreement with Roberts, Yaida, Hanin '21)



Connected 6-point correlator
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Connected 8-point correlator
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Criticality

Exponential behavior is generic  numerical instability or loss of information. 

To avoid this, need to fine-tune network hyperparameters to critical values.

⇒
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2-point correlator
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Roughly speaking,  

Tune to criticality:

{χ > 1 ⇒ |⟨G(ℓ)⟩ − K⋆ | ∼ eℓ

χ < 1 ⇒ |⟨G(ℓ)⟩ − K⋆ | ∼ e−ℓ

susceptibility

⇒  power-law scaling: ⇒ |⟨G(ℓ)⟩ − K⋆ | ∼ ℓγ

⇒

RG fixed point

critical exponent



Hyperparameter tuning

33

critical point where

Schoenholz, Gilmer, Ganguli, Sohl-Dickstein '16

CW

Cb
Phase diagram for activation function  
(Different activation functions fall into different universality classes; 
see Roberts, Yaida, Hanin '21)

σ(ϕ) = tanh ϕ



Higher-point connected correlators?
All of them must have power-law scaling. 

Naively more constraints than tunable hyperparameters. 

However, they have a common structure!

34
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Higher-point connected correlators?
All of them must have power-law scaling. 

Naively more constraints than tunable hyperparameters. 

However, they have a common structure! 

Single criticality condition: 

 Power-law scaling for all connected correlators!⇒
36

⇒



Summary

Diagrammatic approach to EFTs corresponding to neural networks. 

Structures of RG calculation  successful tuning to criticality.⇒

37
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