## Astrophysical Constraints on Long-Range Interactions of Dark Matter

Zach Bogorad

Based on hep-ph/2311.07648 and hep-ph/2312.xxxxx with Peter Graham and Harikrishnan Ramani

### Outline

- Dark matter self-interactions
  - Short- and long-range constraints
  - Constraints on intermediate-range forces
- Dark matter-Standard Model interactions
  - Constraints from combining SM-only and DM-only constraints
  - Dynamical friction in ultrafaint dwarf galaxies

## Dark Matter Self-Interactions

Dark matter self-interactions are motivated by several astrophysical tensions

- Various galaxy properties don't quite match simulations of ΛCDM:
  - Core-cusp
  - Missing satellites
  - Void emptiness
  - The diversity problem
- Recent simulations have eased some of these but still unclear if they can all be resolved in ΛCDM



astro-ph.GA/1911.09116

### A standard form for DM self-interactions is a Yukawa potential



# Existing constraints on long-range dark matter self-interactions



#### The Bullet Cluster



astro-ph/0309303

#### The Bullet Cluster



astro-ph/0309303

### The Bullet Cluster: hard scattering

- Dark matter halos passing through one another sets limits on selfinteractions
- For hard sphere scattering:

$$\frac{\sigma}{m} \lesssim 1 \ \frac{\mathrm{cm}^2}{\mathrm{g}}$$

• Can roughly generalize with momentum-transfer cross-section:

$$\frac{\sigma_T}{m} \lesssim 1 \; \frac{\mathrm{cm}^2}{\mathrm{g}}$$

### The Bullet Cluster: hard scattering

- Usual BC limit uses 1-on-1 particle scattering
- This isn't right when scattered particles see multiple others:

 $\lambda \gtrsim b \gtrsim n^{-1/3}$ 

 Can still set a constraint on long-range forces by restricting to hard scattering events, but this is throwing out most of the effect



### The Bullet Cluster: soft scattering

- Could instead consider soft scattering events, but less clear what the effect is
  - Nearby incident particles should stay nearby after the collision, so you aren't breaking the clusters in the same way
- Better way to think about this regime is as dynamical friction

# Dynamical friction slows particles interacting with a surrounding fluid



#### The Bullet Cluster: dynamical friction

- Dynamical friction will thus slow the small "B" cluster as it falls through the halo of the "A" cluster
- Integrating gives (for all couplings we consider)

 $\frac{\Delta v_B}{v_B} \lesssim 0.04$ 

• This isn't observable... and it's also not the main effect

### The Bullet Cluster: modified infall

- New long-range DMSI change the B cluster's trajectory much more by directly affecting its potential
- Infinite-range forces with  $\alpha = 1$  would change the potential, and thus the velocity, by  $\mathcal{O}(1)$
- This has been pointed out before; we'll focus on the finite-range, stronger-than-gravity regime



#### Finite-range forces in dark matter halos

• If dark matter halos had a sharp cutoff, accelerations beyond that cutoff would fall off exponentially:

 $a(r > r_c) \sim e^{-(r-r_c)/\lambda}$ 

- But realistic halos have density gradients, so there's no notion of being some distance from a boundary.
  - Suppression is only a power law in  $\lambda$  as a result

#### Finite-range forces in dark matter halos



# Two scenarios for modified Bullet Cluster collisions:

- The dark matter and the Standard Model content of each cluster could separate or not as the clusters fall towards each other
  - Eventually gas collides and definitely separates, but this could potentially happen before the collision
- We'll consider both cases

# The Bullet Cluster collision if DM and SM separate



- DM positions measured via gravitational lensing
- Star positions seen optically
- Centroids match to within  $25 \pm 29 \text{ kpc} \ll r_B^*$
- This requires  $\Delta V(r^*) \ll V(r^*) \qquad \square \qquad \alpha \lesssim 1 + \left(\frac{r_A^*}{\lambda}\right)^2$

### The Bullet Cluster collision if DM and SM do

not separate

The Bullet Cluster gas collided supersonically, leading to complicated dynamics even without new forces



# The Bullet Cluster collision if DM and SM do not separate



Repulsive forces are constrained more strongly by dark matter halo binding

- Existence of DM halos of size  $\mathcal{O}(1~{
  m kpc})$  prohibits repulsive forces stronger than gravity with range  $\gtrsim 1~{
  m kpc}$
- More generally, need  $a_{
  m new}(
  m kpc) + a_{
  m g}(
  m kpc) < 0$

$$a_{\rm new} \sim \alpha G \frac{\rho \lambda^2}{\rm kpc}$$
  $\Box \sim \alpha \lesssim 1 + \left(\frac{\rm kpc}{\lambda}\right)^2$ 

Various other systems might give constraints, but substructure complicates things

- Can measure mass of clusters using both
  - Gravitational lensing
  - Velocity dispersion of galaxies
- But, for short-range forces, most of mass near galaxy is bound to it; background is significantly disrupted



Need to simulate

astro-ph.GA/2202.04663

Various other systems might give constraints, but substructure complicates things

- New forces could separate DM and stars in stellar streams; DM would then lead to asymmetry
  - But complicated by substructure, and unclear what happens for larger forces
- Other possibilities: tidal disruption of Milky Way satellites, subhalos disrupting stellar streams, ...



#### Constraints on DMSI - summary





## Dark Matter-Standard Model Interactions

### Dark matter can interact with the Standard Model through weak, long-ranged forces



### Existing constraints on long-range Standard Model self-interactions



$$\alpha_{SD} = \sqrt{\alpha_{SS} \alpha_{DD}}$$

EP violating constraints depend on exactly how much EP violation there is; I'll generally assume 1% for this talk

### Combined constraints on long-range DM-SM

Most constraints from  $\alpha_{SD} = \sqrt{\alpha_{SS} \alpha_{DD}}$ 

interactions





https://doi.org/10.1515/9781400828722

0

 $v_{\rm M}/\sigma = 1$ 

# Ultrafaint dwarfs are excellent laboratories for SM-DM interactions



From SIMBAD and DSS: http://simbad.ustrasbg.fr/simbad/simid?Ident=%403785419& Name=NAME%20Segue %201&submit=submit

# Ultrafaint dwarfs are excellent laboratories for SM-DM interactions

| UFDG Name     | M <sub>V</sub><br>(mag) | $L_{ m V}$ (L $_{\odot}$ )      | $r_{\rm h, \star}$ (pc) | $\sigma_{\star}$ (km s <sup>-1</sup> ) |
|---------------|-------------------------|---------------------------------|-------------------------|----------------------------------------|
| Draco II      | $-0.8^{+0.4}_{-1.0}$    | $1.8^{+1.2}_{-0.7} \times 10^2$ | $19.0^{+4.5}_{-2.6}$    | <5.9 (95 per cent CL) <sup>a</sup>     |
| Segue I       | $-1.30 \pm 0.73$        | $2.8^{+2.7}_{-1.4} 	imes 10^2$  | $24.2\pm2.8$            | $3.7^{+1.4}_{-1.1}$                    |
| Tucana III    | $-1.3 \pm 0.2$          | $2.8^{+0.6}_{-0.5} 	imes 10^2$  | $34 \pm 8$              | $<1.2 (90 \text{ per cent CL})^a$      |
| Triangulum II | $-1.8 \pm 0.5$          | $4.5^{+2.6}_{-1.7} 	imes 10^2$  | $17.4 \pm 4.3$          | $<3.4 (90 \text{ per cent CL})^a$      |
| Segue II      | $-1.86\pm0.88$          | $4.7^{+6.9}_{-1.6} 	imes 10^2$  | $38.3\pm2.8$            | $<2.6 (95 \text{ per cent CL})^a$      |
| Carina III    | $-2.4 \pm 0.2$          | $7.8^{+1.6}_{-1.3} 	imes 10^2$  | $30 \pm 9$              | $5.6^{+4.3}_{-2.1}$ a                  |
| Willman I     | $-2.53 \pm 0.74$        | $8.8^{+8.6}_{-4.3} 	imes 10^2$  | $27.7\pm2.4$            | $4.0 \pm 0.8$                          |
| Boötes II     | $-2.94 \pm 0.74$        | $1.3^{+1.3}_{-0.6} \times 10^3$ | $38.7 \pm 5.1$          | $10.5 \pm 7.4$                         |
| Grus I        | $-3.47 \pm 0.59$        | $2.1^{+1.5}_{-0.9} \times 10^3$ | $28.3\pm23.0$           | $2.9^{+6.9}_{-2.1}$                    |
| Horologium I  | $-3.55 \pm 0.56$        | $2.2^{+1.5}_{-0.9} \times 10^3$ | $36.5 \pm 7.1$          | $4.9^{+2.8}_{-0.9}$                    |
| Reticulum II  | $-3.88\pm0.38$          | $3.0^{+1.3}_{-0.9} \times 10^3$ | $48.2 \pm 1.7$          | $3.3 \pm 0.7$                          |
| Tucana II     | $-39 \pm 02$            | $3.1^{+0.6} \times 10^3$        | $120 \pm 30$            | 8 6 <sup>+4.4</sup>                    |

 ${
m Age}\gtrsim 10~{
m Gyr}$ Density  $\sim 1~M_{\odot}/{
m pc}^3$ 

https://web.archive.org/web/2021022 3225516id\_/https://www.zora.uzh.ch/ d/eprint/191094/1/staa170.pdf

## Stellar evolution due to dynamical friction from gravity Segue I – Gravity Alone



### Stellar evolution due to dynamical friction from a new force $Segue I - \alpha_{SD} = 10^3$



# Forces with range less than O(1 mpc) don't affect stellar evolution significantly



#### Constraints: dark matter self-attractive



### Summary

- Dark matter can have long-range interactions with itself or with the Standard Model
- Long-range self-interactions of DM can be constrained by observations of the collision velocity and final mass distribution of the Bullet Cluster
- Long-range interactions with the SM could lead to observable changes to the star distributions of ultrafaint dwarf galaxies

#### Other projects you can ask me about



## Questions?

## Backup Slides

Many models of dark matter include new interactions with the Standard Model

- Dark matter is only *required* to interact gravitationally, but many reasons to consider other interactions with the SM:
  - No (known) symmetries prohibiting this
  - Dark matter self-interactions
  - Similar amounts of dark matter and SM
  - Production mechanisms
- And, in any case, studying DM is pretty hopeless otherwise

Constraints on equivalence principle violation directed towards the MW center

- Torsion balances can look for equivalenceprinciple violating forces
- Looking towards the MW center tests new DM-SM forces, giving

$$\alpha_{\rm SD} \lesssim 10^{-2} \left( 1 + \left( \frac{10 \text{ kpc}}{\lambda} \right)^2 \right)$$



gr-qc/0712.0607

# If dark matter has mixed charge signs, Debye screening limits the new force's range

#### Constraints: dark matter self-repulsive



### Plasma instabilities in dark matter halos

- Long-range self-interactions of mixed-charge DM can lead to exponentially growing plasma instabilities in
  - The Bullet Cluster
  - Subhalos
- Not currently constrained, but could have large effects that might be detectable in the future

#### Constraints: dark matter net-neutral



#### Constraints: dark matter net-neutral



# Dynamical friction also leads to anomalous acceleration of planets and satellites



Differential acceleration between the Sun and a satellite could give similar limits to UFDs gr-qc/1508.06273

