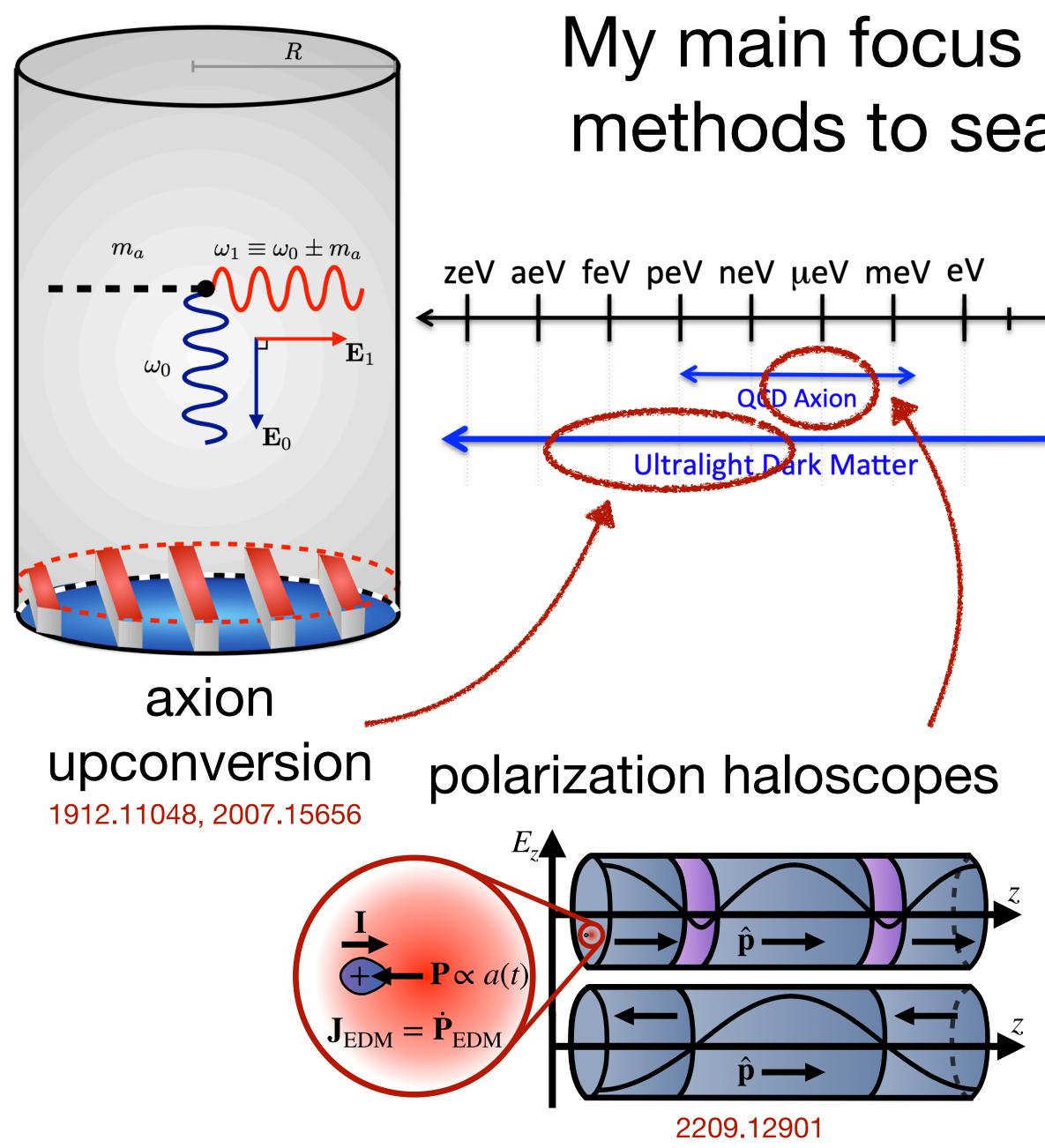
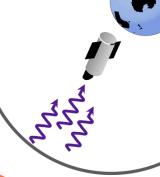
Electromagnetism and Gravity with Continuous Spin

- Kevin Zhou Stanford University
- UC Davis QMAP Particles/Cosmology Seminar April 11, 2023 arXiv:2303.04816, with Philip Schuster and Natalia Toro



Kevin Zhou — Continuous Spin

My main focus is new experimental methods to search for dark matter. $30 M_{\odot}$ keV MeV GeV TeV PeV WIMPs **Hidden Sector Dark Matter Black Holes** stellar shock transients 2106.09033 invisible meson decays 2112.02104



< 1/m

 $r \gtrsim 1/\rho$

Today's talk is about a more fundamental question: where should we look for new physics?

> Often assume long-distance physics is known, and look to smaller distances controlled by the mass scale *m* of new particles

But fundamental principles motivate new physics at larger distances controlled by the spin scale ρ of known particles!

Classifying Particles by Mass and Spin Scale

States transform under translations P^{μ} and rotations/boosts $J^{\mu\nu}$

Particle states with definite momentu

Little group transformations $W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} J_{\nu\rho} k_{\sigma}$ affect only internal state σ

Different types of particles classified b

What is the physical meaning of the spin scale ρ ?

m obey
$$P^{\mu} | k, \sigma \rangle = k^{\mu} | k, \sigma \rangle$$

by
$$P^2=m^2$$
 and $W^2=-
ho^2$

Classifying Particles by Mass and Spin Scale

For $m^2 > 0$, representations are spin S massive particles

For $m^2 = 0$, states are still indexed by helicity $|k, h\rangle$

Spin scale again determines how helicity varies under boosts

- States are $|k, h\rangle$ for helicity h = -S, ..., S, which is not Lorentz invariant
- Boosts mix helicities by amount determined by $\rho = m\sqrt{S(S+1)}$

The Massless Little Group

For a massless particle, $k^{\mu} = (\omega, 0, 0, \omega)$, little group generators are

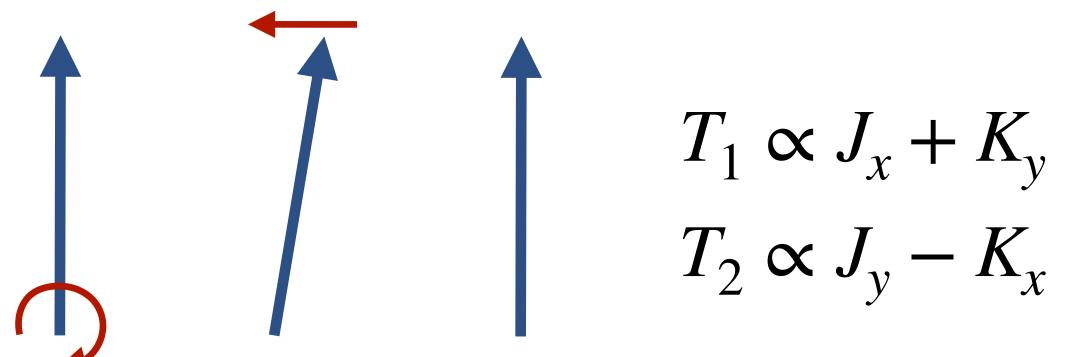
$$R = J_z$$

$$R | k, h \rangle = h | k, h \rangle$$

Defining $T_{+} = T_{1} \pm iT_{2}$, commutation relations imply

 $T_{+}|k,h\rangle = \rho |k,h\pm 1\rangle$

Generic result is an **infinite** ladder of integer-spaced helicities!

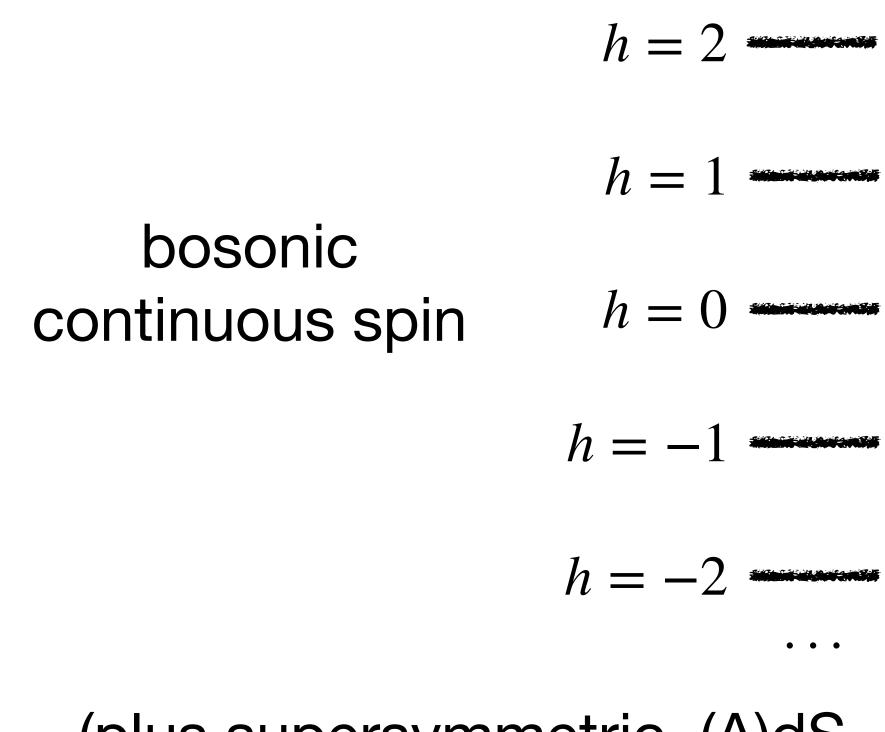


Allowed Helicities for Massless Particles

Generic massless particle representation has continuous-valued spin scale ρ

• • •

Since *h* is always integer or half-integer, gives two options, known since 1930s:



Kevin Zhou — Continuous Spin

h = 3/2fermionic h = 1/2continuous spin h = -1/2h = -3/2

(plus supersymmetric, (A)dS, higher/lower dimension variants)

Allowed Helicities for Massless Particles

If we set $\rho = 0$, recover a single helicity h (related to -h by CPT symmetry)

Focus on bosonic case, which can mediate long-range $1/r^2$ forces

h = 0 massless scalar (requires fine-tuning)

- |h| = 2 graviton (minimal coupling to stress-energy)

|h| = 3 higher spin (no minimal couplings allowed)

• • •

- |h| = 1 photon (minimal coupling to conserved charge)

- Role of each |h| in nature well-understood from general arguments from 1960s

Why Not Consider Continuous Spin?

Ruled out by Weinberg soft theorems? Theorems assume Lorentz invariant h Generalize to good soft factors for $\rho \neq 0$ Schuster and Toro, JHEP (2013) 104/105

> Gan't interact with anything? Addressed in our paper!

Kevin Zhou — Continuous Spin

- Incompatible with field theory? Simple free gauge theory found Schuster and Toro, PRD (2015)

Just way too complicated? Addressed in our paper!

- Infinite h leads to infinities in scattering/ cosmology/astrophysics/Hawking/Casimir/...?
- Smooth $\rho \rightarrow 0$ limit where all but one |h| decouples
- Results even well-behaved for large ρ when many helicities relevant!

Why Consider Continuous Spin?

- Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood
- For the experimentalist: "because it's testable" Theory predicts ρ -dependent deviations from electromagnetism and general relativity The value of ρ is unknown, and only experiment can determine it
- Force in a radiation background: =

Kevin Zhou — Continuous Spin

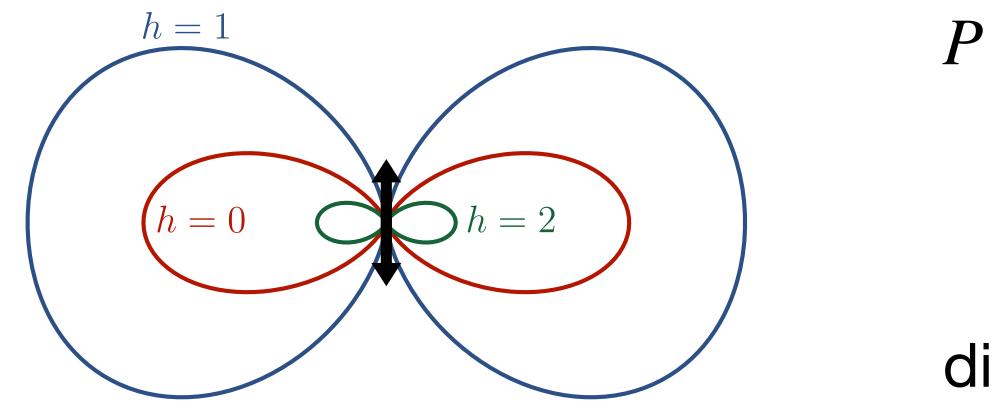
For the field theorist: "because it's there"

$$\mathbf{E} + \mathbf{v} \times \mathbf{B} - \left(\frac{\rho v_{\perp}}{2\omega}\right)^2 \left(\mathbf{E}_{\perp} + \frac{\mathbf{E}}{2}\right) + \dots$$

Significant correction when particles travel distance $\gtrsim 1/\rho$, total result always well-behaved

Why Consider Continuous Spin?

- Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood
- For the experimentalist: "because it's testable" Theory predicts ρ -dependent deviations from electromagnetism and general relativity The value of ρ is unknown, and only experiment can determine it
- Radiation from an oscillating particle:



Kevin Zhou — Continuous Spin

For the field theorist: "because it's there"

$$= \frac{q^2 \langle a^2 \rangle}{6\pi} \times \begin{cases} (\rho \ell)^2 / 40 & h = 0\\ 1 - 3(\rho \ell)^2 / 20 & h = \pm 1 + ..\\ (\rho \ell)^2 / 80 & h = \pm 2 \end{cases}$$

Significant correction when particles travel distance $\gtrsim 1/\rho$, total result always well-behaved

Why Consider Continuous Spin?

- Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood
- For the experimentalist: "because it's testable" Theory predicts ρ -dependent deviations from electromagnetism and general relativity The value of ρ is unknown, and only experiment can determine it
 - For the model builder: "because it's novel"
 - A new infrared deformation of gauge theories, which may shed light on long-distance physics (dark matter, cosmic acceleration)
 - A new type of spacetime symmetry based on a bosonic superspace, possibly relevant for tuning problems (hierarchy, cosmological constant)

For the field theorist: "because it's there"

12

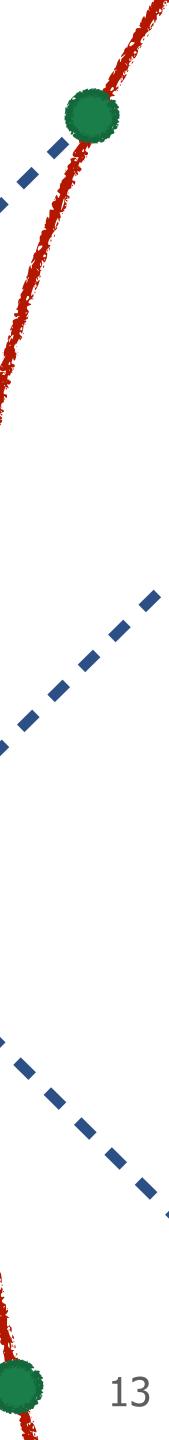
Free continuous spin fields

Coupling matter particles

Physics with continuous spin

Kevin Zhou — Continuous Spin

Outline



Free Fields for Massless Particles

- scalar field ϕ , no extra components scalar h = 0
- vector field A_{μ} , 4 2 = 2 extra components must use action with gauge symmetry $\delta A_{\mu} = \partial_{\mu} \alpha$ sym. tensor field $h_{\mu\nu}$, 10 - 2 = 8 extra components
- photon $h = \pm 1$ graviton $h = \pm 2$
 - must use action with gauge symmetry $\delta h_{\mu\nu} = \partial_{(\mu} \xi_{\nu)}$
- higher spin |h| > 2 sym. tensor field $\phi_{\mu_1...\mu_h}$, many extra components

Kevin Zhou — Continuous Spin

Tricky even for $\rho = 0$, by mismatch of field and particle degrees of freedom

Given complexity of higher h, constructing a continuous spin field seems intractable!

Introducing Vector Superspace

A field in "vector superspace" (x^{μ} , η^{μ}) has tensor components of all ranks

$$\Psi(\eta, x) = \phi(x) + \sqrt{2} \,\eta^{\mu} A_{\mu}(x) + (2\eta^{\mu} \eta^{\nu} - g^{\mu\nu}(\eta^2 + 1)) \,h_{\mu\nu}(x) + \dots$$

Simple expression has free Lagrangian for each tensor field simultaneously!

$$\mathscr{L}[\Psi] = \frac{1}{2} \int_{\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2 \qquad \Delta = \partial_x \cdot \partial_\eta$$

Integration produces tensor contractions

$$\int_{\eta} \delta(\eta^2 + 1) = \int_{\eta} \delta'(\eta^2 + 1) \equiv 1$$

$$\int_{\eta} \delta(\eta^{2} + 1) \eta^{\mu} \eta^{\nu} = -\frac{1}{4} g^{\mu\nu}$$
$$\int_{\eta} \delta'(\eta^{2} + 1) \eta^{\mu} \eta^{\nu} = -\frac{1}{2} g^{\mu\nu}$$

Recovering Familiar Actions

$$\mathscr{L}[\phi] = \frac{1}{2} \underbrace{\int_{\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\partial_x \cdot \partial_\eta \Psi)^2}_{\text{gives 1} \quad \partial_x \phi} = \frac{1}{2} (\partial_x \phi)^2$$

$$\mathscr{L}[A_{\mu}] = \frac{1}{2} \int_{\eta} \delta'(\eta^{2} + 1)(\partial_{x}\Psi)^{2} + \frac{1}{2} \delta(\eta^{2} + 1)(\partial_{x} \cdot \partial_{\eta}\Psi)^{2} \Big|_{\Psi = \sqrt{2}\eta^{\mu}A_{\mu}} = -\frac{1}{2}(\partial_{\mu}A_{\nu})^{2} + \frac{1}{2}(\partial_{\mu}A^{\mu})^{2} + \frac{1}{2}(\partial_{\mu}A^{\mu})^{2$$

Kevin Zhou — Continuous Spin

More generally, we recover the linearized Einstein-Hilbert action, and higher-rank Fronsdal actions, with no mixing

Recovering Familiar Dynamics

One equation of motion contains Maxwell, linearized Einstein, Fronsdal:

$$\delta'(\eta^2 + 1) \partial_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \partial_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1) \right) \delta_x^2 \Psi - \frac{1}{2} \Delta \left(\delta(\eta^2 + 1)$$

$$\delta \Psi = (\eta \cdot \partial_x - \frac{1}{2}(\eta^2 + 1)\Delta) \epsilon(\eta^2 + 1)$$

One mode expansion contains modes of arbitrary integer helicity:

$$\Psi_{k,h} = e^{-ik \cdot x} \left(\eta \cdot \epsilon_{\pm}\right)^{|h|}$$

Kevin Zhou — Continuous Spin

- 1) $\Delta \Psi$) = 0
- One gauge transformation contains U(1) gauge transformations, diffeomorphisms, ...
 - $\eta, x)$

17

Turning on the Spin Scale

Still get one mode of each helicity, but now the action, equation of motion, gauge symmetric, and plane waves all mix tensor ranks, e.g.

$$\mathcal{L} \supset \frac{\rho}{\sqrt{2}} \phi \,\partial_{\mu} A^{\mu}$$

 $\Psi_{k,h} = e^{-ik\cdot x} e^{-i\rho\eta \cdot q} \left(\eta \cdot \epsilon_{\pm}\right)$

Because of mixing, tensor expansion is complicated and physically opaque, while vector superspace description remains simple

Kevin Zhou — Continuous Spin

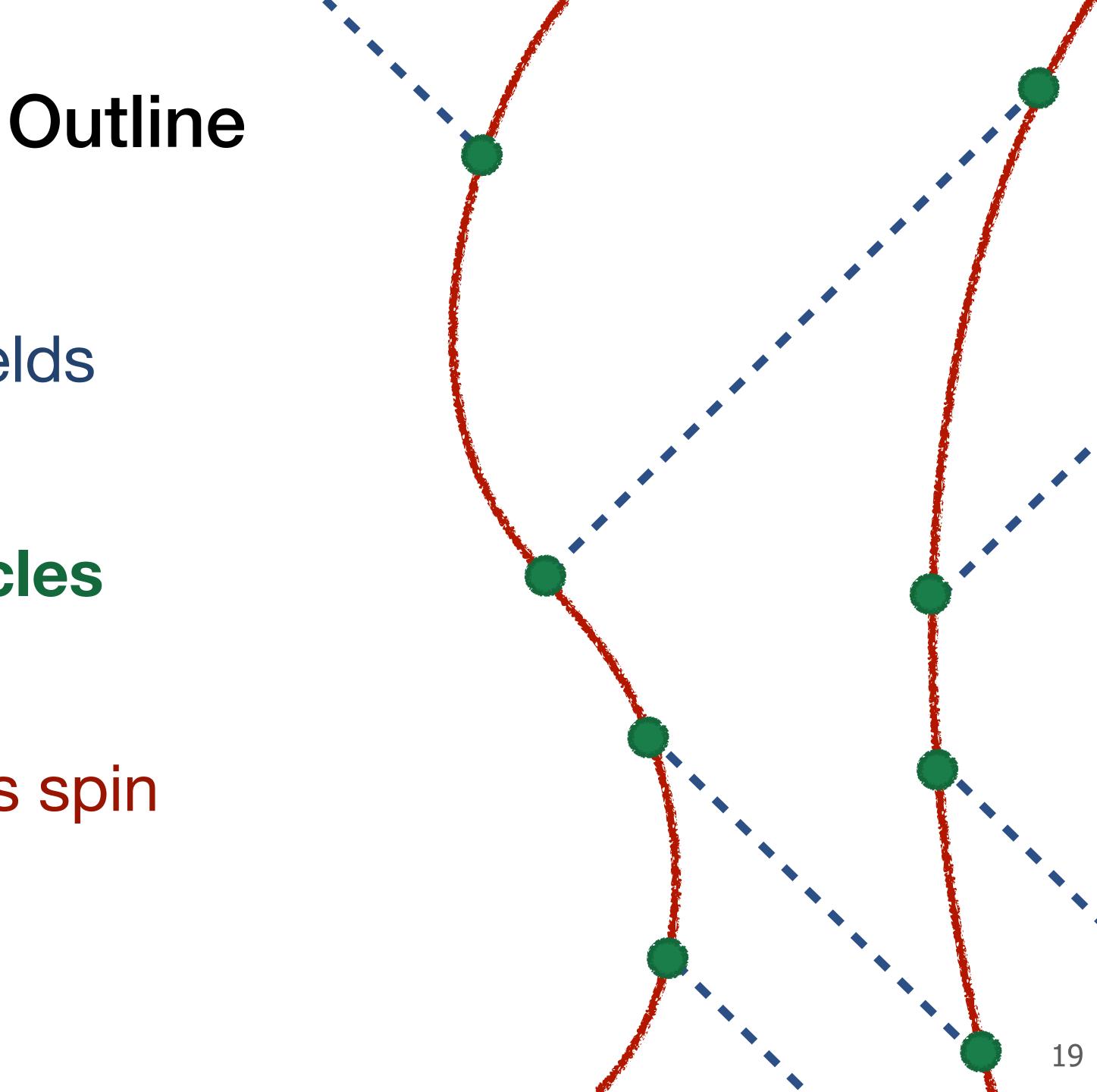
All previous results can be generalized to arbitrary ρ by taking $\Delta = \partial_x \cdot \partial_\eta + \rho$

$$|h| \qquad q \cdot k = 1$$

• Free continuous spin fields

Coupling matter particles

Physics with continuous spin



Coupling Currents to Fields

Couple the continuous spin field to a current by

$$\mathscr{L}_{\rm int} = \int_{\eta} \delta'(\eta^2 + 1) J(\eta, x) \Psi(\eta, x) = \phi J - A_{\mu} J^{\mu} + h_{\mu\nu} T^{\mu\nu} + \dots$$

Recover familiar results by tensor decomposition

$$J(\eta, x) = J(x) - \sqrt{2} \eta^{\mu} J_{\mu}(x) + (2\eta^{\mu} \eta^{\nu} + g^{\mu\nu}) T_{\mu\nu}(x) + \dots$$

Gauge invariance of the coupling gives a "continuity condition"

$$\delta(\eta^2 + 1)\Delta J = 0$$

Kevin Zhou — Continuous Spin

$$\blacktriangleright \quad \partial_{\mu} J^{\mu} \sim \rho J$$

Tensor currents not conserved, reflecting mixing of tensor fields!

Currents From Matter Particles

In familiar theories, the current from a matter particle is local to its worldline $z^{\mu}(\tau)$

scalar-like current

vector-like current

tensor-like current

These correspond to minimal couplings in field theory, and physically interesting continuous spin currents should reduce to them in the $\rho \to 0$ limit

$$J(x) = g \int d\tau \,\delta^4(x - z(\tau))$$

$$J^{\mu}(x) = e \int d\tau \,\delta^4(x - z(\tau)) \frac{dz^{\mu}}{d\tau}$$

$$T^{\mu\nu}(x) = m \int d\tau \,\delta^4(x - z(\tau)) \frac{dz^{\mu}}{d\tau} \frac{dz^{\nu}}{d\tau}$$

Locality and Causality

The current and continuity condition in Fourier space are

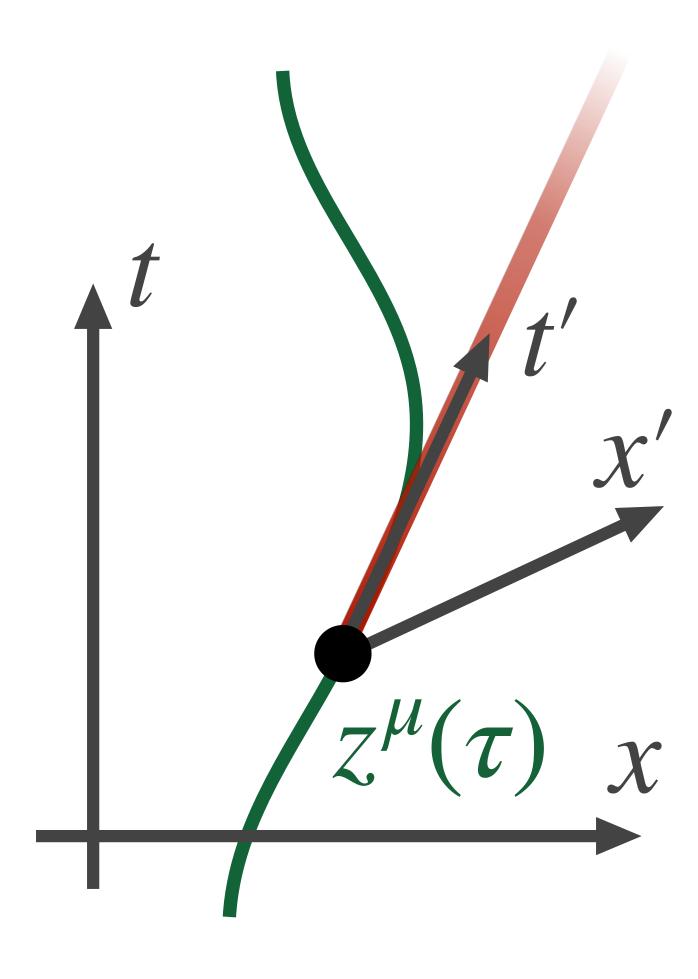
$$J(\eta, k) = \int d\tau \, e^{ik \cdot z(\tau)} f(\dot{z}, k, \eta) \qquad (-$$

One simple example solution is $f = e^{-i\rho\eta \cdot \dot{z}/k \cdot \dot{z}}$

Our currents are generically **not** localized to the worldline!

But choosing appropriate boundary conditions in equations of motion yields causal particle dynamics

- $(ik \cdot \partial_{\eta} + \rho)f \approx 0$



A Universality Result

Our key technical result: all currents can be decomposed as

$$f = e^{-i\rho\eta\cdot\dot{z}/k\cdot\dot{z}}\,\hat{g}(k\cdot\dot{z}) + \mathscr{D}X$$

interactions whose coupling to Ψ can be removed by field redefinition!

$$\hat{g} = \begin{cases} e k \cdot \dot{z} \\ \end{pmatrix}$$

$$m(k\cdot\dot{z})^2+\ldots$$
t

All valid currents found in other works correspond to $\hat{g} = 0$

Kevin Zhou — Continuous Spin

where the free equation of motion is $\delta'(\eta^2 + 1) \mathscr{D} \Psi = 0$. All terms in X are "contact"

- Most physical observables are determined by \hat{g} and thereby **universal**, with
 - scalar-like current
 - vector-like current
 - ensor-like current

Extracting the Physics

From the action $S[\Psi, z_i^{\mu}(\tau)]$ we can compute any desired classical observable:

Find z_i equation of motion "Integrate out" Ψ Solve Ψ equation of motion with given Ψ with given trajectories Matter forces in background Radiation emission $V(\mathbf{r}_i, \mathbf{v}_i, \ldots)$ $dP_h/d\Omega$ $\mathbf{F}(\Psi)$ Universal Universal

(plug solution into action) Matter interaction potential

Depends on nonlocal contact terms

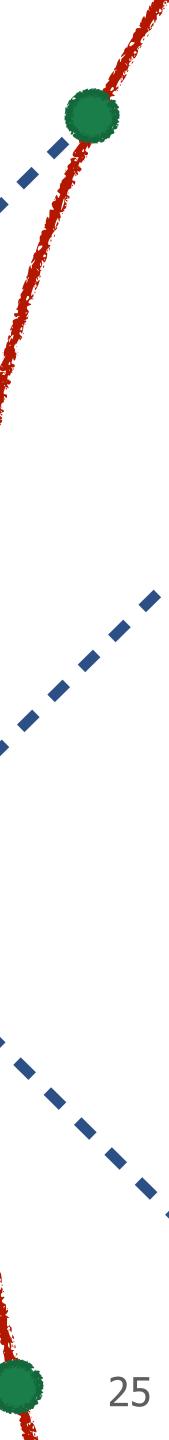
• Free continuous spin fields

Coupling matter particles

Physics with continuous spin

Kevin Zhou — Continuous Spin

Outline



Static potentials can exhibit deviations at long distances:

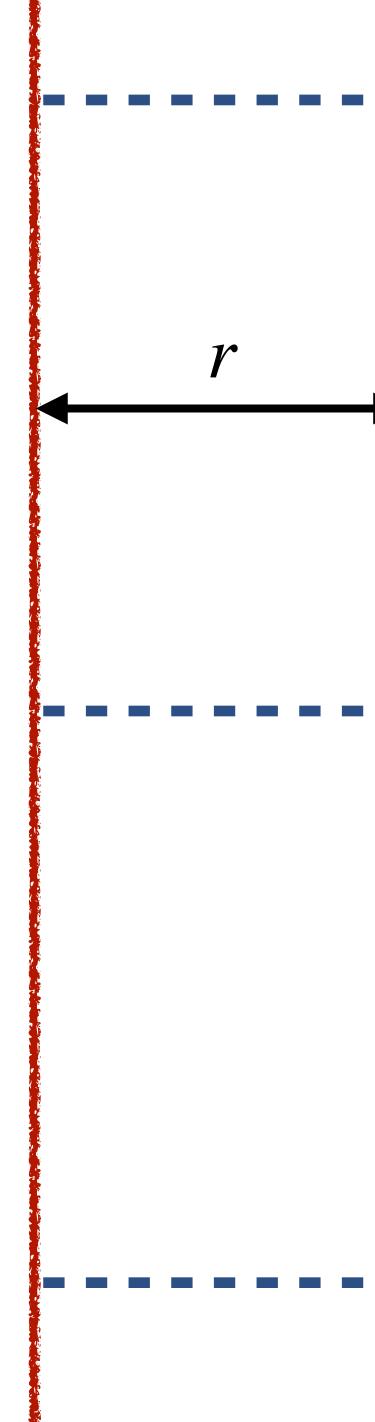
$$V(r) = \frac{g^2}{4\pi r} \left(1 - c_1 \rho r + c_2 (\rho r)^2 + \dots \right)$$

Coefficients depend on current: vanish for simplest currents, but for general currents can cause force to flip sign at large distances

Similar results for vector-like currents; can also find velocitydependent potentials (e.g. corrections to magnetic interaction)

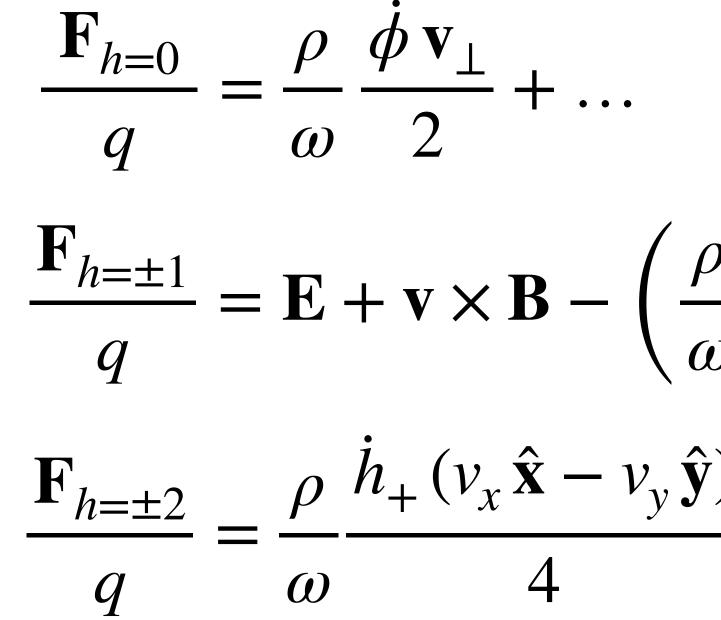
Kevin Zhou — Continuous Spin

Static Potentials



Forces in Background Fields

Force on particle with vector-like current in background of frequency ω , helicity h:



Corrections controlled by $\rho v/\omega$, and as $\rho \rightarrow 0$ other helicities decouple

Full expressions are Bessel functions, convergent at large arguments

$$\frac{\rho}{\omega} \right)^2 \left(\frac{\mathbf{v}_{\perp} (\mathbf{v}_{\perp} \cdot \mathbf{E})}{4} + \frac{v_{\perp}^2 \mathbf{E}}{8} \right) + \dots$$

$$\hat{\mathbf{y}} + \dots$$

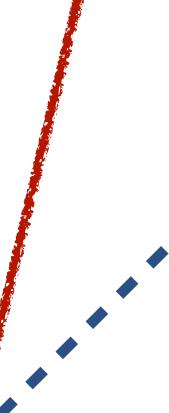
Radiation From Kicked Particle

For any scalar-like current, radiation amplitude from a kicked particle is

$$a_{h,k} \propto g\left(\frac{\tilde{J}_{h}(\rho \left| \epsilon_{-} \cdot p/k \cdot p \right|)}{k \cdot p} - \frac{\tilde{J}_{h}(\rho \left| \epsilon_{-} \cdot p'/k \cdot p' \right|)}{k \cdot p'}\right)$$

which exactly matches soft emission amplitudes fixed by general arguments

Same agreement for vector-like currents; in both cases other helicities decouple as $\rho \rightarrow 0$



1.0

 $P \ / \ (e^2 \omega^2 v_0^2 / 12 \pi)$

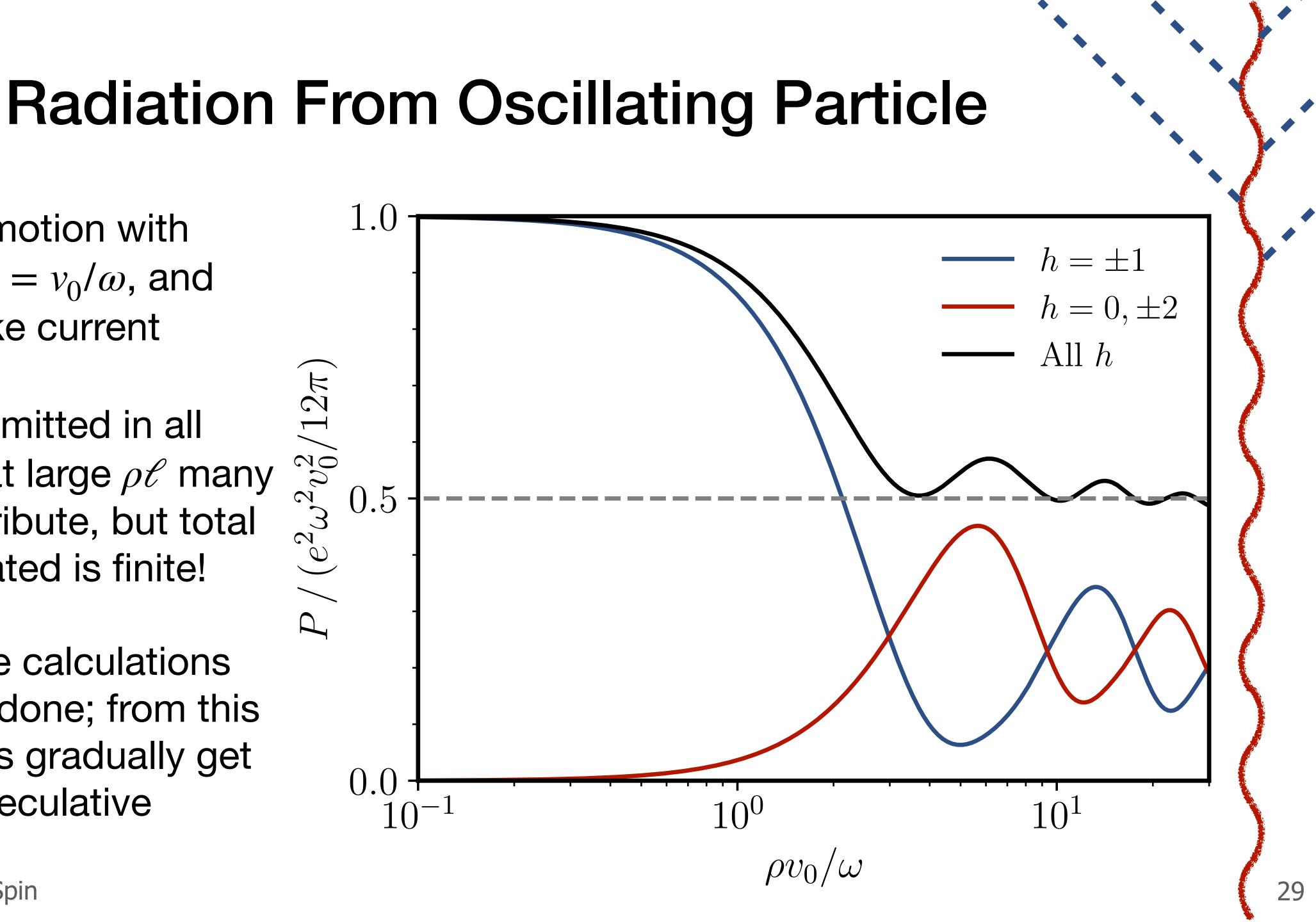
0.5

0.0

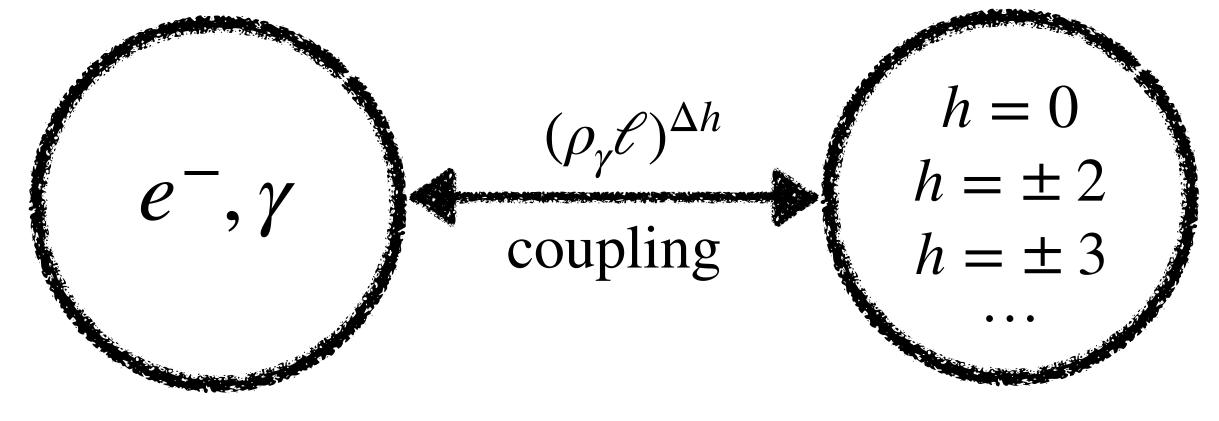
Consider motion with amplitude $\ell = v_0/\omega$, and vector-like current

Radiation emitted in all helicities, and at large $\rho \ell$ many helicities contribute, but total power radiated is finite!

These are the calculations we've already done; from this point on things gradually get more speculative



Probing The Spin Scale of the Photon



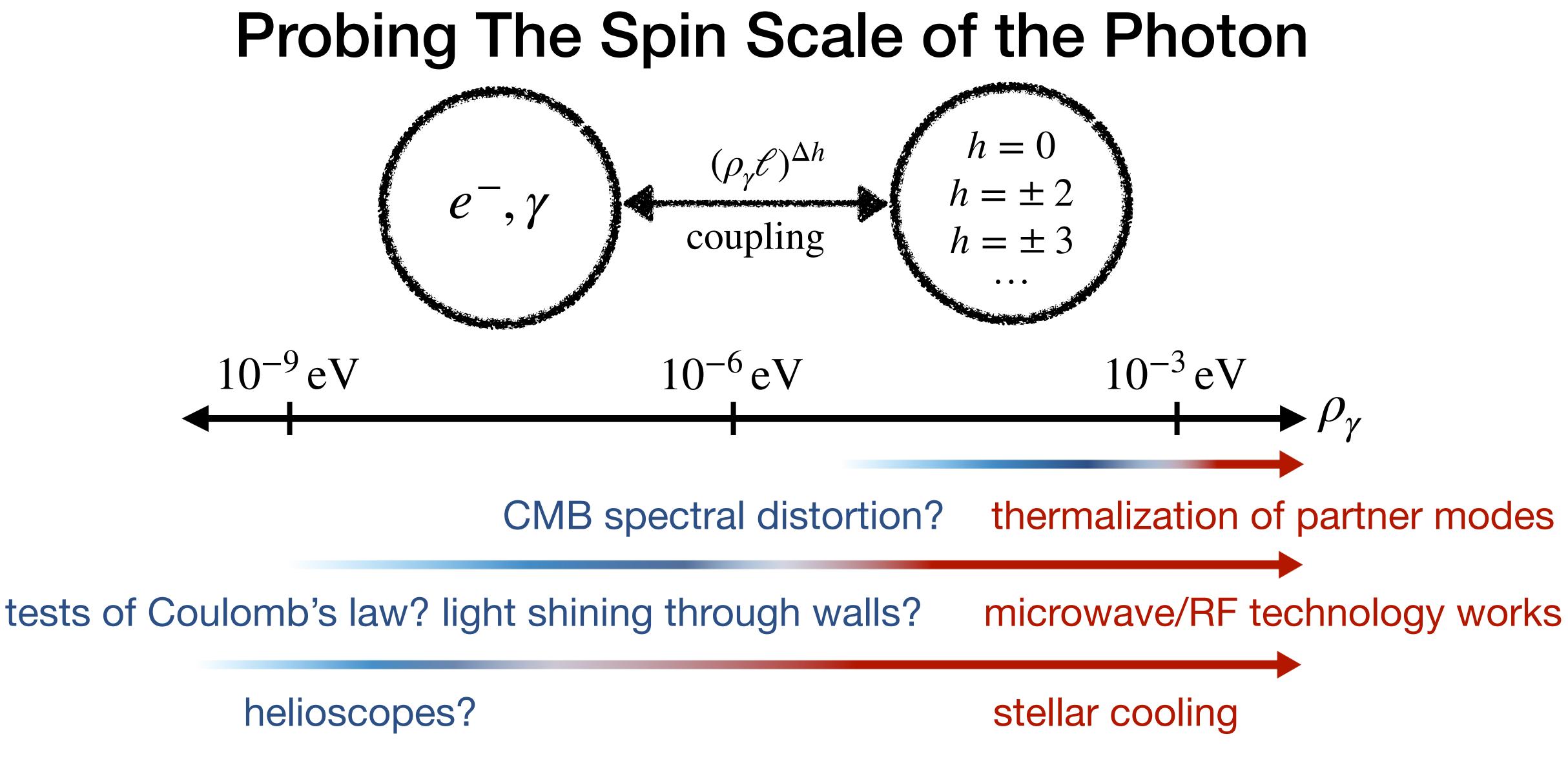
Familiar electron and photon

Kevin Zhou — Continuous Spin

- For vector-like currents, $h = \pm 1$ could be observed photon
 - Other helicities are weakly coupled "dark radiation"

Photon partner polarizations

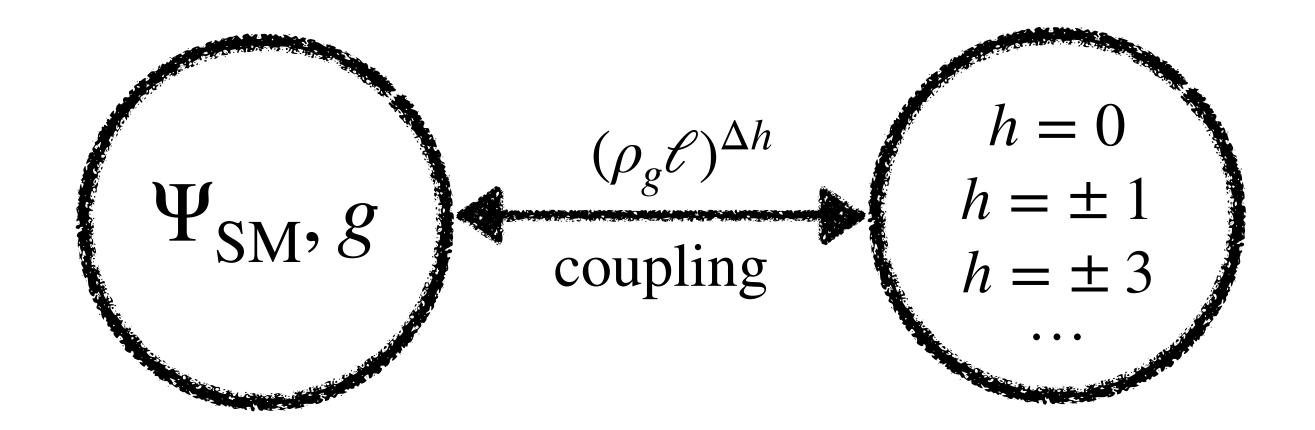
Sensitivity of various probes can be readily calculated



Very rough, preliminary estimates!

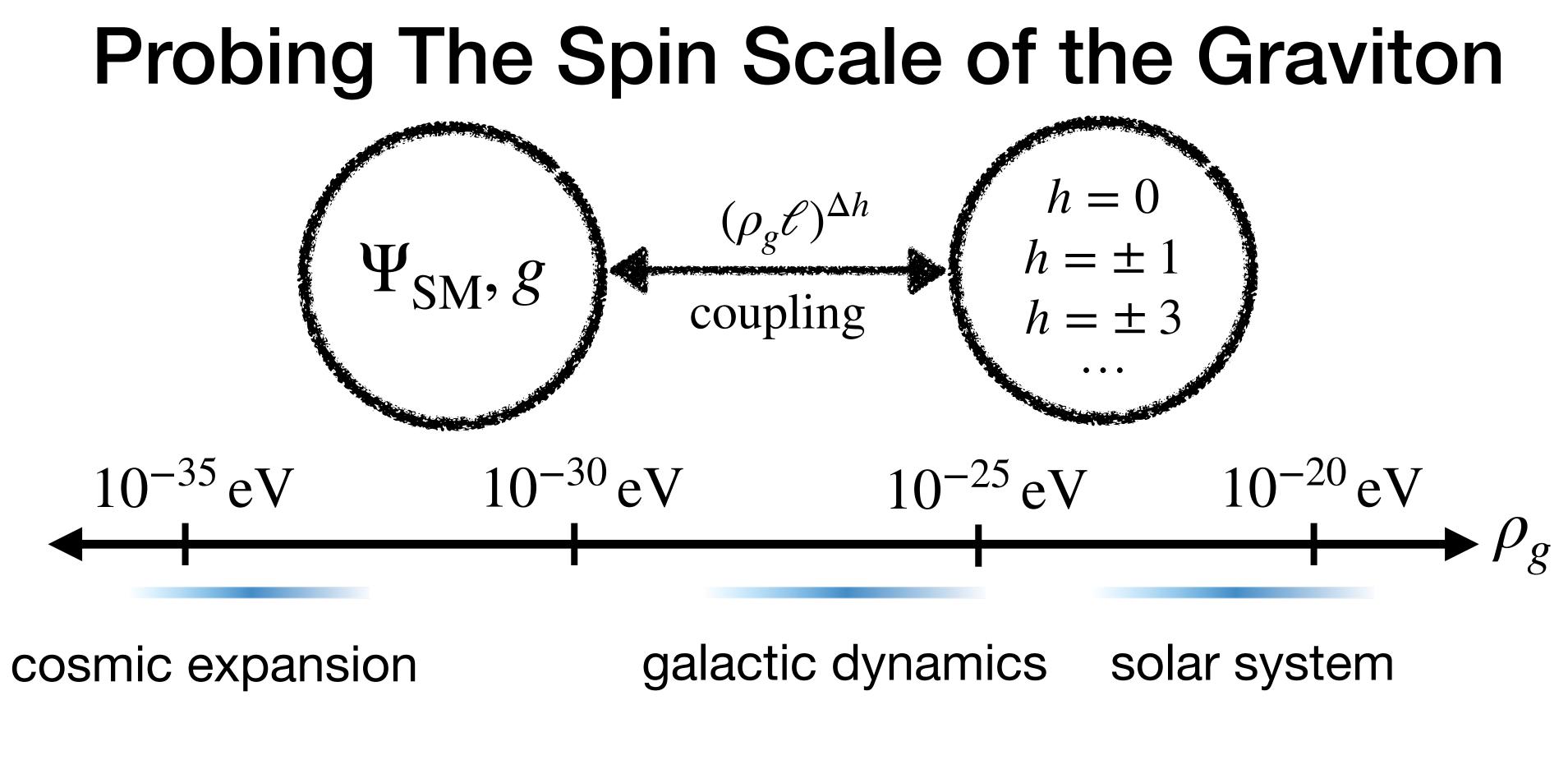
Probing The Spin Scale of the Graviton

Natural next step, requires resolving some gauge subtleties of tensor-like currents



Linearized theory enough for many observables, but full treatment requires understanding nonlinear continuous spin gauge symmetry

(related but independent question: embedding interacting continuous spin fields in background curved spacetime)

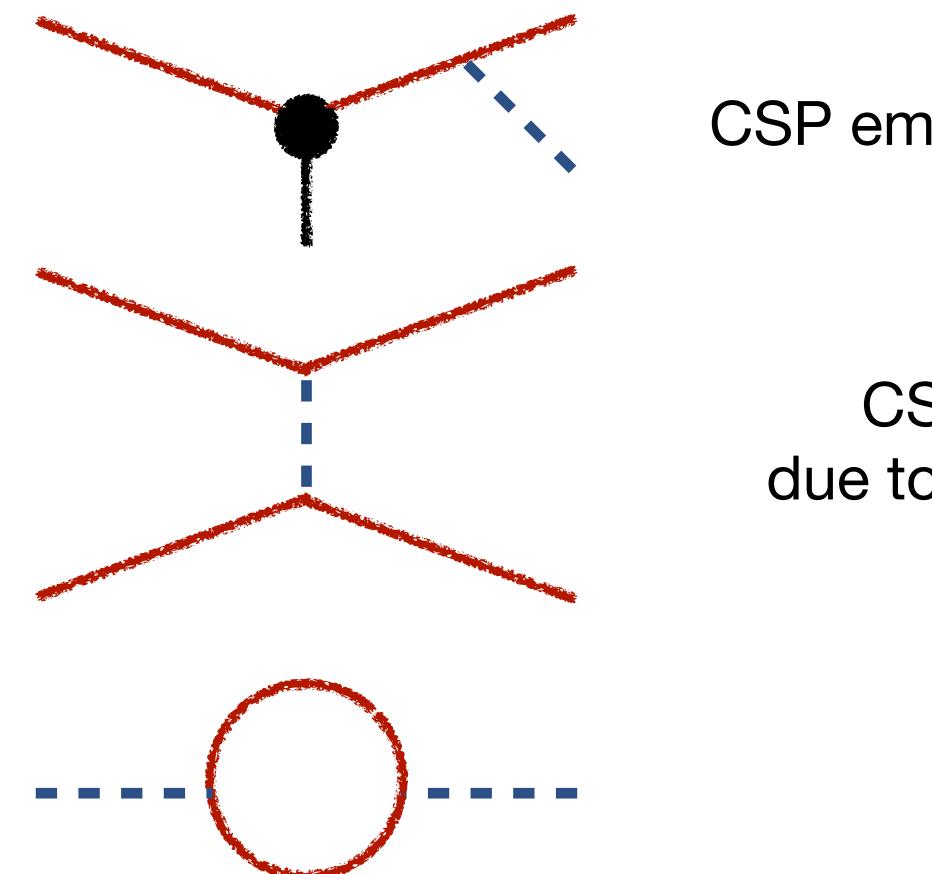


Certain scales motivated by potential deviations from inverse square force

Can also probe universal deviations from gravitational radiation physics

Scattering Amplitudes

Starting from our action, can compute scattering amplitudes with path integral



Kevin Zhou — Continuous Spin

CSP emission straightforward, recovers soft factors

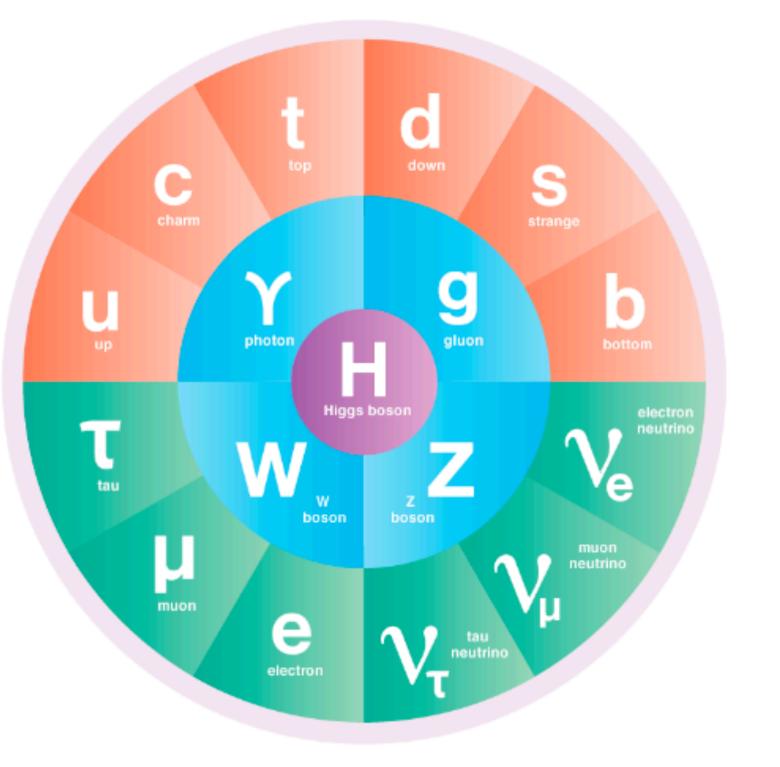
CSP exchange obeys tree-level unitarity, due to completeness relation for helicity modes

Consistency at loop level unknown, may place constraints on current

A Continuous Spin Standard Model?

Would ultimately want to embed a continuous spin photon within the electroweak sector

Need to give continuous spin fields mass Spin gauge symmetry



As a first step, consider a Stuckelberg mass term $m^2 \Psi^2/2$

Yields massive weakly coupled partner polarizations; natural dark matter candidate?

Connections to the Hierarchy Problem

One framing: scalar particles cannot naturally mediate $1/r^2$ forces

Minimally coupled massless scalar receives large mass corrections $\delta m^2 \sim \Lambda_{\rm UV}^2$

Continuous spin fields with scalar-like currents can mediate $1/r^2$ forces, and their mass is protected by their gauge symmetry!

How is this possible?

Kevin Zhou — Continuous Spin

Light axions have mass protected by shift symmetry — but requires derivative couplings, no $1/r^2$ forces

Protecting Scalar Masses: Bottom Up

One way to see how continuous spin protects the mass of a minimally coupled scalar: truncate the tensor expansion at order ρ

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\rho}{\sqrt{2}} (\phi \partial_{\mu} A^{\mu}) + \phi J - A_{\mu} J^{\mu} + \dots$$

Action has gauge symr

Kevin Zhou — Continuous Spin

For scalar like current, J dominates and $A^{\mu}, J^{\mu} \propto \rho$ with $\partial_{\mu} J^{\mu} = -\rho J/\sqrt{2}$ Vector field can couple to nonconserved current due to its mixing with ϕ

metry
$$\delta A_{\mu} = \partial_{\mu} \epsilon / \sqrt{2}$$
, $\delta \phi = \rho \epsilon$

Forbids a scalar mass term for $\rho \neq 0$, but allows a minimal coupling $\phi J!$ Our theory extends this to consistency at all orders in ρ

Protecting Scalar Masses: Top Down

A deeper perspective: the action for our theory

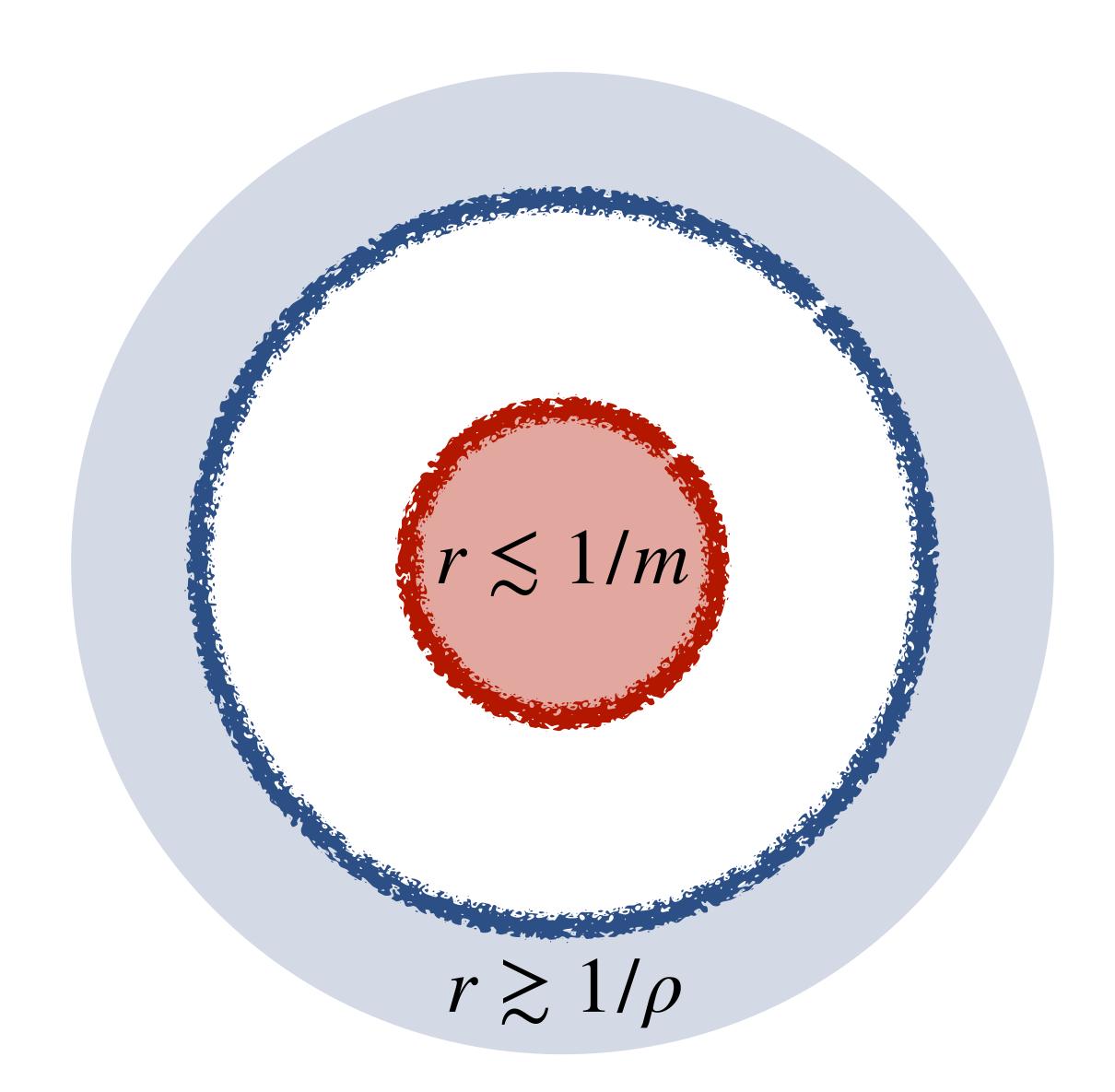
$$S = \frac{1}{2} \int_{x,\eta} \delta'(\eta^2 + 1) (\partial_x \Psi)^2 + \frac{1}{2} \,\delta(\eta^2 + 1) (\Delta \Psi)^2 + \delta'(\eta^2 + 1) \Psi J$$

Motivates further development, to see if this can protect the mass of the Higgs at the quantum level

Kevin Zhou — Continuous Spin

is symmetric under the bosonic superspace translation $\delta x^{\mu} = \omega^{\mu\nu} \eta_{\nu}$

Corresponds to tensorial conserved charge $i\eta^{[\mu}\partial_x^{\nu]}$ which mixes modes separated by **integer** helicity — a new exception to Coleman-Mandula



Kevin Zhou — Continuous Spin

Continuous spin motivates viewing the Standard Model as an effective theory on both long and short distance scales

Nonzero spin scale produces universal, testable effects — and can shed light on a variety of fundamental problems

Much more work to be done!

