On-Shell Constructions of the Non-linear Sigma Model

Based on 1904.12859, 1911.08490 and 2009.00008, collaborations with Ian Low and Laurentiu Rodina

Zhewei Yin

Uppsala University

October 26, 2020
Outline

1. The local constructions
2. The soft bootstrap
3. The double copy
Outline

1. The local constructions
2. The soft bootstrap
3. The double copy
The EFT for NGBs

NLSM: EFT that describes NGB’s
The EFT for NGBs

NLSM: EFT that describes NGB’s
Power counting: π/f, ∂/Λ, $\Lambda > f$.
The EFT for NGBs

NLSM: EFT that describes NGB’s

Power counting: $\pi/f, \partial/\Lambda, \Lambda > f$.

- In the Lagrangian:

$$\mathcal{L} = f^2 \Lambda^2 \left(\text{Series of } \frac{\partial}{\Lambda}, \frac{\pi}{f} \right).$$
The EFT for NGBs

NLSM: EFT that describes NGB’s
Power counting: $\pi/f, \partial/\Lambda, \Lambda > f$.

- In the Lagrangian:

$$\mathcal{L} = f^2 \Lambda^2 \left(\text{Series of} \frac{\partial}{\Lambda}, \frac{\pi}{f} \right).$$

- In the amplitudes:

$$\mathcal{M}_{n,L} = \frac{1}{fn+2L-2} \left(\text{Series of} \frac{p}{\Lambda} \right).$$
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i

\[-i\xi^\dagger \partial_\mu \xi = d^a_\mu X^a + E^i_\mu T^i\]
\[= d_\mu + E_\mu,\]

where $\xi = \exp(i\pi^a X^a / f)$
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i

$$-i\xi^\dagger \partial_\mu \xi = d_\mu^a X^a + E_\mu^i T^i$$

$$= d_\mu + E_\mu,$$

where $\xi = \exp(i\pi^a X^a/f)$

The IR construction:

Low, 1412.2145, 1412.2146

Ingredients:
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
- Broken generators X^a
- Associated with G/H
- Unbroken generators T^i

\[-i\xi^\dagger \partial_\mu \xi \, = \, d_\mu^a X^a + E_\mu^i T^i \]
\[= d_\mu + E_\mu ,\]

where $\xi = \exp(i\pi^a X^a/f)$

The IR construction:

Low, 1412.2145, 1412.2146

Ingredients:

- Unbroken group H
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:
- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i

\[-i\xi^\dagger \partial_\mu \xi = d^{a}_{\mu}X^{a} + E^{i}_{\mu}T^{i}\]
\[= d_\mu + E_\mu,\]

where $\xi = \exp(i\pi^a X^a/f)$

The IR construction:

Low, 1412.2145, 1412.2146

Ingredients:
- Unbroken group H
- Generator T^i of representation R
The local constructions

The coset construction:
Callan, Coleman, Wess and Zumino, 1969

Ingredients:
- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i

\[-i\xi^\dagger \partial_\mu \xi = d_\mu X^a + E_\mu^i T^i\]
\[= d_\mu + E_\mu,\]

where $\xi = \exp(i\pi^a X^a/f)$

The IR construction:
Low, 1412.2145, 1412.2146

Ingredients:
- Unbroken group H
- Generator T^i of representation R
- Adler’s zero:
 $M(\tau p) = O(\tau) \implies$ shift symmetry:
 $\pi^a \rightarrow \pi^a + \varepsilon^a + \cdots$
The local constructions

The coset construction:

Callan, Coleman, Wess and Zumino, 1969

Ingredients:

- Broken group G, unbroken H
- Broken generators X^a, associated with G/H
- Unbroken generators T^i

\[-i\xi^\dagger \partial_\mu \xi = d_\mu^a X^a + E^i_\mu T^i = d_\mu + E_\mu,\]

where $\xi = \exp(i\pi^a X^a / f)$

The IR construction:

Low, 1412.2145, 1412.2146

Ingredients:

- Unbroken group H
- Generator T^i of representation R
- Adler’s zero:
 $\mathcal{M}(\tau p) = \mathcal{O}(\tau) \implies$ shift symmetry:
 $\pi^a \to \pi^a + \varepsilon^a + \cdots$

\[d_\mu \to h d_\mu h^\dagger, E_\mu \to h E_\mu h^\dagger - ih \partial_\mu h^\dagger\]
We only consider symmetric cosets in this talk: $X^a \leftrightarrow -X^a$
Caveat

We only consider symmetric cosets in this talk: $X^a \leftrightarrow -X^a$

Examples:

- The QCD chiral Lagrangian: $\text{SU}(N) \times \text{SU}(N)/\text{SU}(N)$, $N = 2, 3$
- The standard model: $\text{SO}(4)/\text{SO}(3)$
- The composite Higgs models: $\text{SO}(5)/\text{SO}(4)$
Caveat

We only consider representations R that can be embedded into a symmetry coset: “Closure condition”

$$T_{ab}^i T_{cd}^i + T_{ac}^i T_{db}^i + T_{ad}^i T_{bc}^i = 0$$

Examples:

- The QCD chiral Lagrangian: $\text{SU}(N) \times \text{SU}(N)/\text{SU}(N)$, $N = 2, 3$
- The standard model: $\text{SO}(4)/\text{SO}(3)$
- The composite Higgs models: $\text{SO}(5)/\text{SO}(4)$
Caveat

We only consider representations \(R \) that can be embedded into a symmetry coset: “Closure condition”

\[
T_{ab}^i T_{cd}^i + T_{ac}^i T_{db}^i + T_{ad}^i T_{bc}^i = 0
\]

Examples:

- The QCD chiral Lagrangian: \(H = SU(N), R = A, \ N = 2, 3 \)
- The standard model: \(H = SO(3), R = 3 \)
- The composite Higgs models: \(H = SO(4), R = 4 \)
Caveat

We only consider representations R that can be embedded into a symmetry coset: “Closure condition”

$$T_{ab}^i T_{cd}^i + T_{ac}^i T_{db}^i + T_{ad}^i T_{bc}^i = 0$$

Examples:

- The QCD chiral Lagrangian: $H = SU(N), R = A, N = 2, 3$
- The standard model: $H = SO(3), R = 3$
- The composite Higgs models: $H = SO(4), R = 4$

Universality in pNGB Higgs!

Low, 1412.2146; Liu, Low, ZY, 1805.00489, 1809.09126
Caveat

We only consider representations R that can be embedded into a symmetry coset: “Closure condition”

$$T_{ab}^i T_{cd}^i + T_{ac}^i T_{db}^i + T_{ad}^i T_{bc}^i = 0$$

Examples:

- The QCD chiral Lagrangian: $H = \text{SU}(N)$, $R = A$, $N = 2, 3$
- The standard model: $H = \text{SO}(3)$, $R = 3$
- The composite Higgs models: $H = \text{SO}(4)$, $R = 4$

Universality in pNGB Higgs!

Low, 1412.2146; Liu, Low, ZY, 1805.00489, 1809.09126

Otherwise, Adler’s zero no longer holds: $\mathcal{M}(\tau p) = \mathcal{O}(\tau^0)$

Kampf, Novotny, Shifman, Trnka, 1910.04766
Why on-shell?

- Convenience, e.g. soft bootstrap
Why on-shell?

- Convenience, e.g. soft bootstrap
- Unveil hidden structures, e.g. double copy structures
Outline

1. The local constructions
2. The soft bootstrap
3. The double copy
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams

Unitarity:

\[P_I^2 = 0 \]
The Lagrangian

Soft bootstrap

Double copy

The idea

Constructing all amplitudes without \(\mathcal{L} \) or Feynman diagrams

Unitarity:

Contact terms? Need more constraints:
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams

Unitarity:

\[P_I^2 = 0 \]

Contact terms? Need more constraints:

- Particle content, mass dimension etc.
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams

Unitarity:

\[\mathcal{M} \rightarrow M_L \quad M_R \quad I \]

Contact terms? Need more constraints:

- Particle content, mass dimension etc.
- Gauge invariance, e.g. BCFW for gravity
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams

Unitarity:

Contact terms? Need more constraints:

- Particle content, mass dimension etc.
- Gauge invariance, e.g. BCFW for gravity
- Symmetry: linearly realized global symmetry (e.g. color ordering for gauge theory), SUSY
The idea

Constructing all amplitudes without \mathcal{L} or Feynman diagrams

Unitarity:

$P_I^2 = 0$

Contact terms? Need more constraints:

- Particle content, mass dimension etc.
- Gauge invariance, e.g. BCFW for gravity
- Symmetry: linearly realized global symmetry (e.g. color ordering for gauge theory), SUSY
- Extra constraints of IR/UV, amplitude relations...
The machinery: recursion relations

- Deform the momenta: \(\hat{p}_i = \hat{p}_i(z) \), \(\hat{p}_i(0) = p_i \)
The machinery: recursion relations

- Deform the momenta: $\hat{p}_i = \hat{p}_i(z)$, $\hat{p}_i(0) = p_i$
- Taking propagator $i/\hat{P}_I^2(z)$ on-shell \rightarrow simple pole at $z = z_I$
The machinery: recursion relations

- Deform the momenta: $\hat{p}_i = \hat{p}_i(z)$, $\hat{p}_i(0) = p_i$
- Taking propagator $i/\hat{P}_i^2(z)$ on-shell \rightarrow simple pole at $z = z_I$
- Unitarity:

$$\text{Res}_{z=z_I} \frac{\hat{M}_n(z)}{z} = - \frac{\hat{M}_L(z_I)\hat{M}_R(z_I)}{z_I} \text{Res}_{z=z_I} \frac{1}{\hat{P}_i^2(z)}.$$
The machinery: recursion relations

- Deform the momenta: $\hat{p}_i = \hat{p}_i(z)$, $\hat{p}_i(0) = p_i$
- Taking propagator $i/\hat{P}_I^2(z)$ on-shell \rightarrow simple pole at $z = z_I$
- Unitarity:
 \[
 \text{Res}_{z = z_I} \frac{\hat{M}_n(z)}{z} = -\frac{\hat{M}_L(z_I)\hat{M}_R(z_I)}{z_I} \text{Res}_{z = z_I} \frac{1}{\hat{P}_I^2(z)}.
 \]

- Recursion relation
 \[
 \oint \frac{dz}{z} \hat{M}_n(z) = 0
 \]
 \rightarrow $\mathcal{M}_n = \sum_I \sum_{z_I} \frac{\hat{M}_L(z_I)\hat{M}_R(z_I)}{z_I} \text{Res}_{z = z_I} \frac{1}{\hat{P}_I^2(z)}.$
The machinery: soft subtract recursion relations

\[\int \frac{dz}{z} \mathcal{M}_n(z) = 0 \quad \rightarrow \quad \lim_{z \to \infty} \mathcal{M}(z) = 0. \]
The machinery: soft subtract recursion relations

\[\oint \frac{dz}{z} \hat{\mathcal{M}}_n(z) = 0 \rightarrow \lim_{z \to \infty} \hat{\mathcal{M}}(z) = 0. \]

Works fine for gravity and gauge theory because of gauge invariance.

NLSM starts at \(\mathcal{O}(p^2) \rightarrow \mathcal{O}(z^2) \)

Need to incorporate the shift symmetry!
The machinery: soft subtract recursion relations

\[\oint \frac{dz}{z} \frac{\hat{M}_n(z)}{K(z)} = 0 \quad \rightarrow \quad \lim_{z \to \infty} \frac{\hat{M}(z)}{K(z)} = 0. \]
The machinery: soft substrate recursion relations

\[\oint \frac{dz}{z} \hat{M}_n(z) \frac{K(z)}{K(z)} = 0 \quad \rightarrow \quad \lim_{z \to \infty} \frac{\hat{M}(z)}{K(z)} = 0. \]

For NLSM, Adler’s zero condition: if we take \(p_i \to \tau p_i \) and \(\tau \to 0 \),

\[\mathcal{M}_n(\cdots, \tau p_i, \cdots) = \mathcal{O}(\tau). \]
The machinery: soft substrace recursion relations

$$\oint dz \frac{\hat{M}_n(z)}{z} = 0 \quad \rightarrow \quad \lim_{z \to \infty} \frac{\hat{M}(z)}{K(z)} = 0.$$

For NLSM, Adler’s zero condition: if we take $p_i \to \tau p_i$ and $\tau \to 0$,

$$\mathcal{M}_n(\cdots, \tau p_i, \cdots) = \mathcal{O}(\tau).$$

All line shift: $p_i \to \hat{p}_i = (1 - a_i z) p_i$; $\hat{p}_i = 0 \quad \rightarrow \quad z = 1/a_i.$
The machinery: soft subtract recursion relations

\[\int \frac{dz}{z} \frac{\hat{M}_n(z)}{K(z)} = 0 \quad \Rightarrow \quad \lim_{z \to \infty} \frac{\hat{M}(z)}{K(z)} = 0. \]

For NLSM, Adler’s zero condition: if we take \(p_i \rightarrow \tau p_i \) and \(\tau \rightarrow 0 \),

\[M_n(\cdots, \tau p_i, \cdots) = \mathcal{O}(\tau). \]

All line shift: \(p_i \rightarrow \hat{p}_i = (1 - a_i z) p_i; \hat{p}_i = 0 \quad \Rightarrow \quad z = 1/a_i. \)

\[K_n(z) \equiv \prod_{i=1}^n (1 - a_i z). \]
The machinery: soft subtract recursion relations

\[\oint dz \frac{\mathcal{M}_n(z)}{z} K(z) = 0 \quad \rightarrow \quad \lim_{z \to \infty} \frac{\mathcal{M}(z)}{K(z)} = 0. \]

For NLSM, Adler’s zero condition: if we take \(p_i \to \tau p_i \) and \(\tau \to 0 \),

\[\mathcal{M}_n(\cdots, \tau p_i, \cdots) = O(\tau). \]

All line shift: \(p_i \to \hat{p}_i = (1 - a_i z) p_i; \hat{p}_i = 0 \quad \rightarrow \quad z = 1/a_i. \)

\(K_n(z) \equiv \prod_{i=1}^{n} (1 - a_i z). \)

Soft subtract recursion relation:

\[\mathcal{M}_n = \hat{\mathcal{M}}_n(0) = - \sum_{l, \pm} \frac{1}{P_{l}^2} \frac{\hat{\mathcal{M}}_{L}^{(l)}(z_{l}^{\pm}) \hat{\mathcal{M}}_{R}^{(l)}(z_{l}^{\pm})}{K_n(z_{l}^{\pm})(1 - z_{l}^{\pm} / z_{l}^{\mp})} \]
The machinery: soft subtract recursion relations

\[\oint dz \frac{\hat{M}_n(z)}{z K(z)} = 0 \quad \Rightarrow \quad \lim_{z \to \infty} \frac{\hat{M}(z)}{K(z)} = 0. \]

For NLSM, Adler’s zero condition: if we take \(p_i \to \tau p_i \) and \(\tau \to 0 \),

\[\mathcal{M}_n(\cdots, \tau p_i, \cdots) = \mathcal{O}(\tau). \]

All line shift: \(p_i \to \hat{p}_i = (1 - a_i z) p_i ; \hat{p}_i = 0 \quad \Rightarrow \quad z = 1/a_i. \)

\[K_n(z) \equiv \prod_{i=1}^{n} (1 - a_i z). \]

Soft subtract recursion relation:

\[\mathcal{M}_n = \hat{M}_n(0) = - \sum_{l, \pm} \frac{1}{P_i^2} \frac{\hat{M}_L^{(l)}(z_i^\pm) \hat{M}_R^{(l)}(z_i^\pm)}{K_n(z_i^\pm)(1 - z_i^\pm / z_i^\mp)} \]

Independence of \(a_i \leftrightarrow \) allowed theory space

Cheung, Kampf, Novotny, Shen, Trnka, 1509.03309, 1611.03137; Elvang, Hadjiantonis, Jones, Paranjape, 1806.06079
The machinery: flavor ordering

The leading order Lagrangian:

\[
 \mathcal{L}^{(2)} = \frac{f^2}{2} d^a d^{a\mu} = \frac{1}{2} \partial_\mu \pi^a \left[\frac{\sin^2 \sqrt{T}}{T} \right]_{ab} \partial^\mu \pi^b,
\]

where \((T)_{ab} = \frac{1}{f^2} T^i_{ac} T^i_{db} \pi^c \pi^d\)
The machinery: flavor ordering

The leading order Lagrangian:

\[\mathcal{L}^{(2)} = \frac{f^2}{2} d^a \partial_\mu d^{a\mu} = \frac{1}{2} \partial_\mu \pi^a \left[\frac{\sin^2 \sqrt{T}}{T} \right]_{ab} \partial^\mu \pi^b, \]

where \((T)_{ab} = \frac{1}{f^2} T_i^{\text{ac}} T_i^{\text{db}} \pi^c \pi^d, \ T_i^{\text{ab}} \propto \text{tr} (T^i [X^a, X^b])\)
The machinery: flavor ordering

The leading order Lagrangian:

\[\mathcal{L}^{(2)} = \frac{f^2}{2} d_\mu^a d^{a\mu} = \frac{1}{2} \partial_\mu \pi^a \left[\sin^2 \sqrt{T} \right] \partial^\mu \pi^b, \]

where \((T)_{ab} = \frac{1}{f^2} T_{ac} T_{db} \pi^c \pi^d, T_{ab} \propto \text{tr} \left(T^i [X^a, X^b] \right)\)

Single trace flavor-ordering:

\[M_{n a_1 a_2 \cdots a_n} = \sum_\sigma \text{tr} \left(X^{a_{\sigma(1)}} X^{a_{\sigma(2)}} \cdots X^{a_{\sigma(n)}} \right) M_n(\sigma) \]
The machinery: flavor ordering

The leading order Lagrangian:

\[\mathcal{L}^{(2)} = \frac{f^2}{2} d_\mu^a d^{a\mu} = \frac{1}{2} \partial_\mu \pi^a \left[\frac{\sin^2 \sqrt{\mathcal{T}}}{\mathcal{T}} \right]_{ab} \partial^\mu \pi^b, \]

where \((\mathcal{T})_{ab} = \frac{1}{f^2} T_{ac}^i T_{db}^i \pi^c \pi^d, \ T_{ab}^i \propto \text{tr} (T^i [X^a, X^b]) \)

Single trace flavor-ordering:

\[\mathcal{M}_{n}^{a_1 a_2 \cdots a_n} = \sum_{\sigma} \text{tr} (X^{a_{\sigma(1)}} X^{a_{\sigma(2)}} \cdots X^{a_{\sigma(n)}}) M_n(\sigma) \]

- Works for a general \(R \) of \(H \)
- Continue to work at \(\mathcal{O}(p^4) \) with single/double traces
Factorization of flavors?

We would like to construct the ordered amplitudes

\[M_\sigma = - \sum_{l, \pm} \frac{1}{P_l^2} \frac{\hat{M}_L^{(l)}(z_l^\pm) \hat{M}_R^{(l)}(z_l^\pm)}{K_n(z_l^\pm)(1 - z_l^\pm / z_l^\mp)}, \]
Factorization of flavors?

We would like to construct the ordered amplitudes

\[M_\sigma = - \sum_{I, \pm} \frac{1}{P_I^2} \frac{\hat{M}^{(I)}_{\{\sigma_L, I\}}(z_I^\pm)\hat{M}^{(I)}_{\{\sigma_R, -I\}}(z_I^\pm)}{K_n(z_I^\pm)(1 - z_I^{\pm}/z_{I'}^{\mp})} , \]

Convenient factorization of the ordering:

\[\{\sigma\} = \{\sigma_L, \sigma_R\} \]
Factorization of flavors?

We would like to construct the ordered amplitudes

\[M_\sigma = -\sum_{I, \pm} \frac{1}{P_l^2} \frac{\hat{M}_{\{\sigma_L, I\}}(z_I^\pm) \hat{M}_{\{\sigma_R, -I\}}(z_I^\pm)}{K_n(z_I^\pm)(1 - z_I^\pm/z_I^{\mp})}, \]

Convenient factorization of the ordering:

\[\{\sigma\} = \{\sigma_L, \sigma_R\} \]

Constraint on the flavor factor:

\[C^{a_1 a_2 \cdots a_n} = C^{a_1 a_2 \cdots a_k a_l} C^{a_l a_{k+1} \cdots a_n}, \]
Factorization of flavors?

Constraint on the flavor factor:

\[C^{a_1 a_2 \cdots a_n} = C^{a_1 a_2 \cdots a_k a_l} C^{a_l a_{k+1} \cdots a_n}, \]

Can be done for the adjoint of \(H = U(N) (SU(N)) \) in the trace basis: we have \(H \times H/H \approx H \),

\[\text{tr} (\cdots X^a \cdots) \rightarrow \text{tr} (\cdots T^a \cdots), \quad (T^a)_{bc} (T^a)_{de} = \delta^{be} \delta^{cd}. \]
Factorization of flavors?

Constraint on the flavor factor:

\[C^{a_1 a_2 \cdots a_n} = C^{a_1 a_2 \cdots a_k a_l} C^{a_l a_{k+1} \cdots a_n}, \]

Can be done for the adjoint of \(H = U(N) (SU(N)) \) in the trace basis: we have \(H \times H/H \approx H, \)

\[\text{tr} (\cdots X^a \cdots) \rightarrow \text{tr} (\cdots T^a \cdots), \quad (T^a)_{bc} (T^a)_{de} = \delta_{be} \delta_{cd}. \]

However, the amplitudes up to \(\mathcal{O}(p^4) \) in the trace basis are universal!
$O(p^2)$

Soft blocks:
- Correct mass dimension and little group scaling
- Local
- Satisfy symmetry constraints: ordering, Adler’s zero…
$O(p^2)$

Soft blocks:
- Correct mass dimension and little group scaling
- Local
- Satisfy symmetry constraints: ordering, Adler’s zero...

Single-trace: $S_4^{(2)}(1, 2, 3, 4) = (c_0/f^2)s_{13}$, $s_{ij} = (p_i + p_j)^2$,
generates the general $O(p^2)$ single-trace amplitudes
\(\mathcal{O}(p^2) \)

Soft blocks:
- Correct mass dimension and little group scaling
- Local
- Satisfy symmetry constraints: ordering, Adler’s zero...

Single-trace: \(S^{(2)}_4(1, 2, 3, 4) = (c_0/f^2)s_{13}, \ s_{ij} = (p_i + p_j)^2 \)
generates the general \(\mathcal{O}(p^2) \) single-trace amplitudes

What about double-trace: \(S^{(2)}_4(1, 2|3, 4) = (d_0/f^2)s_{12} \)
Flavor factor: \(\text{tr}(X^{a_1}X^{a_2})\text{tr}(X^{a_3}X^{a_4}) = \delta^{a_1a_2}\delta^{a_3a_4} \).
\(\mathcal{O}(p^2) \)

Soft blocks:

- Correct mass dimension and little group scaling
- Local
- Satisfy symmetry constraints: ordering, Adler’s zero...

Single-trace: \(S_4^{(2)}(1, 2, 3, 4) = (c_0/f^2)s_{13}, \ s_{ij} = (p_i + p_j)^2 \), generates the general \(\mathcal{O}(p^2) \) single-trace amplitudes

What about double-trace: \(S_4^{(2)}(1, 2|3, 4) = (d_0/f^2)s_{12} \)

Flavor factor: \(\text{tr}(X^{a_1}X^{a_2})\text{tr}(X^{a_3}X^{a_4}) = \delta^{a_1a_2}\delta^{a_3a_4}. \)

Result:

- \(S_4^{(2)}(1, 2|3, 4) \) generates the \(\mathcal{O}(p^2) \) pair basis amplitudes \(M(12|34|56|\cdots) \)
- “Mixed ordering” does not work
The leading order Lagrangian:

\[\mathcal{L}^{(2)} = \frac{f^2}{2} d_{\mu}^a d_{a\mu} = \frac{1}{2} \partial_\mu \pi^a \left[\frac{\sin^2 \sqrt{T}}{T} \right]_{ab} \partial^\mu \pi^b, \]

where \((T)_{ab} = \frac{1}{f^2} T_{ac} T_{db} \pi^c \pi^d\).
Pair basis for N of SO(N)

The leading order Lagrangian:

\[\mathcal{L}^{(2)} = \frac{f^2}{2} d^a \pi^a = \frac{1}{2} \partial_\mu \pi^a \left[\sin^2 \sqrt{T} \right] \partial^{a} \pi^{b}, \]

where \((T)_{ab} = \frac{1}{f^2} T^i_{ac} T^i_{db} \pi^c \pi^d\)

For N of SO(N): completeness relation

\[T^i_{ab} T^i_{cd} = -\frac{1}{2} (\delta^{ac} \delta^{bd} - \delta^{ad} \delta^{bc}).\]
Pair basis for \textbf{N} of SO(N)

For \textbf{N} of SO(N): completeness relation

$$T^i_{ab} T^i_{cd} = -\frac{1}{2} (\delta^{ac} \delta^{bd} - \delta^{ad} \delta^{bc}).$$

The pair basis:

$$M^{a_1 \cdots a_n}_n = \sum_{\dot{\alpha}} \left(\prod_{j=1}^{n/2} \delta^{a_\dot{\alpha}(2j-1)} a_{\dot{\alpha}(2j)} \right) \times M_n(\dot{\alpha}(1), \dot{\alpha}(2)|\dot{\alpha}(3), \dot{\alpha}(4)| \cdots |\dot{\alpha}(2n-1), \dot{\alpha}(2n)).$$
Pair basis for \mathbf{N} of SO(N)

For \mathbf{N} of SO(N): completeness relation

$$T^i_{ab} T^i_{cd} = -\frac{1}{2}(\delta^{ac} \delta^{bd} - \delta^{ad} \delta^{bc}).$$

The pair basis:

$$M^{a_1 \cdots a_n}_{n} = \sum_{\hat{\alpha}} \left(\prod_{j=1}^{n/2} \delta^{a_{\hat{\alpha}(2j-1)} a_{\hat{\alpha}(2j)}} \right)$$

$$\times M_n(\hat{\alpha}(1), \hat{\alpha}(2)|\hat{\alpha}(3), \hat{\alpha}(4)| \cdots |\hat{\alpha}(2n-1), \hat{\alpha}(2n)), $$

Factorization of the flavor factor:

$$C^{a_1 a_2 \cdots a_n} = C^{a_1 a_2 \cdots a_k a_l} C^{a_l a_{k+1} \cdots a_n},$$

Automatic!
To build the Lagrangian, we need traces of d_μ, with ∇_μ acting on them so that

$$\nabla_\mu d_\nu = \partial_\mu d_\nu + i [E_\mu, d_\nu].$$
\(\mathcal{O}(p^4) \)

The most general Lagrangian

\[
\mathcal{L}^{\text{NLSM}} = \mathcal{L}^{(2)} + \frac{f^2}{\Lambda^2} \left(\sum_{i=1}^{4} C_i O_i + C_\infty O_{\text{wzw}} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right),
\]

with

\[
\begin{align*}
O_1 &= \left[\text{tr}(d_\mu d^{\mu}) \right]^2, \quad O_2 = \left[\text{tr}(d_\mu d_\nu) \right]^2, \\
O_3 &= \text{tr}([d_\mu, d_\nu]^2), \quad O_4 = \text{tr}([d_\mu, d_\nu]^2), \\
S_{\text{wzw}} &\propto \int d^5 y \, \varepsilon^{\alpha\beta\gamma\delta\epsilon} \text{tr}(d_\alpha d_\beta d_\gamma d_\delta d_\epsilon) = \int d^4 x \, O_{\text{wzw}}
\end{align*}
\]
The most general Lagrangian

\[\mathcal{L}^{\text{NLSM}} = \mathcal{L}^{(2)} + \frac{f^2}{\Lambda^2} \left(\sum_{i=1}^{4} C_i O_i + C_{-} O_{\text{wzw}} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right), \]

with

\[
\begin{align*}
O_1 &= \left[\text{tr} (d_\mu d^{\mu}) \right]^2, \\
O_2 &= \left[\text{tr} (d_\mu d_\nu) \right]^2, \\
O_3 &= \text{tr} ([d_\mu, d_\nu]^2), \\
O_4 &= \text{tr} (\{d_\mu, d_\nu\}^2),
\end{align*}
\]

\[S_{\text{wzw}} \propto \int d^5 y \varepsilon^{\alpha\beta\gamma\delta\epsilon} \text{tr} (d_\alpha d_\beta d_\gamma d_\delta d_\epsilon) = \int d^4 x \ O_{\text{wzw}} \]

To get this:

- Total derivatives
- Symmetry, e.g. \(\nabla_{[\mu} d_{\nu]} = 0 \), \([\nabla_\mu, \nabla_\nu] = [d_\mu, d_\nu] \)
- Equation of motion
The most general Lagrangian

\[\mathcal{L}^{\text{NLSM}} = \mathcal{L}^{(2)} + \frac{f^2}{\Lambda^2} \left(\sum_{i=1}^{4} C_i O_i + C_{-} O_{\text{wzw}} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right), \]

with

\begin{align*}
O_1 &= \left[\text{tr}(d_\mu d^\mu) \right]^2, \\
O_2 &= \left[\text{tr}(d_\mu d_\nu) \right]^2, \\
O_3 &= \text{tr}([d_\mu, d_\nu]^2), \\
O_4 &= \text{tr}([d_\mu, d_\nu]^2),
\end{align*}

\[S_{\text{wzw}} \propto \int d^5 y \varepsilon^{\alpha\beta\gamma\delta\epsilon} \text{tr}(d_\alpha d_\beta d_\gamma d_\delta d_\epsilon) = \int d^4 x \ O_{\text{wzw}} \]

The on-shell way:

- Total derivatives \rightarrow total momentum conservation
- Symmetry \rightarrow orderings, Adler’s zero
- Equation of motion \rightarrow on-shell condition
\(\mathcal{O}(p^4) \) soft bootstrap

\(\mathcal{O}(p^4) \) soft blocks:

\[
S_4^{(4)}(1, 2, 3, 4) = \frac{1}{f^2 \Lambda^2} (c_1 s_{13}^2 + c_2 s_{12} s_{23}),
\]

\[
S_4^{(4)}(1, 2|3, 4) = \frac{1}{f^2 \Lambda^2} (d_1 s_{12}^2 + d_2 s_{13} s_{23}),
\]

\[
S_5^{(4)}(1, 2, 3, 4, 5) = \frac{1}{f^2 \Lambda^3} c - \varepsilon_{\mu \nu \rho \gamma} p_1^\mu p_2^\nu p_3^\rho p_4^\gamma.
\]
$\mathcal{O}(p^4)$ soft bootstrap

$\mathcal{O}(p^4)$ soft blocks:

\[
\begin{align*}
S_4^{(4)}(1, 2, 3, 4) &= \frac{1}{f^2 \Lambda^2} (c_1 s_{13}^2 + c_2 s_{12}s_{23}), \\
S_4^{(4)}(1, 2|3, 4) &= \frac{1}{f^2 \Lambda^2} (d_1 s_{12}^2 + d_2 s_{13}s_{23}), \\
S_5^{(4)}(1, 2, 3, 4, 5) &= \frac{1}{f^2 \Lambda^3} c_\varepsilon \varepsilon_{\mu \nu \rho \gamma} p_1^\mu p_2^\nu p_3^\rho p_4^\gamma.
\end{align*}
\]

Degrees of freedom match exactly with the action:

Low, ZY, 1904.12859.
\(\mathcal{O}(p^4) \) soft bootstrap

\(\mathcal{O}(p^4) \) soft blocks:

\[
S_4^{(4)}(1, 2, 3, 4) = \frac{1}{f^2 \Lambda^2} (c_1 s_{13}^2 + c_2 s_{12} s_{23}),
\]

\[
S_4^{(4)}(1, 2|3, 4) = \frac{1}{f^2 \Lambda^2} (d_1 s_{12}^2 + d_2 s_{13} s_{23}),
\]

\[
S_5^{(4)}(1, 2, 3, 4, 5) = \frac{1}{f^2 \Lambda^3} c_{-\varepsilon_{\mu\nu\rho\gamma}} p_1^\mu p_2^\nu p_3^\rho p_4^\gamma.
\]

Degrees of freedom match exactly with the action:

Low, ZY, 1904.12859.

- The general case, starting with \(S_4^{(2)}(1, 2, 3, 4) \):
 4 independent P-even operators and a WZW term
$O(p^4)$ soft bootstrap

$O(p^4)$ soft blocks:

\[
S_{4}^{(4)}(1, 2, 3, 4) = \frac{1}{f^2 \Lambda^2} (c_1 s_{12}^2 + c_2 s_{13} s_{23}),
\]
\[
S_{4}^{(4)}(1, 2|3, 4) = \frac{1}{f^2 \Lambda^2} (d_1 s_{12}^2 + d_2 s_{13} s_{23}),
\]
\[
S_{5}^{(4)}(1, 2, 3, 4, 5) = \frac{1}{f^2 \Lambda^3} c_{-\varepsilon_{\mu\nu\rho\gamma}} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\gamma}.
\]

Degrees of freedom match exactly with the action:

Low, ZY, 1904.12859.

- The general case, starting with $S_{4}^{(2)}(1, 2, 3, 4)$:
 4 independent P-even operators and a WZW term

- The special case, starting with $S_{4}^{(2)}(1, 2|3, 4)$:
 2 independent P-even operators for SO(N), while the WZW term exists only if $N = 5$
Example: the WZW term vs. the pair basis

Consider the SO(N) fundamental NLSM:

\[O(p^2) : S(2)^4(1, 2 | 3, 4) = s_{12}, \]

\[O(p^4) : S(4)^5(1, 2, 3, 4, 5) = c_{-\epsilon}(1234). \]

What we should have at 7-pt:

\[M(1, 2, 3, 4, 5 | 6, 7). \]

Soft recursion:

\[p_i \rightarrow \hat{p}_i = (1 - a_i z) p_i, \]

\[M_7 = \hat{M}_7(0) = -\sum_{I, \pm 1} P_2 I \hat{S}_{5, (I \pm \pm I)} \hat{S}_{4, (I \pm \pm I)} F_7(z \pm I)(1 - z^{\pm I} / z^{\mp I}). \]

What if we actually have only 5 flavors:

\[M(1, 2, 3, 4, \{5, 6, 7\}) = M(1, 2, 3, 4, 5 | 6, 7) + M(1, 2, 3, 4, 6 | 5, 7) + M(1, 2, 3, 4, 7 | 5, 6). \]

WZW term exists only if

\[N = 5!^{15 / 21}. \]
Example: the WZW term vs. the pair basis

Consider the $\text{SO}(N)$ fundamental NLSM:

- $O(p^2)$: $S_4^{(2)}(1, 2|3, 4) = s_{12}$.
Example: the WZW term vs. the pair basis

Consider the SO(N) fundamental NLSM:

- $O(p^2)$: $S_4^{(2)}(1, 2|3, 4) = s_{12}$.
- $O(p^4)$: $S_5^{(4)}(1, 2, 3, 4, 5) = c_- \varepsilon(1234)$.
Example: the WZW term vs. the pair basis

Consider the $\text{SO}(N)$ fundamental NLSM:

- $O(p^2)$: $S_4^{(2)}(1, 2|3, 4) = s_{12}$.
- $O(p^4)$: $S_5^{(4)}(1, 2, 3, 4, 5) = c_{-\varepsilon}(1234)$.
- What we should have at 7-pt: $M(1, 2, 3, 4, 5|6, 7)$.

Example: the WZW term vs. the pair basis

Consider the SO(N) fundamental NLSM:

- $O(p^2)$: $S_4^{(2)}(1, 2|3, 4) = s_{12}$.
- $O(p^4)$: $S_5^{(4)}(1, 2, 3, 4, 5) = c - \varepsilon(1234)$.
- What we should have at 7-pt: $M(1, 2, 3, 4, 5|6, 7)$.
- Soft recursion: $p_i \to \hat{p}_i = (1 - a_i z) p_i$,

\[
M_7 = \hat{M}_7(0) = - \sum_{l, \pm} \frac{1}{P_l^2} \frac{S_5,(l)(z_l^\pm)\hat{S}_4,(l)(z_l^\pm)}{F_7(z_l^\pm)(1 - z_l^\pm/z_l^{\mp})}.
\]
Example: the WZW term vs. the pair basis

Consider the SO\((N)\) fundamental NLSM:

- \(\mathcal{O}(p^2): S_4^{(2)}(1, 2|3, 4) = s_{12}\).
- \(\mathcal{O}(p^4): S_5^{(4)}(1, 2, 3, 4, 5) = c_\varepsilon(1234)\).
- What we should have at 7-pt: \(M(1, 2, 3, 4, 5|6, 7)\).
- Soft recursion: \(p_i \rightarrow \hat{p}_i = (1 - a_i z) p_i\),

\[
M_7 = \hat{M}_7(0) = - \sum_{l, \pm} \frac{1}{P_i^2} \frac{\hat{S}_{5,(l)}(z_i^{\pm})\hat{S}_{4,(l)}(z_i^{\pm})}{F_7(z_i^{\pm})(1 - z_i^{\pm}/z_i^{\mp})}.
\]

What if we actually have only 5 flavors?
Example: the WZW term vs. the pair basis

Consider the SO(N) fundamental NLSM:

- $O(p^2)$: $S_4^{(2)}(1, 2|3, 4) = s_{12}$.
- $O(p^4)$: $S_5^{(4)}(1, 2, 3, 4, 5) = c_\varepsilon(1234)$.

What we should have at 7-pt: $M(1, 2, 3, 4, 5|6, 7)$.

Soft recursion: $p_i \to \hat{p}_i = (1 - a_i z) p_i$,

$$M_7 = \hat{M}_7(0) = - \sum_{I, \pm} \frac{1}{P_I^2} \frac{\hat{S}_{5,(I)}(z_I^\pm)\hat{S}_{4,(I)}(z_I^\pm)}{F_7(z_I^\pm)(1 - z_I^\pm/z_I^\mp)}.$$

What if we actually have only 5 flavors?

$$M(1, 2, 3, 4, \{5, 6, 7\}) = M(1, 2, 3, 4, 5|6, 7) + M(1, 2, 3, 4, 6|5, 7) + M(1, 2, 3, 4, 7|5, 6).$$
Example: the WZW term vs. the pair basis

Consider the $\text{SO}(N)$ fundamental NLSM:

- $O(p^2)$: $S_{4}^{(2)}(1,2|3,4) = s_{12}$.
- $O(p^4)$: $S_{5}^{(4)}(1,2,3,4,5) = c_\varepsilon(1234)$.
- What we should have at 7-pt: $M(1,2,3,4,5|6,7)$.
- Soft recursion: $p_i \rightarrow \hat{p}_i = (1 - a_i z) p_i$,

$$M_7 = \hat{M}_7(0) = - \sum_{I,\pm} \frac{1}{P_i^2} \frac{\hat{S}_{5,\{(I)\}}(z_i^\pm) \hat{S}_{4,\{(I)\}}(z_i^\pm)}{F_7(z_i^\pm)(1 - z_i^\pm/z_i^{\mp})}.$$

What if we actually have only 5 flavors?

$$M(1,2,3,4,\{5,6,7\}) = M(1,2,3,4,5|6,7) + M(1,2,3,4,6|5,7) + M(1,2,3,4,7|5,6).$$

WZW term exists only if $N = 5!$
Outline

1. The local constructions

2. The soft bootstrap

3. The double copy
The color-kinematics duality

Gauge theory:

\[\mathcal{M}^\text{YM}_n = \sum_{g \in \{g_n\}} \frac{c_g}{d_g} n_g \]
The color-kinematics duality

Gauge theory:

\[\mathcal{M}_{YM}^n = \sum_{g \in \{g_n\}} \frac{c_g n_g}{d_g} \]

- \(c_g \) satisfies anti-symmetry and the Jacobi identity

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & & & \\
3 & & & \\
2 & & & \\
\end{array}
+ \begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & & & \\
3 & & & \\
1 & & & \\
\end{array}
+ \begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & & & \\
4 & & & \\
1 & & & \\
\end{array} = 0
\]
The color-kinematics duality

Gauge theory:

\[\mathcal{M}_{n}^{YM} = \sum_{g \in \{g_n\}} \frac{c_g \ n_g}{d_g} \]

- \(c_g \) satisfies anti-symmetry and the Jacobi identity
- \(\exists n_g \) satisfying anti-symmetry and the Jacobi identity!

Bern, Carrasco, Johansson, 0805.3993
The color-kinematics duality

Gauge theory:

\[\mathcal{M}_n^{YM} = \sum_{g \in \{g_n\}} \frac{c_g \ n_g}{d_g} \]

- \(c_g \) satisfies anti-symmetry and the Jacobi identity
- \(\exists n_g \) satisfying anti-symmetry and the Jacobi identity!
- Replace \(c_g \) with \(n_g \) leads to gravity amplitudes!

\[\mathcal{M}_n^{GR} = \sum_{g \in \{g_n\}} \frac{n_g n_g}{d_g} \]

Bern, Carrasco, Johansson, 0805.3993
The color-kinematics duality

Gauge theory:

\[\mathcal{M}_{n}^{YM} = \sum_{g \in \{g_n\}} \frac{c_g n_g}{d_g} \]

- \(c_g\) satisfies anti-symmetry and the Jacobi identity
- \(\exists n_g\) satisfying anti-symmetry and the Jacobi identity!

Replace \(c_g\) with \(n_g\) leads to gravity amplitudes!

\[\mathcal{M}_{n}^{GR} = \sum_{g \in \{g_n\}} \frac{n_g n_g}{d_g} . \]

- Double copy: \(GR = YM \otimes YM\).

Review: Bern, Carrasco, Chiodaroli, Johansson, Roiban, 1909.01358
The flavor-kinematics duality

For NLSM at $\mathcal{O}(p^2)$,

$$\mathcal{M}_n^{(2)} = \sum_{g \in \{g_n\}} f_g \frac{n_g}{d_g}.$$
The flavor-kinematics duality

For NLSM at $O(p^2)$,

$$M_n^{(2)} = \sum_{g \in \{ g_n \}} \frac{f_g n_g}{d_g}.$$

- f_g satisfies anti-symmetry and the “Jacobi identities”

$$T^i_{ab} T^i_{cd} + T^i_{ac} T^i_{db} + T^i_{ad} T^i_{bc} = 0, \quad [T^i, T^j] = i f^{ijk} T^k$$
The flavor-kinematics duality

For NLSM at $\mathcal{O}(p^2)$,

$$\mathcal{M}_n^{(2)} = \sum_{g \in \{g_n\}} \frac{f_g n_g}{d_g}.$$

- f_g satisfies anti-symmetry and the "Jacobi identities"

$$T^i_{ab} T^i_{cd} + T^i_{ac} T^i_{db} + T^i_{ad} T^i_{bc} = 0, \quad [T^i, T^j] = i f^{ijk} T^k$$

- $\exists n_g$ satisfying anti-symmetry and the Jacobi identity

Chen, Du, 1311.1133; Du, Fu, 1606.05846; Carrasco, Mafra, Schlotterer, 1608.02569
The flavor-kinematics duality

For NLSM at $\mathcal{O}(p^2)$,

$$\mathcal{M}_n^{(2)} = \sum_{g \in \{g_n\}} \frac{f_g n_g}{d_g}.$$

- f_g satisfies anti-symmetry and the “Jacobi identities”

$$T^i_{ab} T^i_{cd} + T^i_{ac} T^i_{db} + T^i_{ad} T^i_{bc} = 0, \ [T^i, T^j] = i f^{ijk} T^k$$

- $\exists n_g$ satisfying anti-symmetry and the Jacobi identity

Chen, Du, 1311.1133; Du, Fu, 1606.05846; Carrasco, Mafra, Schlotterer, 1608.02569

- Replace f_g with n_g leads to the special Galileon theory

$$\mathcal{M}_n^{\text{sGal}} = \sum_{g \in \{g_n\}} \frac{n_g n_g}{d_g}.$$
The flavor-kinematics duality

For NLSM at $O(p^2)$,

$$\mathcal{M}^{(2)}_n = \sum_{g\in\{g_n\}} \frac{f_g n_g}{d_g}.$$

- f_g satisfies anti-symmetry and the "Jacobi identities"

$$T^i_{ab} T^i_{cd} + T^i_{ac} T^i_{db} + T^i_{ad} T^i_{bc} = 0, \ [T^i, T^j] = i f^{ijk} T^k$$

- $\exists n_g$ satisfying anti-symmetry and the Jacobi identity

Chen, Du, 1311.1133; Du, Fu, 1606.05846; Carrasco, Mafra, Schlotterer, 1608.02569

- Replace f_g with n_g leads to the special Galileon theory

$$\mathcal{M}_{n}^{sGal} = \sum_{g\in\{g_n\}} \frac{n_g n_g}{d_g}.$$

- Double copy: $sGal = NLSM \otimes NLSM, BI = NLSM \otimes YM...$
Flavor-kinematics at $\mathcal{O}(p^4)$?

At 4-pt, $\mathcal{O}(p^2)$:

$$\mathcal{M}_4 = \frac{f_s n_s}{s} + \frac{f_t n_t}{t} + \frac{f_u n_u}{u},$$

with $f_s = T^i_{a_1a_2} T^i_{a_3a_4}$, $n_s = s(t - u)$.

- Lie algebra/“closure condition”: $f_s + f_t + f_u = 0$
- Flavor-kinematic duality: $n_s + n_t + n_u = 0$
Flavor-kinematics at $\mathcal{O}(p^4)$?

At 4-pt, $\mathcal{O}(p^2)$:

$$\mathcal{M}_4 = \frac{f_s n_s}{s} + \frac{f_t n_t}{t} + \frac{f_u n_u}{u},$$

with $f_s = T^i_{a_1 a_2} T^i_{a_3 a_4}$, $n_s = s(t - u)$.

- Lie algebra/“closure condition”: $f_s + f_t + f_u = 0$
- Flavor-kinematic duality: $n_s + n_t + n_u = 0$

At $\mathcal{O}(p^4)$, correcting n_i fails

Elvang, Hadjiantonis, Jones, Paranjape, 1806.06079; González, Penco, Trodden, 1908.07531

New ideas: correcting the f_g!

Carrasco, Rodina, Yin, Zekioglu, 1910.12850
Flavor-kinematics at $O(p^4)$!

4 different ways to correct f_i leads to $4 O(p^4)$ soft blocks

Low, ZY, 1911.08490
Flavor-kinematics at $\mathcal{O}(p^4)!$

4 different ways to correct f_i leads to 4 $\mathcal{O}(p^4)$ soft blocks

- **Single-trace:**

 $$\hat{f}_s^{(1)} = f_t(u - s) - f_u(s - t),$$

 $$\hat{f}_s^{(2)} = d^{a_1a_2a_3a_4}(t - u)$$

 where

 $$d^{a_1a_2a_3a_4} \propto \sum_{\sigma} \text{tr}(X^{a_{\sigma(1)}}X^{a_{\sigma(2)}}X^{a_{\sigma(3)}}X^{a_{\sigma(4)}})$$

Low, ZY, 1911.08490
Flavor-kinematics at $\mathcal{O}(p^4)$!

4 different ways to correct f_i leads to 4 $\mathcal{O}(p^4)$ soft blocks

Single-trace:

\[
\hat{f}_s^{(1)} = f_t(u - s) - f_u(s - t), \\
\hat{f}_s^{(2)} = d^{a_1 a_2 a_3 a_4} (t - u)
\]

where

\[
d^{a_1 a_2 a_3 a_4} \propto \sum_{\sigma} \text{tr}(X^{a_{\sigma(1)}} X^{a_{\sigma(2)}} X^{a_{\sigma(3)}} X^{a_{\sigma(4)}})
\]

Double-trace:

\[
\hat{f}_s^{(3)} = f_t'(u - s) - f_u'(s - t), \\
\hat{f}_s^{(4)} \propto \frac{1}{3!} \sum_{\sigma \in S_3} \delta^{a_{\sigma(1)} a_{\sigma(2)}} \delta^{a_{\sigma(3)} a_{\sigma(4)}} (t - u),
\]

where $f'_s = \delta^{a_1 a_3} \delta^{a_2 a_4} - \delta^{a_1 a_4} \delta^{a_2 a_3}$

Low, ZY, 1911.08490
Higher multiplicity

Proposal:

\[\mathcal{M}_n^{(4)} = \sum_{g \in \{g_n\}} \hat{f}_g \frac{n_g}{d_g}, \]
Higher multiplicity

Proposal:

\[M_n^{(4)} = \sum_{g \in \{g_n\}} \frac{\hat{f}_g}{d_g} n_g, \]

- Works for \(S_4^{(4)}(1, 2|3, 4) \propto s_{13}s_{23} \) if we assume local \(\hat{f} \)

Low, Rodina, ZY, 2009.00008
Higher multiplicity

Proposal:

\[
\mathcal{M}_n^{(4)} = \sum_{g \in \{g_n\}} \frac{\hat{f}_g \ n_g}{d_g},
\]

- Works for \(S_4^{(4)}(1, 2|3, 4) \propto s_{13} s_{23} \) if we assume local \(\hat{f} \)

- Replacing \(n_g \) with \(c_g \):

\[
\mathcal{M}_n^{YM+\phi^3} \supset \sum_{g \in \{g_n\}} \frac{\hat{f}_g \ c_g}{d_g}
\]

Low, Rodina, ZY, 2009.00008
Higher multiplicity

Proposal:

\[\mathcal{M}_n^{(4)} = \sum_{g \in \{g_n\}} \hat{f}_g \frac{n_g}{d_g}, \]

- Works for \(S_4^{(4)}(1, 2|3, 4) \propto s_{13}s_{23} \) if we assume local \(\hat{f} \)

Low, Rodina, ZY, 2009.00008

- Replacing \(n_g \) with \(c_g \):

\[\mathcal{M}^{YM+\phi^3}_n \supset \sum_{g \in \{g_n\}} \frac{\hat{f}_g \ c_g}{d_g} \]

- Double copy: \(\text{NLSM}^{(4)} \subset \text{NLSM}^{(2)} \otimes (YM + \phi^3) \)
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom

- Higher order terms in the chiral Lagrangian

Dai, Low, Mehen, Mohapatra, 2009.01819
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom

- Higher order terms in the chiral Lagrangian
 Dai, Low, Mehen, Mohapatra, 2009.01819

- Other EFTs, e.g. SMEFT
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom

- Higher order terms in the chiral Lagrangian
 Dai, Low, Mehen, Mohapatra, 2009.01819

- Other EFTs, e.g. SMEFT
 Intriguing structures in the amplitudes
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom

- Higher order terms in the chiral Lagrangian
 Dai, Low, Mehen, Mohapatra, 2009.01819

- Other EFTs, e.g. SMEFT

Intriguing structures in the amplitudes

- Double copy structures may extend beyond $\mathcal{O}(p^2)$
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom

- Higher order terms in the chiral Lagrangian
 Dai, Low, Mehen, Mohapatra, 2009.01819

- Other EFTs, e.g. SMEFT

Intriguing structures in the amplitudes

- Double copy structures may extend beyond $O(p^2)$

- Soft theorems and extended theories
 Cachazo, Cha, Mizera, 1604.03893
 Low, ZY, 1709.08639, 1804.08629; ZY, 1810.07186; Low, Rodina, ZY, to appear
Summary and outlook

Soft bootstrap is efficient for counting degrees of freedom
 - Higher order terms in the chiral Lagrangian
 Dai, Low, Mehen, Mohapatra, 2009.01819
 - Other EFTs, e.g. SMEFT

Intriguing structures in the amplitudes
 - Double copy structures may extend beyond $\mathcal{O}(p^2)$
 - Soft theorems and extended theories
 Cachazo, Cha, Mizera, 1604.03893
 Low, ZY, 1709.08639, 1804.08629; ZY, 1810.07186; Low, Rodina, ZY, to appear
 - Other theories: YMS, DBI, goldstini, the fundamental Higgs, SM...