Amplitude method studies of effective field theories

Karol Kampf
Charles University, Prague

Outline:
- Role model: gluon amplitudes
- Effective Field Theories
- From NLSM to Periodic Table of Scalar Theories
- Further avenues
- New soft theorem
- Summary

Davis, 11-13-2019
Introduction: amplitudes

Objective of amplitude community:

Study a priori known objects from different perspective

Example in mind: gluon amplitudes

- 1986: Parke and Taylor calculated 6-point gluon-scattering
- simplification: tree-level, no-fermions
- final result: extremely simple
- other way of calculation?
Example: gluon amplitudes

At tree level:

- colour ordering \rightarrow stripped amplitude

$$M^{a_1 \ldots a_n}(p_1, \ldots, p_n) = \sum_{\sigma/Z_n} \text{Tr}(t^{a_\sigma(1)} \ldots t^{a_\sigma(n)}) M_\sigma(p_1, \ldots, p_n)$$

- $M_\sigma(p_{\sigma(1)}, \ldots, p_{\sigma(n)}) = M(p_1, \ldots, p_n) \equiv M(1, 2, \ldots n)$

- propagators \Rightarrow the only poles of M_σ

- thanks to ordering the only possible poles are:

$$P_{ij}^2 = (p_i + p_{i+1} + \ldots + p_{j-1} + p_j)^2$$
Pole structure

Weinberg’s theorem (one particle unitarity): on the factorization channel

\[\lim_{P_{1j}^2 \to 0} M(1, 2, \ldots n) = \sum_{h_l} M_L(1, 2 \ldots j, l) \times \frac{1}{P_{1j}^2} \times M_R(l, j + 1, \ldots n) \]
BCFW relations, preliminaries

[Britto, Cachazo, Feng, Witten '05]

Reconstruct the amplitude from its poles (in complex plane)

- shift in two external momenta

\[p_i \rightarrow p_i + zq, \quad p_j \rightarrow p_j - zq \]

- keep \(p_i \) and \(p_j \) on-shell, i.e.

\[q^2 = q \cdot p_i = q \cdot p_j = 0 \]

- amplitude becomes a meromorphic function \(A(z) \)
- only simple poles coming from propagators \(P_{ab}(z) \)
- original function is \(A(0) \)
BCFW relations: factorization channels

Cauchy’s theorem

\[\frac{1}{2\pi i} \int \frac{dz}{z} A(z) = A(0) + \sum_k \frac{\text{Res} (A, z_k)}{z_k} \]
Cauchy’s theorem

\[0 = \frac{1}{2\pi i} \int \frac{dz}{z} A(z) = A(0) + \sum_k \frac{\text{Res}(A, z_k)}{z_k} \]

If \(A(z) \) vanishes for \(z \to \infty \)

\[A = A(0) = -\sum_k \frac{\text{Res}(A, z_k)}{z_k} \]
BCFW relations

\[P_{ab}^2(z) = 0 \]

if one and only one \(i \) (or \(j \)) in \((a, a+1, \ldots, b)\).

Suppose \(i \in (a, \ldots, b) \not\ni j \)

\[P_{ab}^2(z) = (p_a + \ldots + p_{i-1} + p_i + zq + p_{i+1} + \ldots + p_b)^2 = \]

\[= P_{ab}^2 + 2q \cdot P_{ab}z = 0 \]

solution

\[z_{ab} = -\frac{P_{ab}^2}{2(q \cdot P_{ab})} \]

\[\Rightarrow \]

\[P_{ab}^2(z) = -\frac{P_{ab}^2}{z_{ab}}(z - z_{ab}) \]

Thus

\[\text{Res}(A, z_{ab}) = \sum_s A_L^{-s}(z_{ab}) \times \frac{-z_{ab}}{P_{ab}^2} \times A_R^s(z_{ab}) \]

and for allowed helicities it factorizes into two subamplitudes
BCFW relations

Using Cauchy’s formula, we have finally as a result

$$A = \sum_{k,s} A_L^{-s_k}(z_k) \frac{1}{P^2_k} A_R^{s_k}(z_k)$$

- based on two-line shift (convenient choice: adjacent i,j)
- recursive formula (down to 3-pt amplitudes)
- number of terms small \equiv number of factorization channels
- all ingredients are on shell
BCFW Example: gluon amplitudes

od diagrams for n-body gluon scatterings at tree level

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td># diagrams (inc.crossing)</td>
<td>1</td>
<td>4</td>
<td>25</td>
<td>220</td>
<td>2485</td>
<td>34300</td>
</tr>
<tr>
<td># diagrams (col.ordered)</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>38</td>
<td>154</td>
<td>654</td>
</tr>
<tr>
<td># BCFW terms</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

[C.Cheung: TASI Lectures '17]
[KK, Novotny, Trnka '13]
We have assumed that

\[A(z) \to 0, \quad \text{for} \quad z \to \infty \]

More generally we have to include a boundary term in Cauchy’s theorem. This is intuitively clear: we can formally use the derived BCFW recursion relations to obtain any higher \(n \) amplitude starting with the leading interaction. But this does not have to be the correct answer.
BCFW recursion relations: problems

example: scalar-QED

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\phi|^2 - \frac{1}{4} \lambda |\phi|^4 \]

Due to the power-counting the boundary term is proportional to

\[B \sim 2e^2 - \lambda \]

In order to eliminate the boundary term we have to set \(\lambda = 2e^2 \), then the original BCFW works.

I.e. we needed some further information (e.g. supersymmetry) to determine the \(\lambda \) piece.
Effective field theories
Effective field theories: general picture

Now we have infinitely many unfixed \(\lambda \) terms. Schematically

\[
\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \lambda_4 (\partial^4 \phi)^4 + \lambda_6 (\partial^6 \phi)^6 + \ldots
\]

Example: 6pt scattering, Feynman diagrams

\[
\mathcal{M}_6 = \sum_{l=\text{poles}} \lambda_4^2 \cdots \frac{\lambda_6}{P_l} + \lambda_6 (\ldots)
\]

\(\lambda_6 \) part: not fixed by the pole behaviour.

Task: to find a condition in order to link these two terms
Effective field theories: introduction

Usual steps:

Symmetry \rightarrow Lagrangian \rightarrow Amplitudes \rightarrow physical quantities

(cross-section, masses, decay constants, ...)

In our work – opposite direction:

Amplitudes \rightarrow Lagrangian \rightarrow Symmetry

Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny, Chia-Hsien Shen, Jaroslav Trnka and Congkao Wen
Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a three-point interaction.

General formula for three-particle amplitude

\[A(1^{h_1}2^{h_2}3^{h_3}) = \begin{cases}
\langle 12 \rangle^{h_3-h_1-h_2} \langle 23 \rangle^{h_1-h_2-h_3} \langle 31 \rangle^{h_2-h_3-h_1}, & \sum h_i \leq 0 \\
[12]^{h_1+h_2-h_3} [23]^{h_2+h_3-h_1} [31]^{h_3+h_1-h_2}, & \sum h_i \geq 0
\end{cases} \]

Used a spinor-helicity notation, e.g. \(p_i \cdot p_j \sim \langle ij \rangle [ij] \)

For scalars \((h_i = 0) \) this is a constant - corresponding to \(\mathcal{L}_{\text{int}} = \lambda \phi^3 \).

All derivatives can be removed by equations of motions (boxes)

\[\mathcal{L}_{\text{int}} = (\partial_\alpha \ldots \partial_\omega \phi)(\partial^\alpha \ldots \partial^\omega \phi)\phi \rightarrow \mathcal{L}_{\text{int}} = (\Box \phi)(\ldots) \]
Effective field theories: scalar theories

We start with \((m\) counts number of derivatives\)

\[
\mathcal{L}_{\text{int}} = \lambda_4 \partial^m \phi^4
\]

n.b. we want to connect this four-point vertex with the 6-point contact terms

This rules out again no-derivative terms, as the powercounting dictates:

\[
\partial^m \times \frac{1}{\partial^2} \times \partial^m \rightarrow \partial^{2m-2} \phi^6
\]
Simplest example: two derivatives, single scalar

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \lambda_4 \partial^2 \phi^4 + \lambda_6 \partial^2 \phi^6 + \ldots \]

How to connect \(\lambda_4 \) and \(\lambda_6 \)?
Well Lagrangian, an infinite series, looks complicated, but it is not the case. It represents a free theory:

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \left(1 + \lambda_4 \phi^2 + \ldots \right) \]

\(F(\phi) \) can be removed by a field redefinition

Non-trivial simplest example:
- more derivatives
- more flavours \((\phi \rightarrow \phi_1, \phi_2, \ldots) \)
More flavours

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi^i \partial^\mu \phi^i + \lambda_{ijkl} \partial_\mu \phi^i \partial^\mu \phi^j \phi^k \phi^l + \lambda_{i_1...i_6} \partial_\mu \phi^{i_1} \partial^\mu \phi^{i_2} \phi^{i_3} ... \phi^{i_6} + \ldots \]

- Can be used for systematic studies of two species, three species, etc.
- Very complicated generally
- Assume some simplification, organize using a group structure

\[\phi = \phi^a T^a \]

- motivated by the ‘gluon case’: flavour ordering \cite{KK,Novotny,Trnka '13}

\[A^{a_1...a_n} = \sum_{\text{perm}} \text{Tr}(T^{a_1} \ldots T^{a_n})A(p_1, \ldots p_n) \]
More flavours: stripped amplitude

first non-trivial case 6pt scattering:

\[\lambda^2 \frac{p^2}{p^2} \frac{1}{p^2} p^2 + \lambda_6 p^2 \]

in order to combine the pole and contact term we need to consider some limit. The most natural candidate: We will demand soft limit, i.e.

\[A \to 0, \quad \text{for} \quad p \to 0 \]

\[\Rightarrow \lambda_4^2 \sim \lambda_6 \]
Standard direction(s)

Assuming the shift symmetry

$$\phi^a \rightarrow \phi^a + \epsilon^a$$

⇒ Noether current

$$A^a_\mu = \frac{\delta L}{\delta \partial^\mu \phi^a}$$

⇒ Ward identity ⇒ LSZ

$$\langle 0| A^a_\mu(x) |\phi^b(p) \rangle = iF \delta^{ab} p_\mu e^{-ipx}$$

⇒ Adler zero

$$\lim_{p \rightarrow 0} \langle f|i + \phi^a(p) \rangle = 0$$

⇒ CCWZ: non-linear sigma model

$$\mathcal{L} = \frac{F^2}{2} \text{Tr}(\partial_\mu U^\dagger \partial^\mu U), \quad U = e^{\frac{i}{F} \phi^a T^a}$$

[Weinber’66], [Ian Low ’14–’15]
Natural classification: σ and ρ

Soft limit of one external leg of the tree-level amplitude

$$A(tp_1, p_2, \ldots, p_n) = \mathcal{O}(t^\sigma), \quad \text{as} \quad tp_1 \to 0$$

Interaction term

$$\mathcal{L} = \partial^m \phi^n$$

Then another natural parameter is (counts the homogeneity)

$$\rho = \frac{m - 2}{n - 2} \quad \text{“averaging number of derivatives”}$$

e.g. $\mathcal{L} = \partial^m \phi^4 + \partial^{\tilde{m}} \phi^6$

so these two diagrams can mix: $p^{2m-2} \sim p^{\tilde{m}}$
Natural classification: σ and ρ

Soft limit of one external leg of the tree-level amplitude

$$A(tp_1, p_2, \ldots, p_n) = \mathcal{O}(t^\sigma), \quad \text{as} \quad tp_1 \to 0$$

Interaction term

$$\mathcal{L} = \partial^m \phi^n$$

Then another natural parameter is (counts the homogeneity)

$$\rho = \frac{m - 2}{n - 2} \quad \text{“averaging number of derivatives”}$$

e.g. $\mathcal{L} = \partial^m \phi^4 + \partial^{\tilde{m}} \phi^6$

\[
\begin{align*}
\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array}
\end{align*}
\]

so these two diagrams can mix: $p^{2m-2} \sim p^{\tilde{m}}$

$$2m - 2 - 2 = \tilde{m} - 2 \Rightarrow \frac{2m-4}{4} = \frac{\tilde{m}-2}{4} \Rightarrow$$
Natural classification: σ and ρ

Soft limit of one external leg of the tree-level amplitude

$$A(tp_1, p_2, \ldots, p_n) = \mathcal{O}(t^\sigma), \quad \text{as} \quad tp_1 \to 0$$

Interaction term

$$\mathcal{L} = \partial^m \phi^n$$

Then another natural parameter is (counts the homogeneity)

$$\rho = \frac{m - 2}{n - 2} \quad \text{“averaging number of derivatives”}$$

e.g. $\mathcal{L} = \partial^m \phi^4 + \partial^{\tilde{m}} \phi^6$

so these two diagrams can mix: $p^{2m-2} \sim p^{\tilde{m}}$

$$2m - 2 - 2 = \tilde{m} - 2 \Rightarrow \frac{2m-4}{4} = \frac{\tilde{m}-2}{4} \Rightarrow \rho = \tilde{\rho}$$

rho is same if they talk to each other
Non-trivial cases

for: \(\mathcal{L} = \partial^m \phi^n : \quad m < \sigma n \)

or

\[\sigma > \frac{(n - 2)\rho + 2}{n} \]

i.e.

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\sigma) at least</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

i.e. non-trivial regime for \(\rho \leq \sigma \)
First case: $\rho = 0$ (i.e. two derivatives)

Schematically for single scalar case

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \sum_i \lambda^i_4 (\partial^2 \phi^4) + \sum_i \lambda^i_6 (\partial^2 \phi^6) + \ldots$$

similarly for multi-flavour (ϕ_i: ϕ_1, ϕ_2, \ldots).

non-trivial case

$$\sigma = 1$$

Outcome:

- single scalar: free theory
- multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]
Second case: $\rho = 1, \sigma = 2$ (double soft limit)

1. Focus on the lowest combination and fix the form:

$$\mathcal{L}_{\text{int}} = c_2 (\partial \phi \cdot \partial \phi)^2 + c_3 (\partial \phi \cdot \partial \phi)^3$$

condition: $c_3 = 4c_2^4$
Second case: $\rho = 1, \sigma = 2$ (double soft limit)

1. focus on the lowest combination and fix the form:

$$\mathcal{L}_{int} = c_2(\partial\phi \cdot \partial\phi)^2 + c_3(\partial\phi \cdot \partial\phi)^3$$

condition: $c_3 = 4c_2^4$

2. find the symmetry

$$\phi \rightarrow \phi - b_\rho x^\rho + b_\rho \partial^\rho \phi \phi$$ (again up to 6pt so far)
Second case: \(\rho = 1, \sigma = 2 \) (double soft limit)

1. focus on the lowest combination and fix the form:

\[
\mathcal{L}_{int} = c_2 (\partial \phi \cdot \partial \phi)^2 + c_3 (\partial \phi \cdot \partial \phi)^3 \quad \text{condition: } c_3 = 4c_2^4
\]

2. find the symmetry

\[
\phi \rightarrow \phi - b_\rho x^\rho + b_\rho \partial^\rho \phi \phi \quad \text{(again up to 6pt so far)}
\]

3. ansatz of the form

\[
c_n (\partial \phi \cdot \partial \phi)^n + c_{n+1} (\partial \phi \cdot \partial \phi)^n \partial \phi \cdot \partial \phi
\]

4. in order to cancel: \(2(n + 1)c_{n+1} = (2n - 1)c_n \)

i.e. \(c_1 = \frac{1}{2} \Rightarrow c_2 = \frac{1}{8}, c_3 = \frac{1}{16}, c_4 = \frac{5}{128}, \ldots \)
Second case: $\rho = 1, \sigma = 2$ (double soft limit)

4. in order to cancel: $2(n + 1)c_{n+1} = (2n - 1)c_n$
 i.e. $c_1 = \frac{1}{2} \Rightarrow c_2 = \frac{1}{8}, c_3 = \frac{1}{16}, c_4 = \frac{5}{128}, \ldots$

solution:

$$\mathcal{L} = -\sqrt{1 - (\partial\phi \cdot \partial\phi)}$$

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim Minkowski space

Remark: soft limit and symmetry are “equivalent”
Third case: $\rho = 2$, $\sigma = 2$ (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon Lagrangian

$$
\mathcal{L} = \sum_{n=1}^{d+1} d_n \phi \mathcal{L}_{n-1}^{\text{der}}
$$

$$
\mathcal{L}_{n}^{\text{der}} = \varepsilon^{\mu_1 \ldots \mu_d} \varepsilon^{\nu_1 \ldots \nu_d} \prod_{i=1}^{n} \partial_{\mu_i} \partial_{\nu_i} \phi \prod_{j=n+1}^{d} \eta_{\mu_j \nu_j} = -(d - n)! \det \{ \partial_{\nu_i} \partial_{\nu_j} \phi \}.
$$

It possesses the Galilean shift symmetry

$$
\phi \rightarrow \phi + a + b_{\mu} x^{\mu}
$$

(leads to EoM of second-order in field derivatives)
Surprise: $\rho = 2, \sigma = 3$ (enhanced soft limit)

- general galileon: three parameters (in 4D)
- only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
Surprise: $\rho = 2, \sigma = 3$ (enhanced soft limit)

- general galileon: three parameters (in 4D)
- only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
- we demanded $O(\rho^3)$ behaviour
- we have verified: possible up to very high-pt order
- suggested new theory: special galileon [Cheung, KK, Novotny, Trnka 1412.4095]
Surprise: $\rho = 2, \sigma = 3$ (enhanced soft limit)

- general galileon: three parameters (in 4D)
- only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
- we demanded $\mathcal{O}(\rho^3)$ behaviour
- we have verified: possible up to very high-pt order
- suggested new theory: special galileon [Cheung, KK, Novotny, Trnka 1412.4095]
- symmetry explanation: hidden symmetry [K. Hinterbichler and A. Joyce 1501.07600]

\[\phi \rightarrow \phi + s_{\mu\nu} x^\mu x^\nu - 12 \lambda_4 s_{\mu\nu} \partial_\mu \phi \partial_\nu \phi \]
New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]
The high energy behaviour forbids a naive Cauchy formula

\[A(z) \neq 0 \quad \text{for} \quad z \to \infty \]

Can we instead use the soft limit directly?
The high energy behaviour forbids a naive Cauchy formula

\[A(z) \neq 0 \quad \text{for} \quad z \to \infty \]

Can we instead use the soft limit directly? yes!
The standard BCFW not applicable, we propose a special shift:

\[p_i \to p_i(1 - za_i) \quad \text{on all external legs} \]

This leads to a modified Cauchy formula

\[
\oint \frac{dz}{z} \frac{A(z)}{\prod_i(1 - a_iz)^\sigma} = 0
\]

note there are no poles at \(z = 1/a_i \) (by construction).
Now we can continue in analogy with BCFW
Further avenues

• similarly for vector EFT:

\[\mathcal{L}_{\text{BI}} = 1 - \sqrt{(-1)^{D-1} \det(\eta_{\mu\nu} + F_{\mu\nu})}, \]

(see [Cheung, KK, Novotny, Shen, Trnka, Wen ’18])

• so far avoided the fermionic degrees of freedom (see e.g. Elvang et al.’18)

• higher orders in NLSM (see [Bijnens,KK,Sjö 2019])

• multiple flavours – especially without flavour ordering

• only two-flavour case fully classified

• preliminary study of the mixed scalar-vector case (Galileon-BI): more promising than the pure Galileon-like BI

• spin-2: similar to Galileon-like studies – no exceptional candidate

• non-abelian Born-Infeld

• non-zero masses (technically possible)

• loop corrections – focused on the exceptional theories
BUT...

[KK, Novotny, Shifman, Trnka 2019 and in prep.]
it seems we have a powerful method to classify effective field theories
more efficient than the standard group oriented methods:
spontaneous symmetry breaking, (non-)compact groups,
(semi-)simple, CCWZ construction . . . \[\rightarrow\] complicated monomial
structure, where equivalence is not transparent

- e.g. for two flavours – two-derivative counting:
 only one non-trivial theory: \(O(3)/O(2)\)

- more problematic for three flavours – finished (work in progress with
 J.Bijnens): again only \(O(4)/O(3)\) and combinations of \(O(3)/O(2)\)
 plus one free scalar

- but what about completely broken \(O(3)\):

 \(SU(2)/1\)
it describes three GBs
- CCWZ construction
 - \Rightarrow Lagrangian
 - it is neither equivalent to $O(4)/O(3)$ nor to $O(3)/O(2)$, nor any their flavour combinations
 - on top of it: the amplitudes don’t have adler zero!
- What have we missed?
General discussion

- answer is then easy – we missed “non-zero” Adler zero
- beyond the scope of our classification
- so our method is not that general
- can we extend it?
Adler zero: textbook derivation

GB couples to the associated Noether current

$$\langle 0 | J^\mu(x) | \phi(p) \rangle = -i p^\mu F e^{-i p \cdot x}$$

For the process $i \to f + \phi(p)$ we have:

$$\langle f | J^\mu(0) | i \rangle = F \frac{p^\mu}{p^2} A(f + \phi(p), i) + R^\mu(p)$$

The current conservation $p_\mu \langle f | J^\mu(0) | i \rangle = 0$ yields

$$A(f + \phi(p), i) = -\frac{1}{F} p_\mu R^\mu(p)$$

and thus finally

$$\lim_{p \to 0} A(f + \phi(p), i) = 0$$

if $R(p)$ regular in the limit.
Adler zero: loophole

When

$$\lim_{p \to 0} p_\mu R^\mu \neq 0$$

?

Two possibilities:

- there are cubic vertices

- Noether current is quadratic in fields
SU(2)/1: new soft theorem

- n.b.: three GBs, can be rotated to: two charged ϕ^\pm and one neutral ϕ.
- Simplification: charge conservation + shift symmetry in the neutral mode.
- Standard Adler zero for the neutral mode
- We can focus only on the ϕ^+ shift. Ansatz:

$$\lim_{p_1 \to 0} \phi^+(p_1) \ldots \phi^+(p_n) \phi^-(q_1) \ldots \phi^-(q_n) \phi(k_1) \ldots \phi(k_m) =$$

$$= x \sum_{i=1}^{m} \phi^+(k_i) \ldots \phi^+(p_n) \phi^-(q_1) \ldots \phi^-(q_n) \phi(k_1) \ldots \phi(k_m)$$

$$+ y \sum_{i=1}^{n} \phi^+(p_1) \ldots \phi^+(p_n) \phi^-(q_1) \ldots \phi^-(q_n) \phi(q_i) \phi(k_1) \ldots \phi(k_m)$$
SU(2)/1: new soft theorem

\[\lim_{p_1 \to 0} \phi^+(p_1) \ldots \phi^+(p_n)\phi^-(q_1) \ldots \phi^-(q_n)\phi(k_1) \ldots \phi(k_m) =\]

\[\times \sum_{i=1}^{m} \phi^+(k_i) \ldots \phi^+(p_n)\phi^-(q_1) \ldots \phi^-(q_n)\phi(k_1) \phi(k_i) \ldots \phi(k_m)\]

\[+ y \sum_{i=1}^{n} \phi^+(p_1) \ldots \phi^+(p_n)\phi^-(q_1) \phi(q_i) \ldots \phi^-(q_n)\phi(q_i)\phi(k_1) \ldots \phi(k_m)\]

- IT WORKS!
- \(y = -x \)
- verified on amplitudes up to 7-pt
- can be proved from Lagrangian
- new generalization for the formal Lagrangian (work in progress)
Summary

- We have offered a new tool for effective field theories
- motivated by the amplitude methods employed for renormalizable theories
- analogy between gravity and soft scalar theories (Bonifacio et al. ’today)
- used for classification of scalar theories
- one new theory discovered: special galileon
- one exceptional theory for spin-1 particles: BI
- generalization of Adler zero
- work in progress: classification can be extended for generalized Adler zero
Summary

- We have offered a new tool for effective field theories
- motivated by the amplitude methods employed for renormalizable theories
- analogy between gravity and soft scalar theories (Bonifacio et al. ’today)
- used for classification of scalar theories
- one new theory discovered: special galileon
- one exceptional theory for spin-1 particles: BI
- generalization of Adler zero
- work in progress: classification can be extended for generalized Adler zero

Thank you!