Dark Matter in a dark place:
DM annihilation in IceCube

Spencer Klein, LBNL & UC Berkeley
for the IceCube Collaboration

IceCube
Indirect Detection with neutrinos
Local Sources: the Sun and the Earth
The galactic halo & galactic center
Future prospects
Conclusions
IceCube & DeepCore

- 1 km³ neutrino detector
- 5,160 optical modules
 - 10” PMT + Complete DAQ system
- 78 ‘standard’ strings
 - 125 m string spacing
 - 17 m DOM spacing
 - ~100 GeV energy threshold
- 8 DeepCore Infill strings
 - with denser spacing
 - 50/60DOMs w/7 m spacing
 - In clearest, deepest ice
 - ~ 10 GeV energy threshold
From light to particle tracks

- All data is sent to surface
- Trigger requires 8 hit HLC (paired) DOMs within 5 µs
- 1st guess algorithms fit light pattern to plane.
- Maximum likelihood fits find final tracks
 - Optical scattering & absorption length of ice vary with depth.
- Background from coincident overlapping events is removed by splitting event in time/space & reconstructing separately.
- Resolution & pointing checked with cosmic-ray \(\mu\) Moon shadow, horizon…

Stochastic loss

The Moon from 1 mi underground
Neutrinos from dark matter - assumptions

- What we measure is a limit on the neutrino flux from different dark matter ‘reservoirs.’ These limits are then interpreted in terms of a dark matter model.

- Dark matter spatial & velocity distributions
 - Maxwellian distribution usually assumed
 - Different halo matter distributions do not give very different answer for matter abundance at Earth

- Searches for dark matter capture (via inelastic interactions) and annihilation in Sun/Earth
 - Sun is the best place to probe spin-dependent couplings

- Searches for dark matter annihilation in the galactic halo and core.

- These assumptions apply to Super-K equally.
 - Many also apply to PAMELA, Fermi results.
Capture in the Sun - rate uncertainties

- Capture rate depends on inelastic cross-section
- 15-20% variation from velocity profile variations
- For heavy WIMPs, 3-body calculations find a large capture rate decrease caused by the presence of Jupiter.
 - Capture takes a long time.
 - Compensated by WIMPs scattered by Jupiter into the Sun?
- These effects also pertain to Earth WIMPs

C. Rott et al., JCAP 09, 029 (2011); Sivertsson & Edsjo, arXiv:1201.1895
WIMPs build up in Sun & annihilate

- At equilibrium: annihilation rate = capture rate

\[
\frac{dN}{dt} = C_C - C_A N^2 - C_E N. \quad \text{Evaporation is negligible}
\]

- For most of considered SUSY parameter range, the Sun has reached equilibrium

- Dark matter annihilates (must be Majorana particle) or decays

- Mass and final states are unknown. Final state choices:
 - \(\chi \chi \rightarrow \bar{\nu} \nu \)
 - “Hard” \(\chi \chi \rightarrow W^+W^- \) (\(\tau^+\tau^- \) for \(M_\chi \) below threshold)
 - “Soft” \(\chi \chi \rightarrow b\bar{b} \)
 - Dark matter decay also considered.

- Consider these variables by scanning over different possibilities (mass, decays), or as systematic uncertainties
Solar analyses - I

- The sun is dense enough so that neutrinos with $E > \sim 200$ GeV interact before escaping
 - NC & some CC interactions produce lower energy ν
 - Neutrino energy spectrum is of lesser diagnostic value
- Sun is below horizon 6 months/year
- Combined analysis
 - IceCube 40-string +AMANDA 2008/9
 - AMANDA-II data 2001-2006
 - Denser string spacing, so better for lower masses
 - DeepCore will perform same function in future
- Results from separate analyses were combined.

Solar analyses - II

- Initial straight cuts, followed by machine learning (boosted decision tree/support vector machine)
 - Final cut was optimized to maximize model discovery potential/sensitivity
 - Different optimizations for different masses and hard/soft decays
 - Led to relatively loose cuts
- Background determined by time-scrambling data
- The shape of the space angle distribution (ψ) wrt. the sun was used to determine the size of the signal
- Systematic uncertainties due to optical properties of ice, sensitivity of optical modules, ν cross-sections
Solar results

- No excess seen at small ψ

IC40+ AMANDA only

100 GeV $\chi \rightarrow b\bar{b}$

1 TeV $\chi \rightarrow W^+W^-$
90% CL ν flux combined limits

- A model-independent flux limit is obtained for the 2 analyses.
 - Then combined, including IC22 limits.
- Limits are put on the ν flux for specific annihilation products
 - Mass and branching mode
- These limits are compared with the range of predictions from a 7-parameter MSSM scan using DarkSUSY (shaded area)
 - Incorporates LEP, CDMS(2010) and Xenon100 (2011) limits
Cross-section limits

- Assuming equilibrium, these limits are converted to spin-dependent (SD, left) & spin-independent (SI) limits
 - Independent of WIMP model.
- Shaded band shows predictions based on MSSM scans
 - Already, IceCube is sensitive to new regions of MSSM parameter space.
Kaluza-Klein dark matter

- The IC22 & IC40 analyses were also used to put limits on Kaluza-Klein dark matter
 - Probes allowed phase space for LKPs
- Same data, reinterpreted in different parameter space

\[\Delta q \] is the mass splitting between \(q \) and \(\gamma \)

The Earth

- Best for lighter WIMPs
- Mostly spin-independent couplings
- AMANDA analysis set limits from 50 GeV to 5 TeV
- IC79/86 analysis is in progress

Galactic halo search

- Search for ν from WIMP annihilation in the galactic halo
- 1 year of IC22 data
- 4 models of halo density profile
- Sets limits on $<\sigma_A \cdot \nu>$
- Distant enough for full mixing

$$\frac{d\Phi_\nu}{dE} = \frac{<\sigma_A \nu>}{2} \frac{J(\psi)}{4\pi m^2_\chi} \frac{R_{sc} \rho_{sc}^2}{dN_\nu/dE}$$

Measure

Constrain

Galaxy

SUSY

IceCube – Phys. Rev. D84, 022004 (2011)
IceCube field of view

- The galactic center is above the horizon at the South Pole
- This search is limited to the outer that is in the Northern hemisphere
- For each direction in the sky, integrate annihilation likelihood $\sim \text{density}^2$ along line of sight.
- On-source region is within 80 degrees of galactic center
 - Only portion below IceCube horizon
- Off-source region is the same declination but shifted 180 degrees in RA
Galactic halo results

- 1367 on-source,
- 1389 off-source
- Limits conservatively assume that dark matter is evenly distributed
 - Substructure will increase the annihilation rate by boosting $<\rho^2>$
 - Accounting for substructure might ‘boost’ the limits by a factor of ~ 2
 - Not very sensitive to size of galactic halo & choice of halo model.
 - Widths of lines to right show uncertainty due to halo model.
- “Natural Scale” == consistency with thermal relics
IceCube, PAMELA & Fermi

- PAMELA, Fermi & HESS report excess positrons, electrons & electrons respectively from the galactic center.
 - If from leptophilic dark matter, annihilation should also produce ν.
 - Due to e^\pm energy loss, the annihilation must be nearby (1 kpc)
 - IceCube can constrain the masses of this dark matter

![Graphs showing σ_A versus m_χ for different final states](image)
WIMP decay

- The same analysis set limits on WIMP decay, $\chi \rightarrow \nu \nu$
- Lifetimes $>10^{24}$ s
IC40 galactic center analysis

The galactic center is above the horizon, so there is a much larger background from muons from downgoing cosmic rays

- Reduce rate by using top/sides of detector to veto incoming particles
- Select events in $\pm 8^0 (\Delta \delta)$ by $\pm 9^0 (\Delta \alpha)$ box around the galactic center
- 798842 events in signal region
- 798819 (scaled) events in background region
- Same declination, all azimuth, less ‘guard’ region

The galactic center provides a similar constraint as the halo analysis.

N.b. IC40 $\sim 2^*$ the data of IC22.
Future plans

- More data
 - IC86 > 2 * IC40
- DeepCore will provide a huge increase in sensitivity down to 10 GeV
- Using the rest of IceCube as a veto, DeepCore should have good sensitivity to neutrinos coming from above the horizon.
 - More sensitive galactic center search
 - 12 month/year solar search
- IceCube Earth WIMP search
- Studies with ν_e
 - Lower backgrounds & good energy resolution
 - Hard because of very limited angular resolution
- Search for ν from dwarf spheroidal galaxies
Sensitivity vs. energy

- Effective area increases with energy.
 - Neutrino cross-section and μ range both increase with energy
- At energies from 10-100 GeV DeepCore provides orders-of-magnitude improvement in sensitivity.
- In longer term, the proposed PINGU/MICA may push this down to ~1 GeV

Filter level effective area for IC40 & IC79 low-energy & high-energy filters.

ν from WIMP annihilation in nearby dwarf spheroidal galaxies

- Dwarf spheroidal galaxies have a high mass to light ratio, so may be a particularly promising place to search for dark matter annihilation.
 - 13 Northern hemisphere galaxies
 - within 417 kpc of Earth
 - from Sloan digital sky survey
- Quasi-point sources
- Stack sources for improved sensitivity
- Current search uses 1 year of IC59 data
- Will set limits on ν flux and $<\sigma_A \nu>$
Conclusions

- Searches for ν from WIMP annihilation with $\frac{1}{4}$ or $\frac{1}{2}$ of IceCube have already yielded interesting limits on WIMP annihilation in the Sun, the galactic halo and the galactic center.
- IceCube limits on ν from the Sun set the best limits on WIMPs with spin-dependent coupling to matter.
- Over the next few years, IceCube analyses using the full power of the full detector will either see a signal or set much tighter limits, while DeepCore will push down to lower masses.
Backups
Equilibrium Times vs. T_{Sun}