B Factory Measurements

of the $b \rightarrow s(d) \gamma$ “Radiative Penguin” Transition Rates

Bruce A. Schumm
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz
Effective Neutral Currents: General Motivation

\(b \to s\gamma \) Penguins
- SUSY parameter space implications
- \(b \to s\gamma \) “Inclusive” approach
- \(B \to X_s\gamma \) “Semi-Inclusive” approach

\(b \to d\gamma \) Penguins and \(|V_{td}/V_{ts}|\)
- Motivation
- \(B \to (\rho,\omega)\gamma \) “Exclusive” approach
- \(B \to X_d \) “Semi-Inclusive” approach
- Status of \(|V_{td}/V_{ts}|\)

Conclusions
The SM b → s(d)γ transition is high order (two weak plus one EM vertex) …

so new physics can enter at leading order:

Although rare (≈ 5x10^-4 for sγ and ≈10^-5 for dγ), the isolated high-energy photon is a powerful signature.
Effective Neutral Currents: General Motivation

\[b \rightarrow s_\gamma \]
- SUSY parameter space implications
- Inclusive approach
- Other approaches

\[b \rightarrow d_\gamma \text{ and } |V_{td}/V_{ts}| \]
- Motivation
- \(B \rightarrow (\rho, \omega)_\gamma \) (“Standard” Approach)
- \(B \rightarrow X_d \) (“Semi-Inclusive” Approach)
- Status of \(|V_{td}/V_{ts}| \)

Conclusions
$b \to s\gamma$ has a significant impact on the $\tan\beta$-m_A plane...
Fate of “Snowmass” MSSM study points

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Fate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS1a</td>
<td>killed by $b \rightarrow s\gamma$</td>
</tr>
<tr>
<td>SPS1a'</td>
<td>OK</td>
</tr>
<tr>
<td>SPS1b</td>
<td>killed by $b \rightarrow s\gamma$</td>
</tr>
<tr>
<td>SPS2</td>
<td>killed by Ωh^2 (GUT) / OK(low)</td>
</tr>
<tr>
<td>SPS3</td>
<td>killed by Ωh^2 (low) / OK(GUT)</td>
</tr>
<tr>
<td>SPS4</td>
<td>killed by g-2</td>
</tr>
<tr>
<td>SPS5</td>
<td>killed by Ωh^2</td>
</tr>
<tr>
<td>SPS6</td>
<td>OK</td>
</tr>
<tr>
<td>SPS9</td>
<td>killed by Tevatron stable chargino</td>
</tr>
</tbody>
</table>
Explore 10^7 points over 19-dimensional parameter space of CP-conserving MSSM

$b \rightarrow s\gamma$ most effective constraint (72% of models surviving prior constraints are eliminated; better than direct searches for SUSY partners)
The $\Upsilon(4S)$ resonance is the lightest $b\bar{b}$ resonance that decays into "open Beauty" (B^+B^- or $B^0\bar{B}^0$).

$\Upsilon(4S)$ resonance is ~ 1 nb at peak, competing with a "continuum" background of ~ 3 nb.
B Factory Data Sets

Transition Rates

Belle log total : 859067 pb^-1

BaBar Run 1
- PEP II Delivered Luminosity: 553.48 fb
- BaBar Recorded Luminosity: 531.43 fb
- BaBar Recorded Y(4s): 432.89 fb
- BaBar Recorded Y(3s): 30.23 fb
- BaBar Recorded Y(2s): 14.45 fb
- Off Peak Luminosity: 53.65 fb

Integrated Luminosity (fb^-1)

- Delivered Luminosity
- Recorded Luminosity
- Recorded Luminosity Y(4s)
- Recorded Luminosity Y(3s)
- Recorded Luminosity Y(2s)
- Off Peak

Bruce Schumm

Davis 2/17/08 Seminar: b → s(d)γ Transition Rates
The Detectors

1.5 T Solenoid

CsI EM Colorimeter

DIRC Cerenkov System

Si Vertex Tracker

Belle Detector

SC solenoid 1.5T

CsI(Tl) 16X0

TOF counter

Aerogel Cerenkov cnt. n=1.015-1.030

Central Drift Chamber

8 GeV e+

μ / K_L detection

3 lyr. DSSD

Small cell + He/C_2H_6

14/15 lyr. RPC+Fe

Babar Detector

Bruce Schumm
Most exacting approach ("Inclusive") is aggressive:

Use only high-energy γ as signature

Suppress continuum with event shapes, requirement of a high-energy lepton.

Estimate remaining contribution by scaling off-peak data.

Challenge: background from $\pi^0(\eta) \rightarrow \gamma\gamma$ decays (plus some fakes) in B decays
Inclusive Measurement of $b \to s \gamma$: Signal/Background

- After event selection, S/B is roughly 1:1
- Continuum measured from below-peak running
- $B/$Bbar backgrounds must be identified and constrained
Inclusive Measurement of $b \rightarrow s\gamma$: Challenges

BaBar result with 81.5 fb$^{-1}$ (Phys. Rev. Lett. 97:171803, 2006)

$$\text{Br} \left(B \rightarrow X_s \gamma \right) = (3.67 \pm 0.29 \pm 0.34 \pm 0.29)$$

First round of B Factory results provide ~15% measurement of $b \rightarrow s\gamma$ transition rate

To exploit > 1 ab$^{-1}$ sample, need to focus on reducing systematics
Inclusive Measurement of $b \to s \gamma$: Model Dependence

Model dependence arises through E_{γ}^* dependence of selection efficiency

Engineer event selection to flatten efficiency (some loss of statistics) \Rightarrow reduce to < 3%
Sources of Remaining B/Bbar Background

<table>
<thead>
<tr>
<th>Object</th>
<th>Source</th>
<th>Control Region</th>
<th>Signal Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>π^0</td>
<td>57.3%</td>
<td>66.6%</td>
</tr>
<tr>
<td>γ</td>
<td>η</td>
<td>17.1%</td>
<td>15.7%</td>
</tr>
<tr>
<td>γ</td>
<td>Other meson</td>
<td>8.7%</td>
<td>5.1%</td>
</tr>
<tr>
<td>γ</td>
<td>e</td>
<td>9.3%</td>
<td>4.7%</td>
</tr>
<tr>
<td>γ</td>
<td>Other</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total γ</td>
<td></td>
<td>92.8%</td>
<td>92.4%</td>
</tr>
<tr>
<td>e</td>
<td>Any</td>
<td>4.8%</td>
<td>3.7%</td>
</tr>
<tr>
<td>$n/n_{\bar{n}}$</td>
<td>Any</td>
<td>1.7%</td>
<td>2.9%</td>
</tr>
<tr>
<td>p^+/p^-</td>
<td>Any</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>π/K</td>
<td>Any</td>
<td>0.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total non-γ</td>
<td></td>
<td>7.2%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Inclusive Measurement of $b \rightarrow s \gamma$: π^0, η Backgrounds

If high-energy γ passes selection, then look for low-energy γ and veto event

But, $\sim 50\%$ of the time the low-energy photon is missing, or $M_{\gamma\gamma}$ falls outside the veto window
Inclusive Measurement of $b \rightarrow s \gamma$: π^0, η Backgrounds

Basic Idea: Use measured $\pi^0(\eta)$ peak (as a function of $E_{\pi, \eta}$) to estimate production rate and $M_{\gamma \gamma}$ shape; lower high-energy E_γ cut to get more statistics.
Inclusive Measurement of $b \rightarrow s \gamma$: π^0, η Backgrounds

Define $\cos \theta_h \equiv (E_{\gamma,\text{high}} - E_{\gamma,\text{low}})/(E_{\gamma,\text{high}} + E_{\gamma,\text{low}})$ = energy asymmetry

Signal selection requirement of $E_{\gamma}^* > 1.8$ GeV pushes asymmetry up, and energy of 2nd photon down.

\rightarrow Sensitive to reconstruction efficiency for 30-80 MeV photons.

Measurement of π^0 reconstruction efficiency from $(\tau \rightarrow \rho \nu)/(\tau \rightarrow \pi \nu)$

Limiting Systematic

Expected/Measured
Inclusive Measurement of $b \rightarrow s\gamma$: Practicalities

Most up-to-date result is from BELLE, with all 605 fb$^{-1}$

BaBar still working ideas to reduce B background errors, particularly from π^0, η contamination

BaBar goal is to get well below 10% in overall error

BELLE: $(3.37\pm0.43)\times10^{-4}$

arXiv:0804.1580 605 fb$^{-1}$

BaBar: $(3.92\pm0.56)\times10^{-4}$

PRL97,171803 82 fb$^{-1}$

NOTE: Measurements scaled to $E_{\gamma,\text{cms}} > 1.6$ GeV

Bruce Schumm

Davis 2/17/08 Seminar: $b \rightarrow s(d)\gamma$ Transition Rates
Reconstruct a total of 38 exclusive $b \rightarrow s\gamma$ final states that comprise about 55% of the total width.

Fit to reconstructed mass of exclusive final state to determine signal yield.

This “Semi-Inclusive” approaches employs a fit to the mass distribution, for which backgrounds tend to be self-calibrating…
But need to rely on models to correct for the 45% of states that are not measured (depends on mass $M(X_s)$ that photon recoils against).

RESULT

$\text{BF}(B \to s\gamma) = (3.49 \pm 0.57) \times 10^{-4}$

- 82 fb$^{-1}$ analyzed is less than 10% of world sample
- Has systematics independent of those of inclusive approach
Summary of Measurements of the $b \rightarrow s \gamma$ Rate

Experimental accuracy commensurate with theoretical control, but work continue on both ends

Most of BaBar data set still unanalyzed

A. Limosani, Melbourne

Most of BaBar data set still unanalyzed

Bruce Schumm

Davis 2/17/08 Seminar: $b \rightarrow s(d)\gamma$ Transition Rates
Effective Neutral Currents: General Motivation

\(b \rightarrow s \gamma \)
- SUSY parameter space implications
- Inclusive approach
- Other approaches

\(b \rightarrow d \gamma \) and \(|V_{td}/V_{ts}|\)
- Motivation
- \(B \rightarrow (\rho, \omega) \gamma \) (“Standard” Approach)
- \(B \rightarrow X_d \) (“Semi-Inclusive” Approach)
- Status of \(|V_{td}/V_{ts}|\)

Conclusions
Measuring $|V_{td}/V_{ts}|$

Two independent diagrams provide sensitivity to CKM parameter V_{td}

B Mixing

Radiative Penguins

Note: In both cases, hadronic uncertainties minimized by comparing to corresponding V_{ts} process (B_s mixing, $b \rightarrow s\gamma$)

\Rightarrow Observable is $|V_{td}/V_{ts}|$
|\frac{|V_{td}|}{|V_{ts}|} from Penguins: Motivation

ICHEP ’08 B Mixing Results [Farrington(CDF), Moulik(D0), averaged by DeLodovico(BaBar)]:

\[\frac{|V_{td}|}{|V_{ts}|} = 0.207 \pm 0.001_{\text{exp}} \pm 0.006_{\text{theo}} \]

How do penguins fit into the picture?

Mixing: \[x_d = \frac{\Delta m_B}{\Gamma_B} \sim 1 \rightarrow \Delta m_B \sim \Gamma_B \]

Penguins: \[\text{Br}(b \rightarrow d \gamma) \sim 10^{-5} \rightarrow \Gamma_{d\gamma} \sim 10^{-5} \Gamma_B \]

“These [b \rightarrow d \gamma] vertices are CKM-suppressed in the standard model, but new physics contributions may not follow the CKM pattern in flavor-changing-neutral-current transitions and hence new physics effects may become more easily discernible in B \rightarrow X_d + \gamma (and its charge conjugate) than in the corresponding CKM-allowed vertices b \rightarrow s\gamma and b \rightarrow sg”

With |\frac{|V_{td}|}{|V_{ts}|}| precisely constrained by mixing, b \rightarrow d\gamma is a compelling testbed for new physics.
Standard ("Exclusive") Approach: measure exclusive rate \(\text{Br}(B \to \rho(\omega) \gamma) \); normalize with \(\text{Br}(B \to K^* \gamma) \)

\[
\frac{B(B \to \rho \gamma)}{B(B \to K^* \gamma)} = S_\rho \left| \frac{V_{td}}{V_{ts}} \right|^2 \left(\frac{1 - m_\rho^2/M_B^2}{1 - m_{K^*}^2/M_B^2} \right)^3 \zeta^2 [1 + \Delta R]
\]

Values of \(\zeta^2 \) and \(\Delta R \) are available from

at approximately 8% overall accuracy.
Measurement of $B(B \rightarrow \rho(\omega)\gamma)$

Belle: New result this Spring
351 fb$^{-1}$ (2006) \rightarrow 598 fb$^{-1}$ (April 2008)

BaBar: New result this Summer
316 fb$^{-1}$ (April 2007) \rightarrow 423 fb$^{-1}$ (July 2008)

Challenge: BRs are small ($<10^{-6}$); backgrounds are high
- continuum Multi-variate rejection with event shape, B tagging information, …
- $B \rightarrow K^*\gamma; K^* \rightarrow K\pi$ Require excellent particle ID
- $B \rightarrow (\rho^{\pm,0},\omega)(\pi^0,\eta)$ Veto if γ found such that $M_{\gamma\gamma} \sim M_{\pi,\eta}$
Measurement of $B(B \rightarrow \rho(\omega) \gamma)$ (continued)

Remaining separation achieved by two-dimensional fit to the largely independent kinematic variables

$$M_{ES} = \sqrt{E_{\text{beam}}^* - p_B^*}$$

"Energy-substituted mass"; since $E_{\text{beam}} \sim M_B$, largely a measurement of momentum balance

$$\Delta E^* = E_B^* - E_{\text{beam}}^*$$

$E_B = E_{\text{beam}}$ for properly reconstructed candidate; total energy measurement

*In e^+e^- CMS frame

Example: BaBar $B^0 \rightarrow \rho^0 \gamma$

- "self-calibrating" continuum background subtraction
- efficiencies (~5-15%) estimated with control samples

Continuum

Signal

$b \rightarrow s\gamma$ Feedthrough
Recent Updates of B → ρ(ω) γ

BELLE: 598 fb⁻¹

<table>
<thead>
<tr>
<th>Mode</th>
<th>Belle ’06 (x10⁻⁷)</th>
<th>Belle ’08 (x10⁻⁷)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ⁺ γ</td>
<td>5.5 +4.2 +0.9</td>
<td>8.7 +2.9 +0.9</td>
</tr>
<tr>
<td></td>
<td>−3.6 −0.8</td>
<td>−2.7 −1.1</td>
</tr>
<tr>
<td>ρ⁰ γ</td>
<td>12.5 +3.7 +0.7</td>
<td>7.8 +1.7 +0.9</td>
</tr>
<tr>
<td></td>
<td>−3.3 −0.6</td>
<td>−1.6 −1.0</td>
</tr>
<tr>
<td>ω γ</td>
<td>5.6 +3.4 +0.5</td>
<td>4.0 +1.9</td>
</tr>
<tr>
<td></td>
<td>−2.7 −1.0</td>
<td>−1.7 ± 1.3</td>
</tr>
</tbody>
</table>

BaBar: 423 fb⁻¹

<table>
<thead>
<tr>
<th>Mode</th>
<th>BaBar ’07 (x10⁻⁷)</th>
<th>BaBar ’08 (x10⁻⁷)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ⁺ γ</td>
<td>11.0 +3.7 ± 0.9</td>
<td>12.0 +4.2 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>−3.3</td>
<td>−3.7 ± 2.0</td>
</tr>
<tr>
<td>ρ⁰ γ</td>
<td>7.9 +2.2 ± 0.6</td>
<td>9.7 +2.4 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>−2.0</td>
<td>−2.2 ± 0.6</td>
</tr>
<tr>
<td>ω γ</td>
<td>4.0 +2.4 ± 0.5</td>
<td>5.0 +2.7 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>−2.0</td>
<td>−2.3 ± 0.9</td>
</tr>
</tbody>
</table>
Isopsin-Averaged Branching Fractions

Assuming SU$_3$(F) symmetry [$B(B \to \rho^0 \gamma) \sim B(B \to \omega \gamma)$] and

$$|\rho^0\rangle = \frac{1}{\sqrt{2}} (|u\bar{u}\rangle - |d\bar{d}\rangle) \quad |\omega\rangle = \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle)$$

(approximately true by static quark model) we can write

$$\Gamma(B^+ \to \rho^+ \gamma) = 2 \Gamma(B^0 \to \rho^0 \gamma) = 2 \Gamma(B^0 \to \omega \gamma)$$

from which it follows

$$B[B \to (\rho, \omega)\gamma] \equiv \frac{1}{2} \left\{ B(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} [B(B^0 \to \rho^0 \gamma) + B(B^0 \to \omega \gamma)] \right\}$$

⇒ Can combine ρ^+, ρ^0, ω results to derive $|V_{td}/V_{ts}|$ from

$$\frac{B(B \to (\rho, \omega)\gamma)}{B(B \to K^+ \gamma)} = \frac{V_{td}}{V_{ts}} \left(\frac{1 - m_{\rho}^2 / M_B^2}{1 - m_{K^+}^2 / M_B^2} \right) \zeta^2 [1 + \Delta R]$$
|V_{td}/V_{ts}| from Exclusive (\rho,\omega) Decays

Assuming static quark model, SU(3)_F symmetry, can combine to get “isospin-averaged” BF, and then |V_{td}/V_{ts}|:

BELLE:

\[B(B \rightarrow (\rho, \omega)\gamma) = (11.4 \pm 2.0^{+1.0}_{-1.2}) \times 10^{-7} \]

\[|V_{td}/V_{ts}| = 0.195^{+0.020}_{-0.019} \pm 0.015 \]

\[\text{Erratum-ibid.101:129904,2008} \]

BaBar:

\[B(B \rightarrow (\rho, \omega)\gamma) = (16.3^{+3.0}_{-2.8} \pm 1.6) \times 10^{-7} \]

\[|V_{td}/V_{ts}| = 0.233^{+0.025}_{-0.024} +0.022 -0.021 \]

\[\text{Phys.Rev.D78:112001,2008} \]

assuming the world-average

\[B(B \rightarrow K^{*}\gamma) = (4.16 \pm 0.17) \times 10^{-5} \]

Combining, for exclusive radiative decay overall:

\[|V_{td}/V_{ts}| = 0.210 \pm 0.015 \pm 0.018 \]
“New” Approach (BaBar): Reconstruct seven exclusive final states $X_d\gamma$ in range $0.6 \text{ GeV}/c^2 < M_{X_d} < 1.8 \text{ GeV}/c^2$

$$|V_{td}/V_{ts}|^2 \text{ related to } \Gamma(b\to d\gamma)/\Gamma(b\to s\gamma) \text{ with } \sim 1\% \text{ theoretical uncertainty } [\text{Ali, Asatrian, Greub, Phys. Lett. B 429, 87 (1998)}]$$

However, must correct for unmeasured regions:
- Higher-multiplicity final states
- Higher-mass hadronic component (i.e. $M_{X_d} > 1.8 \text{ GeV}/c^2$)
Measured Regions for $B \rightarrow X_{d(s)} \gamma$

$X_s \gamma$

- K* Region

$X_d \gamma$

- $\rho\omega$ and X_d analyses

$M_{\text{had}} (M_{X_d})$
B → X_{(s,d)}γ Partial Branching Fraction Results

Fit in high-mass $X_d \gamma$ region $1.0 < M_{\text{had}} < 1.6$ GeV/c²

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mass Range</th>
<th>Yield</th>
<th>Efficiency</th>
<th>Partial B. F. ($\times 10^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \rightarrow s\gamma$</td>
<td>$0.6 < M_{X_s} < 1.0$</td>
<td>1543 ± 46</td>
<td>8.5%</td>
<td>$23.7 \pm 0.7 \pm 1.7$</td>
</tr>
<tr>
<td>$b \rightarrow s\gamma$</td>
<td>$1.0 < M_{X_s} < 1.8$</td>
<td>2279 ± 75</td>
<td>6.1%</td>
<td>$48.7 \pm 1.6 \pm 4.1$</td>
</tr>
<tr>
<td>$b \rightarrow d\gamma$</td>
<td>$0.6 < M_{X_d} < 1.0$</td>
<td>66 ± 26</td>
<td>7.0%</td>
<td>$1.2 \pm 0.5 \pm 0.1$</td>
</tr>
<tr>
<td>$b \rightarrow d\gamma$</td>
<td>$1.0 < M_{X_d} < 1.8$</td>
<td>107 ± 47</td>
<td>5.2%</td>
<td>$2.7 \pm 1.2 \pm 0.4$</td>
</tr>
</tbody>
</table>

Continuum background

BABAR

X$_s\gamma$, MisID background

ΔE

M_{ES}

Yields and partial branching fractions:

High-mass $B \rightarrow X_d \gamma$

PRELIMINARY
MC Simulation

- Two-body $X_{s(d)}\gamma$ decay; mass spectrum of $X_{s(d)}$ system given by Kagan-Neubert model

- Fragment X_s system via prior experimental constraint
- Fragment X_d system via phase space

Missing modes with $0.6 < M_X < 1.0$

- MC suggests this region is dominated by resonances (ρ and ω); confirmed by K^* dominance of $B \to X_s\gamma$
- Correction for missing modes well understood
Missing Modes with $1.0 < M_X < 1.8$

- Force 50% of decays to un-weighted mix of higher-mass resonances

- Force X_d decay to be identical to X_s decay up to substitution $s \leftrightarrow d$

$B \to X_{(d,s)}\gamma$ Resonances

$B \to X_s\gamma$ Resonances
- $K_1 (1270)$
- $K_1 (1400)$
- $K^* (1410)$
- $K_2^* (1430)$
- $K^* (1680)$

$B \to X_d\gamma$ Resonances
- $h_1^0 (1170)$
- $b_1^0 (1235)$
- $b_1^+ (1235)$
- $a_1^0 (1260)$
- $a_1^+ (1260)$
- $f_2^0 (1270)$
- $f_1^0 (1285)$
- $a_2^0 (1320)$
- $a_2^+ (1320)$
Conclusion from missing modes studies:

• Systematic incorporated by varying extra bodies and extra neutrals, independently, by ±50%
• Can improve with statistics via internal constraints (e.g. $X_s\gamma$ fragmentation)
• Dominant systematic error for $1.0 < M_X < 1.8$ GeV/c²

<table>
<thead>
<tr>
<th>Mass Range (GeV/c²)</th>
<th>$B(b \to d\gamma) \times 10^{-6}$</th>
<th>$B(b \to s\gamma) \times 10^{-6}$</th>
<th>$B(b \to d\gamma)/B(b \to s\gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.6 < M_{X(s,d)} < 1.0$</td>
<td>$1.2 \pm 0.5 \pm 0.1$</td>
<td>$47 \pm 1 \pm 3$</td>
<td>$0.026 \pm 0.011 \pm 0.002$</td>
</tr>
<tr>
<td>$1.0 < M_{X(s,d)} < 1.8$</td>
<td>$6.0 \pm 2.6 \pm 2.3$</td>
<td>$168 \pm 14 \pm 33$</td>
<td>$0.036 \pm 0.015 \pm 0.009$</td>
</tr>
<tr>
<td>$0.6 < M_{X(s,d)} < 1.8$</td>
<td>$7.2 \pm 2.7 \pm 2.3$</td>
<td>$215 \pm 14 \pm 33$</td>
<td>$0.033 \pm 0.013 \pm 0.009$</td>
</tr>
</tbody>
</table>

Primary experimental result: $0.033 \pm 0.013 \pm 0.009$
Extrapolation to $\Gamma(b \rightarrow d\gamma)/\Gamma(b \rightarrow s\gamma)$

Measured region $0.6 < M_\chi < 1.8$ is ~50% of width

Extrapolate to full mass region via “KN Model”; KN calculation suggests negligible difference and uncertainty in extrapolation of the ratio (because $m_s, m_d << 1.8$ GeV/c2?)

$\Gamma(b \rightarrow d\gamma) \over \Gamma(b \rightarrow s\gamma) = 0.033 \pm 0.013 \pm 0.009$

$|V_{td} / V_{ts}| = 0.177 \pm 0.043 \pm 0.001$

Expt. Theory
No evidence for non-Standard Model contribution to the decay width.
Concluding Remarks

- $B \rightarrow s \gamma$ continues to be leading constraint on MSSM parameter space
- More data exists (~80% of BaBar sample) to improve measurement, but “inclusive” approach starting to be limited by difficult systematics
- “Semi-inclusive” approach has systematics independent of inclusive approach; very little of existing sample has been analyzed in this way.

- Radiative measurements of $|V_{td}/V_{ts}|$ are becoming precise:
 $$|V_{td}/V_{ts}|_{\text{rad}} = 0.203 \pm 0.020$$
- Semi-inclusive approach works, and is independent of exclusive approach, with small theoretical uncertainty
- Agreement with SM (as constrained by B mixing) is good

In principle, the severe SM suppression of this radiative process ($\times 10^{-6}$ of B mixing) should make it very sensitive to new physics contributions.

Have we fully thought through the meaning of this constraint?
Backup Slides
Inclusive Measurement of $b \rightarrow s \gamma$: Practicalities
Inclusive Measurement of $b \rightarrow s\gamma$: Practicalities

Background + Signal function has 12 parameters.

\[
\text{Signal} = \begin{cases}
A_g \left[f_1 G(m, \mu_1, \sigma_1) + (1 - f_1) G(m, \mu_2, \sigma_2) \right] & \text{for } m > m_0 \\
N \left[\frac{p \sigma_1 / \lambda}{(m_0 - m) + p \sigma_1 / \lambda} \right]^p & \text{for } m < m_0
\end{cases}
\]

where $m_0 \equiv \mu_1 - \lambda \sigma_1$

\[
\text{Background} = \frac{am^b}{(m^2 + c)^d}
\]

<table>
<thead>
<tr>
<th>1. Fit π^0 signal</th>
<th>Fixed Parameters</th>
<th>Floated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_2, \sigma_2/\sigma_1$</td>
<td>$\lambda, f_1, \mu_1, \sigma_1, p, A_g$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Fit π^0 signal+bkgd</th>
<th>Fixed Parameters</th>
<th>Floated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_2, \sigma_2/\sigma_1, \lambda, f_1$</td>
<td>$\mu_1, \sigma_1, p, A_g, a, b, c, d$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Fit On-peak Data</th>
<th>Fixed Parameters</th>
<th>Floated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_2, \sigma_2/\sigma_1, \lambda, f_1$</td>
<td>$\mu_1, \sigma_1, p, A_g, a, b, c, d$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Fit Off-peak Data</th>
<th>Fixed Parameters</th>
<th>Floated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_2, \sigma_2/\sigma_1, \lambda, f_1, \mu_1, \sigma_1, p$</td>
<td>A_g, a, b, c, d</td>
<td></td>
</tr>
</tbody>
</table>
Which is the best cut to use?

Extrapolation factors used by HFAG from Buchmuller & Flacher PRD73 073008 (2006)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$E_\gamma < 1.7$</th>
<th>$E_\gamma < 1.8$</th>
<th>$E_\gamma < 1.9$</th>
<th>$E_\gamma < 2.0$</th>
<th>$E_\gamma < 2.242$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic</td>
<td>0.986 ± 0.001</td>
<td>0.968 ± 0.002</td>
<td>0.939 ± 0.005</td>
<td>0.903 ± 0.009</td>
<td>0.656 ± 0.031</td>
</tr>
<tr>
<td>Neubert SF</td>
<td>0.982 ± 0.002</td>
<td>0.962 ± 0.004</td>
<td>0.930 ± 0.008</td>
<td>0.888 ± 0.014</td>
<td>0.665 ± 0.035</td>
</tr>
<tr>
<td>Kogan-Neubert</td>
<td>0.988 ± 0.002</td>
<td>0.970 ± 0.005</td>
<td>0.940 ± 0.009</td>
<td>0.892 ± 0.014</td>
<td>0.643 ± 0.033</td>
</tr>
<tr>
<td>Average</td>
<td>0.985 ± 0.004</td>
<td>0.967 ± 0.006</td>
<td>0.936 ± 0.010</td>
<td>0.894 ± 0.016</td>
<td>0.655 ± 0.037</td>
</tr>
</tbody>
</table>

Belle $E_\gamma > 1.7$ GeV
Belle $E_\gamma > 1.8$ GeV
Belle $E_\gamma > 1.9$ GeV
Belle $E_\gamma > 2.0$ GeV

HFAG Average

Winter 2008

arXiv:0804.1580 preliminary

$BF(B \to X_s \gamma) \times 10^{-4}$ scaled for $E_\gamma > 1.6$ GeV

(3.37 ± 0.43)$ \times 10^{-4}$
(3.35 ± 0.31)$ \times 10^{-4}$
(3.33 ± 0.24)$ \times 10^{-4}$
(3.29 ± 0.20)$ \times 10^{-4}$
(3.52 ± 0.25)$ \times 10^{-4}$

Much lower uncertainty if $E > 2.0$ GeV cut is used!
Summary of Fully Inclusive

CLEO
- 9.1/fb ON
- 4.4/fb OFF
- $E_\gamma > 2.0$ GeV

BABAR
- 81.5/fb ON
- 9.6/fb OFF
- $E_\gamma > 1.9$ GeV

Belle
- 140/fb ON
- 15/fb OFF
- $E_\gamma > 1.8$ GeV

Belle
- 605/fb ON
- 68/fb OFF
- $E_\gamma > 1.7$ GeV

PRL87, 251807 (2001)
PRL97, 171803 (2006)
PRL93, 061803 (2004)

More data, lower the photon energy cut

Antonio Limosani - University of Melbourne