Theory Motivation for MET

Martin Schmaltz
Boston University

MET Workshop, UC Davis, April 1st, 2009
Why E_t?

Martin Schmaltz
Boston University

E_t workshop, UC Davis, March 27/28 2009
it's the signal for SUSY

but there are more general reasons!
Dark Matter

Fact: a stable, neutral particle with mass $\approx M_{\text{weak}}$ has correct thermal abundance to be DM.

Assume: no accident, e.g. DM = WIMP

naturalness: Couples to Standard Model

\Rightarrow produced at LHC

\Rightarrow $\tilde{\nu}_t$
Corroboration?

PAMELA

... DM decays into e^+e^-? ...
Higgs Naturalness

quadratic divergences in \(M_{Higgs} \)

Canceled by loops of New Physics

\[\rightarrow M_{N.P.} \lesssim 1 \text{ TeV} \]

Precision Measurements:

\[\rightarrow M_{N.P.} \gtrsim 5 \text{ TeV} \]

conflict!
New Physics Parity

$\text{SM} : \text{even}$

$\text{NP} : \text{odd}$

[Diagrams of allowed and forbidden processes]
New Physics Parity

lightest NP particle (LNP) stable

\Rightarrow identify with DM

cascade decays E_T
E_t well-motivated

Example models:

- SUSY
- Little Higgs w. T parity
- UED
- LED

 :
value of models

- concrete
- might be correct
- parametrization of signature space

trouble with models

- hidden model arbitrariness
- all known models are fine-tuned
- incomplete param. of sig. space

»model-independent analyses «
E_t signature space

- SUSY
- LHT
- TWIN HIGGS
- SUSY
- LHT
- SUSY
- LED