Lepton and Quark masses from Top loops

Patrick Fox

Fermilab

Bogdan Dobrescu
to appear...
Patrick Fox

Fermilab

Bogdan Dobrescu
to appear...
Loopy masses for leptons and quarks

Patrick Fox

Bogdan Dobrescu
to appear...
Standard Model Higgs

Responsible for W, Z mass and (charged) fermion masses

Associated hierarchies:

Gauge hierarchy

$$m_W \ll M_{pl}$$

Yukawa hierarchy

$$y_e \ll y_t$$
Yukawa hierarchy

Technically natural but would still like an explanation

Symmetries (Froggatt Nielsen Models)

\[Y_{ij} \left(\frac{\phi}{M} \right)^{q_i + q_j + q_H} H \bar{\psi}_i \psi_j \]

\[Y_{ij}^{SM} = Y_{ij} \epsilon^{q_i + q_j + q_H} \quad \epsilon = \frac{\langle \phi \rangle}{M} \]

Charge the SM fermions differently
Geography (Extra dimensional models)

\[Y_{ij}^{SM} = \int dx_5 \psi_i(x_5) \psi_j(x_5) h(x_5) \]

Place the SM fermions in different places
Quantum mechanics

• The SM is coupled to a strongly coupled CFT
• SM fields get large anomalous dimensions
• Enters approximate fixed point at scale μ and leaves at scale μ_0

$$Y_{ij}^{SM}(\mu) = Y_{ij}(\mu_0) \left(\frac{\mu}{\mu_0} \right)^{\frac{1}{2}(\gamma_i + \gamma_j + \gamma_H)}$$

SM fermions have different couplings
• Many clever mechanisms exist but must treat SM fermions separately.

• Convert small differences to large differences

• Example where SM fermions all charged the same way but get differences in Yukawas?
Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass? Georgi and Glashow, `73

Work in the `80’s, mainly one and two loop mass generation

Babu and Ma, `89
Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass?
Georgi and Glashow, `73

Work in the `80’s, mainly one and two loop mass generation
Babu and Ma, `89

Naively all masses at approximately the same loop order
More ambitious attempt

Loop-level where mass is generated
Loop-level where mass is generated
More likely to fail...?

Loop-level where mass is generated
More likely to fail...?

Loop-level where mass is generated

Lepton and Quark masses at 1 TeV
Top is clearly special

So,

assume only the top has a tree level Yukawa

\[y_t H \bar{u}_R^3 Q_L^3 \]
Top is clearly special

So,

assume only the top has a tree level Yukawa

\[y_t H \bar{u}^3_R Q^3_L \]

Charge the top?
Top is clearly special

So,

assume only the top has a tree level Yukawa

\[y_t H \bar{u}^3_R Q^3_L \]

Charge the top?
Instead charge Higgs under an extra $U(1)_H$

$U(1)_H$ broken by the vev of a SM singlet ϕ of charge -1

Introduce a vector like pair of fermions with quantum numbers of left handed quarks, also charged under $U(1)_H$
Yukawas:

\[\phi(-1) \rightarrow \tilde{c}^i \rightarrow \psi_R(-1) \rightarrow \psi_L(-1) \rightarrow c^j \rightarrow H(-1) \]

\[m_{ij} \propto \tilde{c}_i c_j \]

But lh top and rh top only appear *linearly* in couplings.
Redefine couplings so only one lh and one rh couple.
Call these the top.

Mass matrix is rank 1.

Only the top gets a tree level mass.
Chiral symmetries

\[y_t \neq 0 \]
\[U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d \]

Need to break remaining chiral symmetries

Introduce a scalar leptoquark \[r : (3, 2, +7/6) \]
Chiral symmetries

$y_t \neq 0$

$U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d$

Need to break remaining chiral symmetries

Introduce a scalar leptoquark $r : (3, 2, +7/6)$

(charge 0 under extra $U(1)$)
Chiral symmetries

\[y_t \neq 0 \]

\[U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d \]

Need to break remaining chiral symmetries

Introduce a scalar leptoquark \(r : (3, 2, +7/6) \) (charge 0 under extra \(U(1) \))

Most general interactions:

\[\lambda_{ij} r \overline{u}^i_R L^j_L + \lambda'_{ij} r \overline{Q}^i_L e^j_R + \text{H.c.} \]
\[
U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d
\]

\[
y_t \neq 0
\]

\[
\lambda \neq 0
\]

\[
\lambda' \neq 0
\]

\[
\rightarrow U(1)_u \times U(3)_d
\]

\[
U(3)_L \times U(3)_e \rightarrow U(1)_L
\]

With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order.
\[y_t \neq 0 \]

\[U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)_t \times U(2)_Q \times U(2)_u \times U(3)_d \]

\[\lambda \neq 0 \]
\[\lambda' \neq 0 \]

\[\rightarrow U(1)_u \times U(3)_d \]

\[\lambda \neq 0 \]
\[\lambda' \neq 0 \]

\[U(3)_L \times U(3)_e \rightarrow U(1)_L \]

With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order

But what loop order?
\[\lambda_{ij} r \bar{u}^i_R L^j_L + \lambda'_{ij} r \bar{Q}^i_L e^j_R + H.c. \]

Linear couplings

Redefine fields:

\[
\begin{pmatrix}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & \lambda_{33}
\end{pmatrix}
\]
\[\lambda_{ij} \, r \, \overline{u}_R^i \, L_L^j + \lambda'_{ij} \, r \, \overline{Q}_L^i \, e_R^j + \text{H.c.} \]

Linear couplings

Redefine fields:
\[
\lambda_{ij} \, r \, \bar{u}^i_R \, L^j_L + \lambda'_{ij} \, r \, \bar{Q}^i_L \, e^j_R + \text{H.c.}
\]

Linear couplings

Redefine fields:

- Define \(L_3 \) so it only couples only to \(u_3 \)

\[
\begin{pmatrix}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{pmatrix}
\]
\[
\lambda_{ij} r \overline{u}^i_R L^j_L + \lambda'_{ij} r \overline{Q}^i_L e^j_R + \text{H.c.}
\]

Linear couplings

Redefine fields:

• Define \(L_3 \) so it only couples only to \(u_3 \)
• \(u_2 \) couples only to \(L_2 \) and \(L_3 \)

\[
\begin{pmatrix}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{pmatrix}
\]
\[
\lambda_{ij} r \overline{u}_R^i L_L^j + \lambda'_{ij} r \overline{Q}_L^i e_R^j + \text{H.c.}
\]

Linear couplings

Redefine fields:

- Define \(L_3 \) so it only couples only to \(u_3 \)
- \(u_2 \) couples only to \(L_2 \) and \(L_3 \)
- Rotation of \(u_1 \) and \(u_2 \)

\[
\begin{pmatrix}
\lambda_{11} & \lambda_{12} & 0 \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{pmatrix}
\]
\[
\lambda_{ij} r \overline{u}_R^i L_L^j + \lambda'_{ij} r \overline{Q}_L^i e_R^j + \text{H.c.}
\]

Linear couplings

Redefine fields:

- Define \(L_3 \) so it only couples only to \(u_3 \)
- \(u_2 \) couples only to \(L_2 \) and \(L_3 \)
- Rotation of \(u_1 \) and \(u_2 \)

\[
\begin{pmatrix}
\lambda_{11} & \lambda_{12} & 0 \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{pmatrix}
\]

\(\lambda_{ij}, \lambda'_{ij} \) can be made real and positive
One loop tau mass

\[m_\tau \simeq \lambda_{33} \lambda'_{33} m_t \frac{N_c}{16\pi^2} \ln \left(\frac{\Lambda^2}{M_{\tilde{r}}^2} \right) \]

\[\approx 0.09 \text{ for } \Lambda \approx 10M_{\tilde{r}} \]

\[\lambda_{33} \lambda'_{33} \approx (0.36)^2 \text{ for correct } m_\tau / m_t \text{ ratio} \]
One loop tau mass

\[m_\tau \simeq \lambda_{33} \lambda'_{33} m_t \frac{N_c}{16\pi^2} \ln \left(\frac{\Lambda^2}{M_{\tilde{r}}^2} \right) \]

\[\approx 0.09 \text{ for } \Lambda \approx 10M_{\tilde{r}} \]

\[\lambda_{33} \lambda'_{33} \approx (0.36)^2 \text{ for correct } m_\tau/m_t \text{ ratio} \]
Two loop charm mass - a "rainbow" diagram

\[
M_u[\tilde{r}\tilde{r}] = \begin{pmatrix}
0 & 0 & 0 \\
0 & \lambda'_{23} \lambda_{23} & \lambda'_{33} \lambda_{23} \\
0 & \lambda'_{23} \lambda_{33} & \lambda'_{33} \lambda_{33}
\end{pmatrix} \lambda'_{33} \lambda_{33} m_t \epsilon^{(2)}_{\tilde{r}}
\]

\[
m_c = \lambda'_{23} \lambda_{23} m_\tau \frac{1}{16\pi^2} \log \frac{\Lambda^2}{M^2_{\tilde{r}}}
\]

\[
\lambda_{23} \lambda'_{23} \approx (3.3)^2 \text{ for correct } m_c/m_\tau \text{ ratio}
\]
Two loop charm mass - a “rainbow” diagram

\[M_u[\tilde{r}\tilde{r}] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda'_{23}\lambda_{23} & \lambda'_{33}\lambda_{23} \\ 0 & \lambda'_{23}\lambda_{33} & \lambda'_{33}\lambda_{33} \end{pmatrix} \lambda'_{33}\lambda_{33} m_t \epsilon^{(2)}_\tilde{r} \]

\[m_c = \lambda'_{23}\lambda_{23} m_\tau \frac{1}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2} \]

\[\lambda_{23}\lambda'_{23} \approx (3.3)^2 \text{ for correct } m_c/m_\tau \text{ ratio} \]
Two loop charm mass - a “rainbow” diagram

\[
M_u[\tilde{r}\tilde{r}] = \begin{pmatrix}
0 & 0 & 0 \\
0 & \lambda'_{23}\lambda_{23} & \lambda'_{33}\lambda_{23} \\
0 & \lambda'_{23}\lambda_{33} & \lambda'_{33}\lambda_{33}
\end{pmatrix} \lambda'_{33}\lambda_{33} m_t \epsilon_{\tilde{r}}^{(2)}
\]

\[
m_c = \lambda'_{23}\lambda_{23} m_\tau \frac{1}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2}
\]

\[
\lambda_{23}\lambda'_{23} \approx (3.3)^2 \text{ for correct } m_c/m_\tau \text{ ratio}
\]
Loop-level where mass is generated

Rinse and repeat?
Three loop muon mass

Rainbow $\sim N_C^2$

The diagram with no name $\sim N_C$
Three loop muon mass

Rainbow \sim N_C^2

Two loop charm mass

The diagram with no name \sim N_C
Three loop muon mass

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & \lambda' & 22\lambda' \\
0 & 23\lambda & (\lambda^2 + \lambda'^2)
\end{pmatrix}
\]

\[m_\mu \approx \lambda'_2 \lambda_2 m_c (1 + x) \frac{N_c}{16\pi^2} \log \frac{\Lambda^2}{M^2_{\tilde{r}}}
\]

\[\lambda_2 \lambda'_2 (1 + x) \approx (1.5)^2 \text{ for correct } m_\mu / m_c \text{ ratio}\]
Three loop muon mass

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & \lambda \\
0 & \lambda & 0
\end{pmatrix}
\]

\[
m_\mu \approx \lambda'_2 \lambda_{22} m_c (1 + x) \frac{N_c}{16\pi^2} \log \frac{\Lambda^2}{M_{\tilde{r}}^2}
\]

\[
\lambda_{22} \lambda'_{22} (1 + x) \approx (1.5)^2 \text{ for correct } m_\mu/m_c \text{ ratio}
\]
Four loop up quark mass

Muon mass implies: \#\lambda_{12}\lambda'_{12} \approx (0.6)^2.
Four loop up quark mass

Three loop muon mass

Muon mass implies: \[\# \lambda_{12} \lambda'_{12} \approx (0.6)^2. \]
Five loop electron mass

If only source of electron mass will determine $\lambda_{11} \lambda'_{11}$

Only input: $r : (3, 2, +7/6)$

$$\lambda_{ij} r \bar{u}_R^i L_L^j + \lambda'_{ij} r \bar{Q}_L^i e_R^j + \text{H.c.}$$

Loop-level where mass is generated

Lepton and Quark masses at 1 TeV

e u c t d s b f

Fermilab
Down quark masses

Need to break the remaining chiral symmetries

\[U(3)_d \times U(1)_u \times U(1)_L \]

Have choices diquarks, leptoquarks...

\[H_8 : (8, 2, -1/2) \]
\[\tilde{q} : (3, 2, 1/6) \]
\[\tilde{d}_6 : (\bar{6}, 1, -1/3) \]
\[\tilde{d} : (3, 1, -1/3) \]
New field content

<table>
<thead>
<tr>
<th></th>
<th>ϕ</th>
<th>ψ_L, ψ_R</th>
<th>H</th>
<th>r</th>
<th>r'</th>
<th>Φ_8</th>
<th>Φ'_8</th>
<th>Φ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(3)$</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>$SU(2)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$U(1)_Y$</td>
<td>0</td>
<td>$1/6$</td>
<td>$1/2$</td>
<td>$7/6$</td>
<td>$7/6$</td>
<td>$1/2$</td>
<td>$-1/2$</td>
<td>$-1/6$</td>
</tr>
<tr>
<td>$U(1)_H$</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Up quarks and leptons**
- **Down quarks**
Most general couplings

\[\kappa_i \Phi_8 \overline{u}^i_R \Psi_L + \kappa' \Phi'_8 \overline{d}^3_R \Psi_L \]

\[\eta_{ij} \Phi_3 \overline{d}^i_R \overline{L}^j_L + \text{h.c.} \]

break the remaining chiral symmetries

\[U(3)_d \times U(1)_u \times U(1)_L \rightarrow U(1)_L \times U(1)_Q \]
Most general couplings

\[\kappa_i \Phi_8 \overline{u}_R^i \Psi_L + \kappa' \Phi'_8 \overline{d}_R^3 \Psi_L \]

Only couples to b

\[\eta_{ij} \Phi_3 \overline{d}_R^i L_L^j + \text{h.c.} \]

break the remaining chiral symmetries

\[U(3)_d \times U(1)_u \times U(1)_L \rightarrow U(1)_L \times U(1)_Q \]
Without altering up type and leptons have the freedom to rotate such that,

\[\eta = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ 0 & \eta_{32} & \eta_{33} \end{pmatrix} \]

\[\kappa = (\kappa_1, \kappa_2, \kappa_3) \]
Without altering up type and leptons have the freedom to rotate such that,

\[\eta = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ 0 & \eta_{32} & \eta_{33} \end{pmatrix} \]

Diagonal entries can be made real and positive

\[\kappa = (\kappa_1, \kappa_2, \kappa_3) \]
One loop bottom mass

\[m_b \approx N_c \kappa_3 \kappa' c m_t \left(\frac{\langle \phi \rangle}{M_\Psi} \right)^2 \frac{1}{16\pi^2} \log \left(\frac{M_\Psi^2}{M_8^2} \right) \]
One loop bottom mass

\[m_b \approx N_c \kappa_3 \kappa' c m_t \left(\frac{\langle \phi \rangle}{M_\Psi} \right)^2 \frac{1}{16\pi^2} \log \left(\frac{M_\Psi^2}{M_8^2} \right) \]
One loop bottom mass

\[m_b \approx N_c \kappa_3 \kappa' c m_t \left(\frac{\langle \phi \rangle}{M_\psi} \right)^2 \frac{1}{16\pi^2} \log \left(\frac{M_\psi^2}{M_8^2} \right) \]
Three loop strange mass

\[\Phi_3 r H H \left(\frac{\phi}{m_{r'}} \right)^2 \]

Integrate out \(r' \)

\[\begin{array}{cccc}
Q^3_L & \tau_R & Q^3_L & \tau_R \\
\Phi_3 & H & H & \Phi_3 \\
L^3_L & s_R & L^3_L & s_R
\end{array} \]
Four loop down masses

The down has a 4 loop mixed diagram (exercise for reader)
Figure 10: Down-quark mass induced at four loops.

\[
\Phi' = \begin{pmatrix}
1 & \epsilon^2 & 0 \\
-\epsilon^2 & 1 & \epsilon^2 \\
0 & -\epsilon^2 & 1
\end{pmatrix}
\]

\[
R_d = \begin{pmatrix}
1 & -\epsilon^2 & \epsilon - \epsilon^3 & \epsilon^3 \\
-\epsilon + \epsilon^3 & 1 & -\epsilon^2 & \epsilon^2 \\
\epsilon^3 & -\epsilon^2 & 1
\end{pmatrix}
\] (4.14)
“Cross Talk”

There are also corrections to some of the states that have mass:

Charm gets a two loop correction

Up gets a four loop correction

Muon gets a three loop correction

Electron gets a five loop correction
Charm gets a two loop correction

• Different parameter dependence
• Different number of logs
• Changes (lowers) certain couplings $\lambda_2 r_3 \approx (3.3)^2$

Doesn’t change loop counting
Lepton and Quark masses at 1 TeV

Five loop
Lepton and Quark masses at 1 TeV

Tree level

Five loop
Lepton and Quark masses at 1 TeV

- Tree level
- One loop
- Five loop
Lepton and Quark masses at 1 TeV

- Tree level
- One loop
- Two loop
- Five loop
Lepton and Quark masses at 1 TeV

Tree level

One loop

Two loop

Three loop

Five loop
Lepton and Quark masses at 1 TeV

Tree level

One loop

Two loop

Three loop

Four loop

Five loop

GeV

Lepton and Quark masses at 1 TeV

Tree level

One loop

Two loop

Three loop

Four loop

Five loop

GeV
CKM

\[m_u \approx m_t \begin{pmatrix} \epsilon^4 & \epsilon^2 & \epsilon^2 \\ \epsilon^4 & \epsilon^2 & \epsilon^2 \\ \epsilon^4 & \epsilon^2 & 1 \end{pmatrix} \quad m_d \approx m_t \begin{pmatrix} \epsilon^4 & \epsilon^4 & \epsilon^4 \\ \epsilon^4 & \epsilon^3 & \epsilon^3 \\ \epsilon^4 & \epsilon^3 & \epsilon \end{pmatrix} \]

Resulting in

\[V_{CKM} \approx \begin{pmatrix} 1 - \epsilon^2 & \epsilon & \epsilon^3 \\ -\epsilon & 1 - \epsilon^2 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix} \]

Still to think about phases...
The model contains extra fermions and scalar **Leptoquarks**

(Alternative realisation contains diquarks - easier to see at LHC than TeVatron)
Mass scales

\[m_f \approx \text{parameters} \times m_t \times \left[\frac{1}{16\pi^2} \log \left(\frac{M^2}{M'^2} \right) \right]^n \]

Only determines ratio of masses

Works at all scales, what is the lowest?
Constraints

Tree level exchange of leptoquark can lead to flavour changing processes e.g.

\[
K^+ \rightarrow \mu^+ e^- \pi^+ \quad BR < 10^{-11}
\]

\[
\tau^+ \rightarrow K^0 e^+
\]

\[
\pi^+ \rightarrow e^+ \nu \text{ versus } \pi^+ \rightarrow \mu^+ \nu
\]

\[
\mu \rightarrow e \text{ conversion}
\]

\[
M^* \gtrsim 5 - 50 \text{ TeV}
\]
Dipole moments

Usually loop suppressed

\[\sim \frac{1}{16\pi^2} \frac{m_f}{M^2} e \]

But for us mass is already a loop effect so no additional loop suppression

\[\sim \frac{m_f}{M^2} e \]
Dipole moments

Usually loop suppressed

\[\sim \frac{1}{16\pi^2} \frac{m_f}{M^2} e \]

But for us mass is already a loop effect so no additional loop suppression

\[\sim \frac{m_f}{M^2} e \quad M > \text{a few TeV} \]
Dipole moments

Usually loop suppressed

\[\sim \frac{1}{16\pi^2} \frac{m_f}{M^2} e \]

But for us mass is already a loop effect so no additional loop suppression

\[\sim \frac{m_f}{M^2} e \]

\(M > \text{a few TeV} \)
Conclusions

• Fermions have complicated mass hierarchy
• Many attempts exist to explain it
• Top is probably special, perhaps only top mass has a tree level Yukawa
• With extra scalars coupling to fermions top mass is communicated at loop level
• Interesting structure of fermion mass spectrum arises
• Predicts flavour changing processes
Conclusions

• Fermions have complicated mass hierarchy
• Many attempts exist to explain it
• Top is probably special, perhaps only top mass has a tree level Yukawa
• With extra scalars coupling to fermions top mass is communicated at loop level
• Interesting structure of fermion mass spectrum arises
• Predicts flavour changing processes
• Project X?