Nongaussianity from Tachyonic Preheating in Hybrid Inflation

Neil Barnaby

McGill University

UC Davis, Sept. 18 2006.
Based on Phys. Rev. D 73, 106012 (2006) and work in progress (with Jim Cline).
Outline

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation
Introduction

- Hybrid inflationa (and Inverted Hybrid Inflationb) models are attractive from particle physics perspective.

- Appear easy to embed into SUSY, string theory (F-, D-, P-term inflation, KKLMMT)

- Inflation ends with nonperturbative amplification of fluctuations called tachyonic preheating.

- Preheating may generate large scale curvature perturbations without violation of causality.c

- Nonadiabatic pressures at second order may give rise to large nongaussianity.d

- Nongaussianity can be a powerful tool to discriminate between (or constrain) models of inflation.

\begin{itemize}
 \item a Linde, Phys. Rev. D \textbf{49}, 748 (1994).
 \item b Lyth & Stewart, Phys. Rev. D \textbf{54}, 7186 (1996).
 \item c Brandenberger & Finelli, Phys. Rev. Lett. \textbf{82}, 1362 (1999).
\end{itemize}
Part 1: Inflation, Fluctuations and Gaussianity

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation

Background and Fluctuations

$$\varphi(t, \vec{x}) = \varphi_0(t) + \delta \varphi(t, \vec{x})$$

Classical Background: φ_0

- **Slow Roll:** $\dot{\varphi}_0 \ll H \varphi_0$

 $$\Rightarrow ds^2 \simeq -dt^2 + e^{2Ht} d\vec{x}^2$$

- **Requires flat potentials:**

 $$\epsilon \simeq \frac{M_p^2}{2} \left(\frac{V'}{V} \right)^2 \ll 1$$

 $$\eta \simeq M_p^2 \frac{V''}{V} = \frac{m_\varphi^2}{3H^2} \ll 1$$

- **We require** $\epsilon, \eta \ll 1$ **for** $Ht \simeq 60$ e-folds.

Quantum Fluctuations: $\delta \varphi$

- **Vacuum fluctuations of** $\delta \varphi$ **generated on small scales** $k \gg aH$.

- **Redshifted** by the expansion

 $$k_{\text{phys}} = \frac{k}{a} \sim k e^{-Ht}.$$

- **Become classical at horizon crossing** $k = aH$.

- **Fluctuations re-enter horizon after reheating.**
Evolution of Scales During Inflation

Quantum Fields in deSitter

\[ds^2 = -dt^2 + e^{2Ht} dx^2 \]

\[\chi(t, x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left[a_k \chi_k(t) e^{ikx} + a_k^* \chi_k^*(t) e^{-ikx} \right] \]

★ Mode functions satisfy KG equation:

\[\ddot{\chi}_k + 3H \dot{\chi}_k + \left[\frac{k^2}{a^2} + m^2 \right] \chi_k = 0 \]

★ Initial data fixes the vacuum \(a_k |0\rangle = 0 \).

★ Bunch-Davies vacuum choice corresponds to small scale Minkowski space fluctuations:

\[\chi_k \approx e^{-ikt} \sqrt{2k} \quad \text{for} \quad k \gg aH \]

★ Large scale behaviour depends crucially on \(m/H \).
Heavy and Light Fields in deSitter

★ On large scales $k \ll aH$ have:

$$|\chi_k(t)| \approx \begin{cases} \frac{H}{\sqrt{2k}} & \text{if } m \ll H; \\ \frac{2}{a^{-3/2}} \sqrt{m} & \text{if } m \gg H. \end{cases}$$

★ Inflaton fluctuations are light ($\eta \ll 1$) so have scale invariant large scale fluctuations:

$$\langle (\delta \varphi)^2 \rangle = \int \frac{d^3k}{(2\pi)^3} |\chi_k(t)|^2 \approx \int d\ln k \left(\frac{H}{2\pi} \right)^2 = P_\varphi(k).$$

★ Heavy fields have exponentially damped ($\sim e^{-3Ht/2}$) large scale fluctuations.
Curvature Perturbation

★ Quantum matter fluctuations induce metric fluctuation:

\[\varphi(t, \vec{x}) = \varphi_0(t) + \delta \varphi(t, \vec{x}) \]

\[\Rightarrow \quad g_{\mu\nu}(t, \vec{x}) = g_{\mu\nu}^{(0)}(t) + \delta g_{\mu\nu}(t, \vec{x}). \]

★ Can induce fictitious metric fluctuations by performing small coordinate transformations: \(x^\mu \rightarrow x^\mu + \xi^\mu \).

★ Physical observables must be gauge invariant.

★ Introduce the curvature perturbation \(\phi = \delta g_{00} \):

\[\zeta \cong -\phi - \frac{H}{\varphi_0} \delta \varphi \]

★ The basic observables are the correlators: \(\langle \zeta \zeta \cdots \zeta \rangle \).
Spectrum and Gaussianity

★ The spectrum (two-point function) is almost scale invariant on large scales $k \ll aH$:

$$\langle \zeta_k \zeta_{k'} \rangle = \frac{1}{2 \epsilon} \left(\frac{H}{M_p} \right)^2 \frac{1}{2k^3} \left(\frac{k}{aH} \right)^{n-1} \delta^3(k + k')$$

★ Spectral index: $n - 1 = 2\eta - 6 \epsilon \ll 1$.

★ To linear order ζ contains only one a_k, a_k^\dagger:

$$\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \zeta_{k_4} \rangle = 0$$

$$\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \zeta_{k_4} \rangle = \langle \zeta_{k_1} \zeta_{k_2} \rangle \langle \zeta_{k_3} \zeta_{k_4} \rangle + \text{perms}$$

★ Two-point correlator is the only independent statistics.
Nongaussianity

★ **Gaussian** fluctuations: the connected part of the n-point functions vanishes for $n \geq 3$.

★ At linear order in perturbation theory the fluctuations are exactly gaussian.

★ Nongaussianity is expected due to **nonlinearities** in the KG and gravity equations.

★ The three-point function (bispectrum) is the lowest order statistics which can discriminate between gaussianity and nongaussianity:

\[
\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = (2\pi)^{-3/2} B(k_i) \delta^3(k_1 + k_2 + k_3)
\]
Nonlinearity Parameter

* Usually nongaussianity is parametrized in terms of the nonlinearity parameter f_{NL} as

$$\zeta = \zeta_g - \frac{3}{5} f_{NL} (\zeta_g^2 - \langle \zeta_g^2 \rangle)$$

* Yields a nontrivial bispectrum:

$$B(k_i) \approx -\frac{6}{5} f_{NL} [P(k_1)P(k_2) + \text{perms}]$$

$$\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = (2\pi)^{-3/2} B(k_i) \delta^3(k_1 + k_2 + k_3)$$

$$\langle \zeta_{k_1} \zeta_{k_2} \rangle = P(k_i) \delta^3(k_1 + k_2)$$

* WMAP analysis constrains $|f_{NL}| \lesssim 100$. a

Nonlinearity Parameter

- Various scenarios for generating ζ give distinct predictions for f_{NL}.
- Measurement of f_{NL} can discriminate between different models.
- Expect $f_{NL} \sim n - 1$ for the simplest models, which is unlikely to ever be detectable.
- Can get observably large nongaussianity from:
 - Curvaton mechanism.a
 - Single field models with small inflaton sound speed.b
 (For example the D-celleration model.c)
 - Preheating.d
 - ...

b Chen et al., arXiv:hep-th/0605045
Part 2: Hybrid Inflation and Tachyonic Preheating

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation

Hybrid Inflation: Potential

\[V(\varphi, \sigma) = \frac{\lambda}{4} (\sigma^2 - v^2)^2 + \frac{g^2}{2} \varphi^2 \sigma^2 + \frac{m^2}{2} \varphi^2 \]

\[= \frac{\lambda v^4}{4} + \frac{1}{2} \left(g^2 \varphi^2 - \lambda v^2 \right) \sigma^2 + \frac{\lambda}{4} \sigma^4 + \frac{m^2}{2} \varphi^2 = m_{\sigma}^2 \]

Herdeiro et al., JHEP 0112, 027 (2001).
The tachyon is trapped in the false vacuum:
\[\langle \sigma \rangle \equiv \sigma_0 = 0. \]

Potential along the inflationary trajectory:
\[V_{\text{inf}} = \frac{\lambda v^4}{4} + \frac{1}{2} m^2 \varphi^2 \approx \frac{\lambda v^4}{4} \]

Slow roll solutions:
\[\langle \varphi \rangle \equiv \varphi_0(t) \approx \frac{\lambda^{1/2} v}{g} \left(\frac{a(t_c)}{a(t)} \right)^\eta \]
\[3H^2 \approx \frac{\lambda v^4}{(4M_p^2)} \]

Slow roll parameters never get large: \(\dot{\epsilon} < 0, \eta = \text{const.} \)
Tachyonic Preheating

★ Tachyon mass-squared:

\[m_\sigma^2 = g^2 \phi_0^2 - \lambda v^2 \cong -2\lambda v^2 \eta H(t - t_c) \equiv -cH^2 N \]

★ Tachyonic preheating: transfer of energy from the false vacuum \(\lambda v^4/4 \) to the fluctuations \(\delta^{(1)} \sigma_k \).

Domain Walls

★ Symmetry breaking leads to **domain walls**.

★ At late times universe consists of many domains with $\sigma \sim \pm \nu$.

★ Even at late times the tachyon averages to zero $\langle \sigma \rangle = \sigma_0 = 0$ over many domains.

★ Domain walls will overclose the universe so one should add symmetry breaking terms or consider a complex tachyon which gives cosmic strings...

Tachyon Dynamics

★ The tachyon mass-squared varies linearly with the number of e-foldings:

\[m_\sigma^2 \approx -cH^2 N \]

★ At early times \(m_\sigma^2 > 0 \):
 - Large scale tachyon fluctuations get damped as \(a^{-3/2} \) during any e-foldings where \(m_\sigma^2 > H^2 \).
 - Scale invariant large scale fluctuations for \(m_\sigma^2 < H^2 \).

★ At late times \(m_\sigma^2 < 0 \):
 - Large scale tachyon fluctuations are exponentially amplified.
 - Within a time \(t_* \) the energy from the false vacuum is transferred into the large scale fluctuations \(\delta \sigma_k \).
During both inflation and the (early) instability phase the tachyon mode functions obey:

\[
\frac{d^2}{dN^2} \delta^{(1)} \sigma_k + 3 \frac{d}{dN} \delta^{(1)} \sigma_k + \left[\frac{k^2}{H^2} e^{-2N} - cN \right] \delta^{(1)} \sigma_k = 0
\]

where \(N = H(t - t_c) \), \(c = 2\eta\lambda v^2 / H^2 \).

In the far UV where the \(k^2 / a^2 \) term dominates \((k^2 H^{-2} e^{-2N} \gg c|N|)\) have Minkowski space modes.

In the far IR where the \(m_\sigma^2 \) term dominates \((k^2 H^{-2} e^{-2N} \ll c|N|)\) are exponentially damped if \(m_\sigma^2 > 0 \) or amplified if \(m_\sigma^2 < 0 \).

Match solutions at \(N = N_k \) defined by: \(\frac{k^2}{cH^2} e^{-2N_k} = |N_k| \).
Matching Conditions

- Modes which cross $|m_\sigma|$ while $m_\sigma^2 > 0$ are damped exponentially as $a^{-3/2}$ before the instability sets in.
- Modes which cross $|m_\sigma|$ when $m_\sigma^2 < 0$ were light throughout inflation and experience no damping.
Modes in the UV $N < N_k (k \gg a|m_\sigma|)$ feel only Minkowski space: $a \delta^{(1)} \sigma_k \sim e^{-ik\tau} / \sqrt{2k}$.

These are red-shifted into the IR region $N > N_k$ ($k \ll a|m_\sigma|$) where the mass term becomes important:

$$|\delta^{(1)} \sigma_k(N)| \sim |b_k| \exp \left[-\frac{3}{2} N + \frac{9}{4c} \left(1 + \frac{4}{9c} N \right)^{3/2} \right]$$
The End of Exponential Growth

★ Once the tachyon fluctuations become sufficiently large, the exponential growth is replaced by oscillations about the minima $\pm v$.

★ Our condition for the end of tachyonic growth:

$$\langle (\delta^{(1)} \sigma)^2 \rangle^{1/2} \bigg|_{N=N_*} = \frac{v}{2}$$

★ Numerical solutions of this equation agree with previous authors.a

★ NOTE: For a very slowly rolling inflaton can have $N_* \gtrsim 1$.

Part 3: Cosmological Perturbation Theory

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation
Cosmological Perturbations

★ Expand the metric in longitudinal gauge as:

\[
\begin{align*}
 g_{00} &= -a(\tau)^2 \left[1 + 2\phi^{(1)} + \phi^{(2)} \right] \\
 g_{0i} &= 0 \\
 g_{ij} &= a(\tau)^2 \left[\left(1 - 2\psi^{(1)} - \psi^{(2)} \right) \delta_{ij} \\
 &\quad + \frac{1}{2} \left(\partial_i \chi^{(2)}_{j} + \partial_j \chi^{(2)}_i + \chi^{(2)}_{ij} \right) \right]
\end{align*}
\]

★ Expand the matter fields as:

\[
\begin{align*}
 \varphi(\tau, \vec{x}) &= \varphi_0(\tau) + \delta^{(1)} \varphi(\tau, \vec{x}) + \frac{1}{2} \delta^{(2)} \varphi(\tau, \vec{x}) \\
 \sigma(\tau, \vec{x}) &= \delta^{(1)} \sigma(\tau, \vec{x}) + \frac{1}{2} \delta^{(2)} \sigma(\tau, \vec{x})
\end{align*}
\]

★ Neglect vectors, tensors at first order.

★ Recall that \(\langle \sigma \rangle \equiv \sigma_0 = 0 \).
At first order there are two independent scalar degrees of freedom: $\phi^{(1)}, \delta^{(1)}\sigma$.

Can write a master equation for $\phi^{(1)}$:

$$\phi''^{(1)} - \frac{2}{\tau}(\eta - \epsilon)\phi''^{(1)} + \left[\frac{2}{\tau^2}(\eta - 2\epsilon) + k^2 \right] \phi^{(1)} = 0$$

Tachyon fluctuation does not couple to the metric fluctuations:

$$\delta^{(1)}\ddot{\sigma}_k + 3H\delta^{(1)}\dot{\sigma}_k + \left[\frac{k^2}{a^2} + m^2_{\sigma} \right] \delta^{(1)}\sigma_k = 0$$

Constraint equations fix $\delta^{(1)}\varphi, \psi^{(1)}$.
First Order Curvature Perturbation

- Physical quantity of interest is the curvature perturbation

\[\zeta = \zeta^{(1)} + \frac{1}{2} \zeta^{(2)} \]

defined so that \(\langle \zeta \rangle = 0 \).

- For \(\sigma_0 = 0 \) the first order piece depends only on the inflaton:

\[\zeta^{(1)} \cong -\phi^{(1)} - \frac{\mathcal{H}}{\varphi_0} \delta^{(1)} \phi \]

- First order curvature perturbation is conserved on large scales:

\[\frac{\partial}{\partial \tau} \zeta_k^{(1)} \cong 0 \quad \text{for} \quad k \ll aH \]

- Have the usual scale invariant spectrum from \(\langle \zeta_{k_1} \zeta_{k_2} \rangle \).
Second Order Einstein Equations

★ Second order fluctuations are **sourced** by first order fluctuations.

★ **Two independent scalar fluctuations** at second order: \(\phi^{(2)}, \delta^{(2)} \sigma \).

★ Can write a **master equation** for \(\phi^{(2)} \):

\[
\phi''_{k}^{(2)} - \frac{2}{\tau} (\eta - \epsilon) \phi'_{k}^{(2)} + \left[\frac{2}{\tau^{2}} (\eta - 2\epsilon) + k^{2} \right] \phi_{k}^{(2)} = J_{k}(\tau)
\]

where the **source** \(J \) is constructed from \(\delta^{(1)} \sigma, \delta^{(1)} \varphi, \phi^{(1)} \).

★ Can solve for the other second order fluctuations using constraints.

★ Curvature perturbation does not depend on \(\delta^{(2)} \sigma \) up to second order.
Second Order Curvature Perturbation

★ Split the curvature perturbation into inflaton and tachyon contributions:

\[\zeta^{(2)} = \zeta_\varphi^{(2)} + \zeta_\sigma^{(2)} \]

★ The inflaton part has already been studied and yields negligible nongaussianity\(^a\)

\[\zeta_\varphi^{(2)} \approx \frac{1}{4} (2\eta - 6\epsilon) \left(\zeta^{(1)} \right)^2 \approx \text{const} \quad \text{for} \quad k \ll aH \]

★ Non-adiabatic pressures at second order will amplify large scale \(\zeta_\sigma^{(2)} \) during the instability phase so that \(\zeta^{(2)} \approx \zeta_\sigma^{(2)} \) after preheating.

\(^a\)Maldacena, JHEP 0305, 013 (2003).
Calculation of $\zeta^{(2)}$

\[
\zeta^{(2)} \equiv -\frac{\phi'^{(2)}}{\epsilon H} - \left(\frac{1}{\epsilon} + 1\right)\phi^{(2)} + \frac{1}{3 - \epsilon}\frac{\partial^k \partial_k \phi^{(2)}}{\epsilon H^2}
\]
\[
+ \frac{1}{\epsilon H} \Delta^{-1} \gamma' + \Delta^{-1} \gamma - \frac{1}{3 - \epsilon}\frac{1}{\epsilon H^2} \gamma
\]
\[
+ \frac{1}{3 - \epsilon} \frac{1}{(\phi_0')^2} \left[\left(\delta^{(1)} \sigma'\right)^2 + a^2 m_\sigma^2 \left(\delta^{(1)} \sigma\right)^2 \right]
\]
\[
+ \ldots
\]

\[
\phi_k^{(2)}(\tau) = \int d\tau' G_k(\tau, \tau')(-\tau')^{2(\epsilon - \eta)} J_k(\tau')
\]

\[
G_k(\tau, \tau') = \frac{\pi}{2} \Theta(\tau - \tau')(\tau \tau')^{1/2+\eta-\epsilon}
\]
\[
\times \left[J_\nu(-k\tau)Y_\nu(-k\tau') - J_\nu(-k\tau')Y_\nu(-k\tau) \right]
\]
\[
\nu \cong 1/2 + 3\epsilon - \eta
\]
Calculation of $\zeta_\sigma^{(2)}$

\[J(\tau, \vec{x}) = a^2 \kappa^2 m_\sigma^2 \left(\delta^{(1)} \sigma \right)^2 - 2\kappa^2 \left(\delta^{(1)} \sigma' \right)^2 \]

\[+ 2\kappa^2 \mathcal{H} (1 + \eta - \epsilon) \Delta^{-1} \partial_i \left(\delta^{(1)} \sigma' \partial^i \delta^{(1)} \sigma \right) \]

\[+ 4\kappa^2 \Delta^{-1} \partial_\tau \partial_i \left(\delta^{(1)} \sigma ' \partial^i \delta^{(1)} \sigma \right) \]

\[- \mathcal{H} (1 + 2\epsilon - 2\eta) \Delta^{-1} \gamma' + \Delta^{-1} \gamma'' \]

\[+ \text{ inflaton contributions} \]

\[\gamma = -3\kappa^2 \Delta^{-1} \partial_i \left(\partial^k \partial_k \delta^{(1)} \sigma \partial^i \delta^{(1)} \sigma \right) \]

\[- \frac{\kappa^2}{2} \left(\partial_i \delta^{(1)} \sigma \partial^i \delta^{(1)} \sigma \right) + \cdots . \]
Large Scale $\zeta^{(2)}_{\sigma}$

★ The leading contribution to $\zeta^{(2)}_{\sigma}$ on large scales:

$$
\zeta^{(2)}_{\sigma} \equiv \frac{\kappa^2}{\epsilon} \int_{-1/a_i H}^{\tau} d\tau' \left[\frac{\left(\delta^{(1)} \sigma' \right)^2}{\mathcal{H} (\tau')} \right]
- \frac{\mathcal{H} (\tau')^2}{\mathcal{H} (\tau)^3} \left(\left(\delta^{(1)} \sigma' \right)^2 - a^2 m_{\sigma}^2 \left(\delta^{(1)} \sigma \right)^2 \right)
$$

★ The result is manifestly local consistent with the results of other authors.\(^a\)

★ We explicitly identify the error in previous calculations which leads to a nonlocal result.

Part 4: Nongaussianity and Constraints

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation
Generating ζ

★ The gauge invariant curvature perturbation:

$$\zeta = \zeta^{(1)} + \frac{1}{2}\zeta^{(2)} \sim \zeta^{(1)} + \frac{3}{5} f_{NL} (\zeta^{(1)})^2$$

★ The first order curvature perturbation $\zeta^{(1)}$ is the usual scale invariant and conserved quantity.

★ The second order curvature perturbation is split into

$$\zeta^{(2)} = \underbrace{\zeta^{(2)}_{\varphi}}_{\propto (2\eta - 6\epsilon)(\zeta^{(1)})^2} + \underbrace{\zeta^{(2)}_{\sigma}}_{\text{amplified by instability}}$$

★ After the symmetry breaking completes only one field is dynamical so ζ is conserved on large scales for $t > t_\star$.

– p.34/52
Tachyon Bispectrum

★ The bispectrum is dominated by the tachyon part of ζ:

$$\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle \approx \frac{1}{2^3} \langle \zeta^{(2)}_{\sigma,k_1} \zeta^{(2)}_{\sigma,k_2} \zeta^{(2)}_{\sigma,k_3} \rangle$$

$$\equiv (2\pi)^{-3/2} B(k_i) \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)$$

★ Should be compared to the usual inflationary spectrum:

$$\langle \zeta^{(1)}_{k_1} \zeta^{(1)}_{k_2} \rangle = P_\varphi(k_i) \delta^3(\vec{k}_1 + \vec{k}_2)$$

where $P_\varphi^{1/2} \sim (2\pi) 10^{-5} k^{-3/2}$.

★ Nonlinearity parameter f_{NL}:

$$B(k_i) \equiv -\frac{6}{5} f_{NL} \left[P_\varphi(k_1) P_\varphi(k_2) + \text{perms} \right]$$

★ Demand that $|f_{NL}| < 100$.

– p.35/52
The Linearity Parameter

★ The two-point function also gets contributions from the tachyon:

\[
\langle \zeta_{k_1} \zeta_{k_2} \rangle \approx \langle \zeta^{(1)}_{k_1} \zeta^{(1)}_{k_2} \rangle + \frac{1}{2^2} \langle \zeta^{(2)}_{\sigma,k_1} \zeta^{(2)}_{\sigma,k_2} \rangle
\]

★ Should compare the **second order tachyon spectrum** to the **first order inflaton spectrum**:

\[
\frac{1}{2^2} \langle \zeta^{(2)}_{\sigma,k_1} \zeta^{(2)}_{\sigma,k_2} \rangle \equiv S(k_i) \delta^3(\vec{k}_1 + \vec{k}_2)
\]

★ Define the **linearity parameter**:

\[
f_L \equiv \frac{S(k_i)}{P_\phi(k_i)}
\]

★ Demand that \(|f_L| < 1\) so that the spectrum is due to the inflaton.
If m_σ^2 varies slowly:

- Tachyon is almost massless throughout inflation.
- Instability sets in very slowly.
- Have $N_* \gg 1$.
- Tachyon fluctuations, bispectrum are scale invariant and can have $|f_{NL}| > 1$.

If m_σ^2 varies quickly:

- Tachyon curvature perturbation is blue ($n = 4$).
- $\zeta^{(2)}_\sigma$ gets contributions from all tachyon modes in the instability band.
- Preheating distorts the power spectrum on small scales: strongest constraint from $|f_L| < 1$.
Hybrid Inflation: $\nu / M_p = 10^{-3}$

- Spectral index: $n - 1 \sim 1.84g$.
Hybrid Inflation

- The size of the excluded region depends sensitively on v/M_p.

- Larger effect for smaller v/M_p since the amplification goes like $v/H \sim M_p/v$.

![Diagram showing excluded and invariant regions](image)
Inverted Hybrid Inflation

- Simple modification of hybrid inflation which gives spectral index $n < 1$.
- SUSY, string theory embeddings of hybrid inflation are more similar to inverted model.
- Inverted hybrid inflation potential:

$$V(\varphi, \sigma) = \frac{\lambda}{4}(\sigma^2 + v^2)^2 - \frac{g^2}{2} \varphi^2 \sigma^2 - \frac{m_\varphi^2}{2} \varphi^2$$

- Obtained from hybrid inflation by flipping the sign of m_φ^2, v^2, g^2.
- Potential is unbounded from below without the addition of a $\tilde{\lambda} \varphi^4$ term...
Inverted vs. non-Inverted Model

- Potential along inflationary trajectory:

\[V_{\text{inf}} = \frac{\lambda v^4}{4} \pm \frac{1}{2} m_\varphi^2 \varphi^2 \]

Hybrid Inflation

- \(n > 1 \)
- Inflaton rolls towards the flat point \(\varphi = 0 \).
- Still have slow roll as \(\varphi \to \varphi_c \).
- Possible to have a light tachyon, scale invariant fluctuations.

Inverted Hybrid Inflation

- \(n < 1 \)
- Inflaton rolls away from the flat point \(\varphi = 0 \).
- As \(\varphi \to \varphi_c \) the inflaton need not be slowly rolling.
- Requires more tuning to keep the tachyon light.
Inverted Hybrid Inflation

* Constraints weakened: new allow regions correspond to fast roll through the instability point $\varphi = \varphi_c$.
Part 5: Implications for Brane Inflation

1. Inflation, Fluctuations and Gaussianity
2. Hybrid Inflation and Tachyonic Preheating
3. Cosmological Perturbation Theory
4. Nongaussianity and Constraints
5. Implications for Brane Inflation
Brane Inflation

- **Brane inflation** is a particularly appealing embedding of hybrid inflation into string theory.
- Inflation is driven by potential between $D_3/D_\bar{3}$ which are parallel to our 3 large dimensions and separated in the extra dimensions.
- **Inter-brane separation**, y, plays the role of the inflation.
- Lightest stretched string mode between the branes becomes tachyonic at $y \sim l_s$ (open string tachyon).
- **Open string tachyon** plays the role of the waterfall field σ.
- Tachyon in the spectrum signals instability of the system to annihilate.
Flux Compactifications

- Realistic models of brane inflation are embedded in GKP-KKLT flux vacua.
- Complex structure moduli and dilaton are fixed by addition of fluxes of the NS-NS and R-R gauge fields.
- Kahler modulus fixed by nonperturbative effects (e.g., gaugino condensation).

Compactification has warped throat regions where exponentially large hierarchy can be generated from a small hierarchy in the ratio of fluxes.
In the throat the geometry is locally $\text{AdS}_5 \times S^5$:

$$ds^2 \simeq e^{-2k|y|} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2 + y^2 d\Omega_5^2.$$

Geometry is identical to Randall-Sundrum I.

Set-up: mobile D3 falling down the throat from the UV $(y = 0)$ end towards a fixed D3 in the IR $(y = y_i > 0)$ end.

Exchange of massless gauge fields gives rise to a Coulomb potential between the branes.

The large warping $a_i = e^{-ky_i} \ll 1$ flattens inter-brane potential.
The η-problem

- Coulomb potential between the branes:

 $$V = a_i^4 \tau_3 \left[1 - \frac{1}{N} \left(\frac{\varphi_0}{\varphi} \right)^4 \right]$$

 is extremely flat.

- Unfortunately consistent introduction of volume stabilization introduces an $\mathcal{O}(H)$ contribution to the inflaton mass.

- Can salvage inflation to adding some corrections to the superpotential which cancel the large inflaton mass coming from volume stabilization.

- Inflation is fine tuned in this scenario.\(^a\)

\(^a\)Kachru et al., JCAP 0310, 013 (2003); Burgess et al., JHEP 0409, 033 (2004).
The End of Inflation

★ Lightest stretched string mode between the branes has mass:

\[M_T^2 = \frac{M_s^2}{2} \left[\frac{(M_s y)^2}{(2\pi)^2} - \frac{1}{2} \right] \]

which becomes tachyonic at \(y \lesssim l_s \).

★ Brane annihilation is described by the tachyon condensation:

- Field theory about the tachyon false vacuum \(T = 0 \) describes the coincident brane-antibrane system
- The tachyon rolls to \(|T| = \infty \) and field theory about this point describes the vacuum with no brane-antibrane

Brane Inflation and Nongaussianity

★ Brane inflation is similar to inverted hybrid inflation:

\[V_{\text{inf}} = V_0 \left[1 - \frac{1}{N} \left(\frac{\varphi_0}{\varphi} \right)^4 - \frac{\beta}{3} \left(\frac{\varphi}{M_p} \right)^2 \right] \]

★ Some differences:

- tachyon field is complex
- the tachyon potential is minimized at \(T = \pm \infty \):
 \[V(T, y = 0) = \tau_3 e^{-|T|^2} \]
- tachyon DBI action: \(^a\)

\[\mathcal{L}_{\text{tac}} = -V(T, y) \sqrt{1 + M_s^{-2} |\partial_\mu T|^2} \]

Excluded Regions

★ Dimensionally reduce the DBI action on AdS_5 and expand to quadratic order in fields.
★ Match reduced action to inverted hybrid inflation to estimate g, λ, v in terms of stringy quantities g_s, M_s, a_i.
Conclusions

★ Variation of the second order curvature perturbation from tachyonic preheating puts interesting constraints on hybrid inflation.

★ Strongest constraints for small symmetry breaking scale $v/M_p \ll 1$.

★ Constraints on inverted hybrid inflation are weaker since it is harder to keep the tachyon light during inflation.

★ Nontrivial constraints on KKLMMT.
Future Directions

- This model leads to domain walls which will overclose the universe.
- Generalization to D-term inflation, D_3/D_7, ...
- Interesting hint of excess power on small scales in the CBI and ACBAR CMB data...