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Abstract

We provide a complete set of Feynman rules for fermions using two-component spinor
notation. These rules are suitable for practical calculations of cross-sections, decay rates, and
radiative corrections in the Standard Model and its extensions, including supersymmetry.
A unified treatment applies for massless Weyl fermions and massive Dirac and Majorana
fermions. Numerous examples are given.
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion
quantum numbers and interactions. According to the modern understanding of the electroweak
symmetry, the fundamental degrees of freedom for quarks and leptons are two-component Weyl
fermions that transform as irreducible representations under SU(2), xU (1)y . Despite this, most
pedagogical treatments and practical calculations in high-energy physics continue to use the old-
fashioned four-component Dirac notation, which combines distinct irreducible representations
of the symmetry groups. In some cases, this inertia is understandable; for example in pure
QED and QCD calculations, parity violation is not relevant. There is also a certain perceived
advantage to familiarity. However, as we progress to phenomena at and above the scale of
electroweak symmetry breaking, it seems increasingly natural to employ two-component fermion
notation, in harmony with the irreducible transformation properties dictated by the physics.
One occasionally encounters the misconception that two-component fermion notations are
somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a
lack of examples of calculations using two-component language in the pedagogical literature.
In this paper, we seek to dispel this idea by presenting Feynman rules for fermions using two-
component spinor notation, intended for practical calculations of cross-sections, decays, and
radiative corrections. It uses a unified framework that applies equally well to Dirac fermions
like the Standard Model quarks and leptons, to Majorana fermions like the MSSM neutralinos,
to Weyl fermions appropriate for the massless limit of Standard Model neutrinos, or to any

combination thereof.

2 Essential conventions and notations

We begin with a discussion of necessary conventions. The metric is taken' to be:

gl“’ :dia'g(+7_’_7_)’ (21)

!The published version of this paper uses the (4, —, —, —) metric. An otherwise identical version, using the
(=, 4+, +,+) metric favored by one of the authors, may be found at http://zippy.physics.niu.edu/rules.html.
It can also be constructed by changing a single macro within the LaTeX source file, in an obvious way. You can
tell which version you are presently reading from equation (2.1).




where p,v,p... =0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. posi-
tions and momenta) are defined with indices raised, and covariant four-vectors (e.g. derivatives)

with lowered indices:

o= (t; &), (2.2)
' = (E; p), (2.3)
9, = (8/0t; V), (2.4)

in units of ¢ = 1. The totally antisymmetric pseudo-tensor ¢#*?? is defined such that
12 = —e)05 = +1. (2.5)

The irreducible building blocks for fermions are fields that transform either under the
left-handed (3,0) or the right-handed (0, ) representation of the Lorentz group. Hermitian
conjugation interchanges these two representations. A massive Majorana fermion field can be
constructed from either representation; this is the spin-1/2 analog of a real scalar field. The

Dirac field combines two equal mass two-component fields into a reducible representation of the

form (%, 0) & (0, %), this is the spin-1/2 analog of a complex scalar field. It is also possible to
use four-component notation to describe Majorana fermions by imposing a reality condition on
the spinor in order to reduce the number of degrees of freedom in half. However, in this paper,

we shall focus primarily on two-component spinor notation for all fermions. In the following,

(%,0) spinors carry undotted indices o, f,... = 1,2, and (0, %) spinors carry dotted indices
&, B,...=1,2.

To be more specific, let [1]

M = exp(—3if,,s") ~ T —i6-J —i{-K (2.6)

be the spin-1/2 representation of the Lorentz group, where J and K are the generators of

rotations and boosts, respectively. In the (%,0) representation J = &/2 and K = —i6/2,
while in the (0, %) representation, J = &/2 and K = i6/2. M is a matrix labeled by spinor

indices as M,%. A generic two-component (%, 0) spinor is denoted by 1),, and transforms as

1

o — MyP1ps. The Lorentz group transformation matrix in the (0, ) representation is given

by M*; this is a matrix labeled as (M *)dB. A two-component (0, %) spinor is denoted by 14,
and transforms as g — (M*)dﬂ.q/;ﬂ'.
;From the definition of the dotted indices, we see that the (0, 5) and (3, 0) representations

can be related by complex conjugation. That is, if 14 is a (0, %) fermion, then (14)* transforms

1

as a (5,0) fermion. This means that we can describe all fermion degrees of freedom using only



fields defined as left-handed (%, 0) fermions 1), and their conjugates. We will usually combine
spinors to make Lorentz tensors, so it is useful to regard 14 as a row vector, and ¢, as a column

vector, with:
'@Zo'c = (Tzl)a)T' (27)

The Lorentz transformation property of 14 can then be obtained as (1o)7 — (15)T(M1)%,,
where (MT)8, = (M*),? is simply a statement of the well known definition of the hermitian
adjoint matrix as the complex conjugate transpose of the matrix. We will continue to use
the dotted-index notation in association with the bar over the symbol (instead of a hermitian
conjugation symbol).

There are two additional spin-1/2 irreducible representations of the Lorentz group, rep-
resented by the matrices (M~')T and (M~")'. But these are equivalent representations to

the (1,0) and the (0, 1) representations, respectively. The spinors that transform under these

27 ’2
representations have raised spinor indices. The spinor indices are raised and lowered with the
two-index antisymmetric tensor with components €2 = —€?! = €3; = —€13 = 1, and the same

set of sign conventions for the corresponding dotted spinor indices. Thus
Yo =€, P =Py, da=eu; P, Pt =¥y (2.8)

The e-tensor satisfies:

eape’’ = —070% + 8507, €age’ = —040% + 535";, (2.9)
from which it follows that:
€ape’? = Pegy = 07, edBeB&/ = eﬁBeBd = (52 . (2.10)

To construct Lorentz invariant Lagrangians and observables, one needs to first combine
products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz

vectors are obtained by introducing the sigma matrices O af and Ez‘ﬁ defined by

_ 1 0 B 0 1
G0=90=\p 1) GI=71=1\1 o)

— 0 — _ 1 0
0'2:—0'2:(2. OZ>, 0'3:—0'3:<0 _1> (211)

The o-matrices above have been defined with a lower (covariant) index. We also define the

corresponding quantities with upper (contravariant) indices:

ot =g"o, = (I; &), ot =g"o, = (Iz; &), (2.12)



where I, is the 2 x 2 identity matrix. The relations between o* and o* are

oh. = eagedﬁﬁ“m , gHae = eaﬂedﬁagﬁ- , (2.13)
eaﬁagd = edBE“’BO‘, edféagﬁ- = eq50M Y. (2.14)

When constructing Lorentz tensors from fermion fields, the heights of spinor indices must
be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, indices contracted like

(07

@ and & (2.15)

can be suppressed. In all spinor products given in this paper, contracted indices are always to

have heights that conform to eq. (2.15). For example,

&n = £a, (2.16)
& = &all”, (2.17)
oty = £,o" Y ng, (2.18)
got = €0 i (2.19)

The behavior of the spinor products under hermitian conjugation (for quantum field operators)

or complex conjugation (for classical fields) is as follows:

(&m' =g, (2.20)
(Eot)t = notE, (2.21)
(¢ota¥n)T = o’ o€ . (2.22)

Note that these relations are applicable both to anti-commuting and to commuting spinors.
The following identities? can be used to systematically simplify expressions involving prod-

ucts of o and @ matrices:

o7 = 25087, (2.23)
(0" + "5, = 29"65 (2.24)
[oo” +770"%; = 2gﬂ”5g : (2.25)
o'V oP = g"aP — gMTY + gl + i P T, (2.26)
ato’al = g"ol — g'Po¥ + g"Pot — it oy . (2.27)

>The Fierz identities of eqs. (2.23) and (2.38)(2.40) and the identities (2.26), (2.27), (2.29), (2.30) involving
the 4-dimensional € tensor are not valid unless p is a Lorentz vector index in exactly 4 dimensions. In d # 4
dimensions, as used for loop amplitudes in dimensional regularization and dimensional reduction schemes, the
necessary modifications are given in Appendix A.



Computations of cross sections and decay rates generally require traces of alternating products

of o and @ matrices:

Trlo#5"] = Trfo"0"] = 29", (2.28)
Tr[o"5"0"T"] = 2(¢""9"" — 9" g™ + ¢""g"" +1ePF) (2:29)
Trf5#0"570"] = 2 (¢" g7 — 9" g"" + 9" g"? — ieh"P") . (2.30)

Traces involving a larger even number of ¢ and @ matrices can be systematically obtained from
eqs. (2.28)-(2.30) by repeated use of egs. (2.24)-(2.25) and the cyclic property of the trace.
Traces involving an odd number of ¢ and @ matrices cannot arise, since there is no way to
connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion fields, we of-
ten must deal with products of commuting spinor wave functions that arise when evaluating
the Feynman rules. In the following expressions we denote the generic spinor by z;. In the
various identities listed below, an extra minus sign arises when manipulating a product of

anti-commuting fermion fields. Thus, we employ the notation:

(—1)‘4 _ +1, commutlng §p1n0r?, (2.31)
—1, anticommuting spinors.

The following identities hold for the z;:

212y = —(—1)Az2z1 (2.32)
Z17 = —(—1)2 %7, (2.33)
z10M 29 = (—1)‘4226“,21 (2.34)
2100 29 = —(—I)AzQU”E"zl (2.35)
Ziot0" 7 = —(—1) %5 0" 7, (2.36)
72151075 20 = (—1) 20”5 0t 7 (2.37)

and so on.
Finally, we note that eq. (2.23) can be used to derive a series of Fierz identities for two-

component spinor products. For example,

%(Zlﬂuig)(igau&l) = (—1)A(z1Z4)(2322) (238)
%(515'“22)(235u24) = (—1)A(2123)(Z422) (239)
3(210"2:) (230,21) = (=1)"(2123) (24 22) (2.40)



Additional Fierz identities can be found in Appendix A of ref. [6].
Many further identities are listed in Appendix A. We also direct the reader’s attention to
Appendix B, which gives a detailed correspondence between two-component spinor and four-

component spinor notations.

3 Properties of fermion fields and external-state wave functions
3.1 A single two-component fermion field

We begin by describing the properties of a free neutral massive anti-commuting spin-1/2 field,

denoted &4(z), which transforms as (3,0) under the Lorentz group. The field ¢, therefore

corresponds to a Majorana fermion. The Lagrangian density is:
L = if5"9,¢ — tm(é€ + €8). (3.1)
On-shell, ¢ satisfies the free-field Dirac equation,
i 9,€5 = mE™. (3.2)

Consequently, £, can be expanded in a Fourier series:

3 , .
o) = Z/ (27T)3/gl(;)Ep)1/2 [wa(ﬁ,s)a(ﬁ,s)e—lp-x + yo (7, s)a! (P, S)elp-:v] : (3.3)

where E, = (|p]* + m?)1/2, and the creation and annihilation operators af and a satisfy anti-

commutation relations:
{a(ﬁ, 5)7aT(ﬁ’78’)} = 53(5_5,)555’ ) (3~4)

and all other anticommutators vanish. It follows that

3 . .
HOEINIEDY / (%)3/3(;’%)1/2 (745, 5)a! (B, 5)e™ " + Jal(B, s)a(B, s)e ] . (3.5)

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention
|, s) = (2m)°% (2Ep) /%l (5,5) |0) (3.6)

so that (P, s|p’,s') = (2m)3(2Ep)8* (5 — P’ )dss. Therefore,

Ta(B,8)e” P, (0] €a(@) 1B, 5) = Fa(F, 8)e™ P, (3.7)
Ya(F,5)e™" (B, 5] €a(2) |0) = 24 (D, 5)e™". (3.8)

(0] €a(®) P, )
(D, 5| £a () |0)



It should be emphasized that £,(x) is an anticommuting spinor field, whereas z, and y, are
commuting two-component spinor wave functions. The anticommuting properties of the fields
are carried by the creation and annihilation operators.

Applying eq. (3.2) to eq. (3.3), we find that the z, and y, satisfy momentum space Dirac

equations. These conditions can be written down in a number of equivalent ways:

g

(p-0) P wg = my® (p-0)50° = ma (3.9)
(p0)o57° = —1ya (p-2)*ys = —mz* (3.10)
2 (p-0) 5 = —mys Ja(p-o)* = —ma” (3.11)
Za(p-o)* = my” Y (p-0) .5 = miy - (3.12)

Using the identity (p-7)(p-o) = (p-0)(p-&) = p?, one can quickly check that both z, and y,

2 (or equivalently, p° = E,). We will later see

must satisfy the mass-shell condition, p?> = m
that egs. (3.9)-(3.12) are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. In order to
construct the spin-1/2 helicity states, consider a basis of two-component spinors x, that are

eigenstates of %&’-ﬁ, i.e.,

%Er’-ﬁx)\:)\x)\, A::I:%. (3.13)
If p is a unit vector with polar angle 6 and azimuthal angle ¢ with respect to a fixed z-axis,
then the two-component spinors are3
cos g —e sgin g
X1/2(13) = ) ) X_1/2(13) = . (3.14)
e'? sin g oS g
The two-component helicity spinors satisfy:*
X_a(B) = 2Xexi (D), (3.15)
Xa(=B) = —22e**x_,(B) (3.16)

where € is the 2 x 2 matrix whose matrix elements are €,5. Alternatively, we could construct
spin states where the spin is quantized in the particle’s rest frame along a fixed axis, pointing
along the unit three-vector §. If we denote x; to be an eigenstate of %6” -§, then we may use

the above formulas, where the angles 6 and ¢ are now the polar and azimuthal angles of §. In

®One can construct x, (p) from x, (£) by employing the spin-1/2 rotation operator corresponding to a rotation
from the 2-direction to the direction of p (characterized by polar angle # and azimuthal angle ¢). More explicitly,
X, (D) = exp (—i0N-6/2) x,(£), where i = (—sin @, cos ¢, 0).

“Note that —p is a unit vector with polar angle m — § and azimuthal angle ¢ + 7 with respect to the fixed
z-axis.



relativistic scattering processes, it is usually more convenient to employ helicity states. Note
that for massless particles, there is no rest frame and one must use helicity states.

For fermions of mass m # 0, it is possible to define the spin four-vector s*, which satisfies
s:p=0and s-s = —1. In the rest frame of the particle, s = 2X(0; §), where A = +1/2 [-1/2]
corresponds to spin-up [spin-down] with respect to the spin quantization axis that points in the

direction of the unit three-vector 8. For helicity states, the spin four-vector is defined as

= (2N (7; Bp) (3.17)

where 2\ = +1 is twice the spin-1/2 particle helicity. Note that in the rest frame, s* = 2X (0; p),
whereas in the high energy limit (where E > m), s# = 2X\p*/m + O(m/FE). For a massless
fermion, the spin four-vector does not exist (there is no rest frame). Nevertheless, one can
obtain consistent results by working with massive helicity states and taking the m — 0 limit
at the end of the computation. In this case, we can simply use s# = 2A\p#/m + O(m/E); in
practical computations the final result will be well-defined in the zero mass limit.

The two-component spinors z and y can now be given explicitly in terms of the y, defined
in eq. (3.14):

Zo (P, N) = VPO Xy » z(,\) = —2\x" \Vp7, (3.18)

Ya(B, ) = 20/P0 X_, y*(B,\) = x\Vp 7, (3.19)
or equivalently

jd(ﬁ’A) :_2)\Vp'EX_,\’ jd(ﬁ’A) :Xl-\vp'o—a (320)

7B = VDT Xy s Ja(BN) =2\ \V/po. (3.21)

In the above equations, p° = E, is satisfied and’®

Ep+m—&-§
Jpo=2 9P (3.22)
2(Ep +m)
E 75
Vp o= Lptrm+op . (3.23)
2(Ep +m)

The phase choices employed in egs. (3.18)—(3.21) are conventional and consistent with the
phase choices for four-component spinor wave functions [see Appendix B]. We again emphasize

that in eqgs. (3.18)—(3.21), one may either choose x, to be an eigenstate of &-p (which yields

’The matrix square root of p-o [or p-o] as defined here is the unique hermitian matrix with non-negative
eigenvalues whose square is equal to p-o [or p-7]. One can check the validity of egs. (3.22) and (3.23) by squaring
both sides.

10



the helicity spinor wave functions), or choose x, to be an eigenstate of &-3, where the spin is
measured in the rest frame along the quantization axis §.

The following equations can now be verified by explicit computation:

(5-0)% x5 = G5, (s-a)aﬁ-gﬂ =—Iq , (3.24)
(s-a)aﬁa_cﬂ = Yo , (s-E)dﬁyg =z , (3.25)
z(s:0) 5 = Vg Ja(s-7) = 2P | (3.26)
Ta(s-7)Y =4f | Y (s:0) 4 = —T5 - (3.27)

The consistency of these results can be checked as follows. First, from each of egs. (3.24)—(3.27)
one finds that

(5:0)aa(s 7)Y = =67, (S-E)da(s-a)aB = —(52‘. (3.28)

JFrom eqs. (A.1) and (A.2) it follows that s-s = —1, as required. Second, if one applies

p-csoT+sopo=2-s, pTso+sopo=2-s, (3.29)

to egs. (3.9)-(3.12) and egs. (3.24)-(3.27), it follows that p-s = 0.
It is useful to combine the results of egs. (3.9)-(3.12) and egs. (3.24)-(3.27) as follows:

(p" — msﬂ)agﬁxﬁ =0, (P — msu)o—gﬁ,jﬁ. —0, (3.30)
(p" +ms")5Pys =0, (pu + msu)ggﬁgﬂ' ~0, (3.31)
%0 (P —msy) =0, zaoy (P — mst) =0, (3.32)
yaagg(pu +msy,) =0, Qaﬁgﬁ(p“ +mst) =0. (3.33)

The above results are applicable only for massive fermions (where the spin four-vector s* exists).
However, in the case of a massless fermion we can obtain valid results for helicity spinors simply
by setting s* = 2Ap*/m and then taking the m — 0 limit. In particular, replacing ms# = 2\p#
in egs. (3.30)—(3.33), and using the results of egs. (3.9)-(3.12) [before taking the m — 0 limit]
yields
(I1+2MN)z(p,A) =0, (1 -2\)y(p,\) =0, (3.34)

where ) is the helicity. Finally, we take the m — 0 limit. The meaning of the end result is clear;
for massless fermions, only one helicity component of = and ¥ is non-zero. Applying this result
to neutrinos, we find that massless neutrinos are left-handed (A = —1/2), while anti-neutrinos
are right-handed (A = +1/2).

As a further check on the consistency of the explicit forms of eqs. (3.18)—(3.21), one may
apply the results of eq. (3.24) to obtain

$T\/D0 Xy = VDT Xy - (3.35)

11



Using /p-0+/p-@ = m, one finds:
VP o(5:T)/P0 x\ =mx, - (3.36)

Now eq. (3.36) can be independently verified by using using egs. (3.13) and (3.22) and the
explicit form for s* [eq. (3.17)]. (Keep in mind that s* implicitly includes a factor of 2X.) That
is, in eq. (3.36), the same X occurs implicitly in s* and explicitly in x). Since s* changes sign

when A\ changes sign, we can generalize eq. (3.36) to obtain the relation:

1
3|1+ VP (s D)VEo| Xy = Swa (3.37)

which will be useful shortly. In eq. (3.37), the A implicit in the definition of s is fized.
Having defined explicit forms for the two-component spinor wave functions, we can now

write down the spin projection operators. For massive fermions, they are:

xa(_’v )‘)jﬁ(_’v )‘) = %(pu msu)a K (338)
g BNy (BN = 50" +ms)T,”, (3.39)
20(B, Ny’ (B, 0) = § (md” — [s:0p-7la”) | (3.40)
5 (B, N3(B, ) = § (md%; + [s-7p-0]*y) | (3.41)
or equivalently,
4B, N’ (B, A) = (0 — ms*)ay” (3.42)
Yo (P, ) 75'(_: A) = %(pu —{—msu)auﬂ ) (3.43)
Ya(B, 5)2° (B, 5) = =1 (mds” + [s-0p-71a") (3.44)
34BN (5,0 = — 5 (mo%; — [s-7p-0]*) (3.45)

The derivation of these results is straightforward. For example, with both spinor indices in the

lowered position,

z(5, NZ(P,\) = VD-ox,xkvpo
1
% p-o {1 + E\/p-as-ﬁ p-a} Zx/\,x;m/p-a
AI

1
= % [p-a + —p-as-Ep-o]
m
=1[po—mso]. (3.46)

In this derivation, we made use of eq. (3.37) and the completeness of the x,, and simplified the
product of three dot-products by noting that p-s = 0 implies that s-@ p-c = —p-7 s-0. The

other spin projection formulas can be similarly derived.

12



For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions.

Setting s = 2Ap/m in the above formulas and letting m — 0 yields

2a(B, N3 (B,A) = (5 — Np-0gg, (BN (B0 = (5 — Vp-a™?,  (347)
g BNy (B, A) = (5 + Npa*?, Ya(B, NG5 (5, N) = (5 + Np-o,  (3.48)
za(P, Ny’ (5, ) = 0, Yo (B, N2’ (5, )) = 0, (3.49)
(B, N3P, A) = 0, 24 (B, N (5, A) = 0 (3.50)

Having listed the projection operators for definite spin projection or helicity, we may now
sum over spins to derive the spin-sum identities. These arise when computing squared matrix
elements for unpolarized scattering and decay. There are only four basic identities, but for
convenience we list each of them with the two index height permutations that can occur in
squared amplitudes by following the rules given in this paper. The results can be derived by
inspection of the spin projection operators, since summing over A = +1/2 simply removes all

terms linear in the spin four-vector (which is proportional to \).

;wa(ﬁa )‘)i‘ﬁ(ﬁa )‘) :p‘O'aB, ;ja(ﬁ’ A)xﬂ(ﬁ’ >‘) :p'Edﬁa (351)
;gd(ﬁ, Ny’ (B, A) = p-7*’, ;ya(ﬁ, Nis(BN) =po,;,  (3.52)
> xa(B Ny’ (B, A) = mda”, > ya(B,5)2” (B, N) = —md.”,  (3.53)
A A

;yd(ﬁ, Nz (5, \) = md®;, ;fd(ﬁ, Nys(BA) = —md®;.  (3.54)

These results hold for both massive and massless spin-1/2 fermions.

3.2 Fermion mass diagonalization and external wave functions in a general
theory

Consider a collection of free anti-commuting two-component spin-1/2 fields, éai(m), which trans-
form as (%, 0) fields under the Lorentz group. Here, « is the spinor index, and 7 labels the distinct

fields of the collection. The free-field Lagrangian is given by
L= igiﬁuauéi — IMUEE; — %Mz’jgigj, (3.55)

where

Note that M"Y is a complex symmetric matrix, since the product of anticommuting two-

component fields satisfies ézéj = éjé, [with the spinor contraction rule according to eq. (2.15)].
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We can diagonalize the mass matrix and rewrite the Lagrangian in terms of mass eigenstates
¢qi that have corresponding real non-negative masses m;. To do this, we introduce a unitary

matrix

& = Q¢ (3.57)

and demand that MijQiijg =m0 (no sum over k), where the m;, are real and non-negative.

Equivalently, in matrix notation with suppressed indices,
QF' M Q = m = diag(my, ms, .. .). (3.58)

The Takagi factorization of linear algebra [7] states that for an arbitrary complex symmetric
matrix M, one can indeed always find such a (complex) unitary matrix Q. To compute the

values of the diagonal elements of m, one may simply note that
QTMMTQ" = m?. (3.59)

(This is an illustration of that fact that since MM is hermitian, it can be diagonalized by a
unitary matrix.) Thus, the diagonal elements of m are the non-negative square roots of the
corresponding eigenvalues of M M.

In terms of the mass eigenstates,
L= iéiﬁuaufi — %ml(fzé’, + 5@) . (3.60)

Each &,; can now be expanded in a Fourier series, exactly as in the previous subsection:

3 . .
gai(flf) = Z/ (27T)3/26l(2pEip)1/2 [xa(ﬁ, s)ai(ﬁa s)eilp.m +ya(ﬁ’3)a’;{(ﬁ’3)ew.m:| ’ (361)

]

where E;, = (|p]? + m%)l/ 2, and the creation and annihilation operators, a, and a; satisfy

anticommutation relations:

{ai(B, 5),al(F",5')} = 0°(F — F")0osr b - (3.62)

We employ covariant normalization of the one particle states, i.e., we act with one creation

operator on the vacuum with the following convention
B.5) = (2m)*/* (2E;p)'*al(7,5) 0) (3.63)

so that (plp’) = (27m)3(2Eip)8° (P — P").
Although the preceding mass diagonalization procedure will always work, there is a modi-

fication that is convenient when there are massive Dirac fermions carrying a conserved charge.

14



The key is to note that what we really need is a diagonal squared-mass matrix, so that denom-
inators of propagators will be diagonal. If x, is a charged massive field, then there must be an
associated independent two-component spinor field 7, of equal mass with the opposite charge.

They appear in the Lagrangian as:
L = ixa"0ux + ing"0un — M (xn + xn) (3.64)

Together, x and 7 constitute a single Dirac fermion. We can then write:

3 . :
Xao(z) = Z/ (27?)3/2d(§Ep)1/2 [:Ba(ﬁ, s)a(F, 8)e=P"T + yo (7, s)bt (P, S)elp-:v] ,  (3.65)

3 , :
Ne(z) = 2/ (27r)3/2d(§Ep)1/2 [:Ba(ﬁ, $)b(P, 8)e™P"C + yo (P, s)al (P, S)elp-:v] . (3.66)

where E,, = (|p]*> + m2)1/ 2 and the creation and annihilation operators, af, b, @ and b satisfy

anticommutation relations:

{a(P,5),al (B, ")} = {b(F,5), 0 (5",8")} = (B — §')ds.er (3.67)

and all other anticommutators vanish. We now must distinguish between two types of one

particle states, which we can call fermion (F') and anti-fermion (A):

|7, 5; F) = (2n0)3/2(2E,) Y201 (5, 5) |0) | (3.68)
15,5, A) = (2n)3/2(2E,) %4t (5, 5) |0) (3.69)

Note that both x(z) and 7(z) can create |p, s; F') from the vacuum, while y(z) and n(z) can

create |p, s; A). The one-particle wave functions are given by:

e*ip-x, <0|>Za(x) |ﬁ’S7F> :gd(ﬁa s)efipw’ 3.70
e’ (F; P, 5| a(x) [0) = Z4(P, s)e™*,
e—ip-x’ <0|77a($) |ﬁ’S7A> :yd(_"s)e_ip.xa

6ip.x7 <A7ﬁ75|)2a($)|0> :jd(ﬁ: S)Gip.m7

3.71
3.72
3.73

~—~ o~ o~
—_— ~— ~— ~—

and the eight other single-particle matrix elements vanish.

More generally, consider a collection of such free anti-commuting charged massive spin-1/2
fields, which can be represented by pairs of two-component fields Xqi(x), 7qi(z), where 74i(z)
transforms in a (possibly reducible) representation of the unbroken symmetry group that is the

complex conjugate of the representation of xo;(z). The free-field Lagrangian is given by
L =i 9% + i 7Oy — MY Sy — MR (3.74)

15



where M% is an arbitrary symmetric complex matrix, and M;; = (M%)* as before. We di-
agonalize the mass matrix by introducing eigenstates x; and 7; and unitary matrices L and
R,

o.— 1.k ho— Rk

Xi = Li" Xk » i = Ri"ng , (375)

and demand that MijLikRjg =m0 (no sum over k). In matrix form, this is written as:
LT"MR = m = diag(m, ms,...), (3.76)

with the m; real and non-negative. The singular-value decomposition of linear algebra states
that for any complex matrix M, there indeed exist such unitary matrices L and R. It follows

that:

LY(MMNYL* = m?, (3.77)
RY(MTM)R = m?. (3.78)

This illustrates the fact that since MM and M'M are both hermitian (these two matrices are
not equal in general, although they possess the same real non-negative eigenvalues), they can
be diagonalized by unitary matrices. The diagonal elements of m are therefore the non-negative
square roots of the corresponding eigenvalues of M M* (or MTM).

Thus, in terms of the mass eigenstates,
L = ix'a",xi + in'c" 0uni — mi(ximi + X'0") - (3.79)

The mass matrix now consists of 2 x 2 blocks (72 ngl) along the diagonal. More impor-
7

tantly, the mass matrix is diagonal with doubly-degenerate entries m? that will appear in the
denominators of the propagators of the theory. It describes a collection of Dirac fermions.5
The result of the mass diagonalization procedure in a general theory therefore always
consists of a collection of Majorana fermions as in equation (3.60), plus a collection of Dirac
fermions as in equation (3.79). This is the basis of the Feynman rules to be presented in the

next section.

50f course, one could always choose instead to treat the Dirac fermions in a basis with a fully diagonalized
mass matrix, as in equation (3.60), by defining &»;—1 = (xi + 771)/\/5 and &2 = i(x: — 771)/\/5 These fermion
fields do not carry well-defined charges, and are analogous to writing a charged scalar field ¢ and its oppositely-
charged conjugate ¢" in terms of their real and imaginary parts. However, it is rarely, if ever, convenient to do
so; practical calculations only require that the mass matrix is diagonal, and it is of course more pleasant to use
fields that carry well-defined charges.
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4 Feynman rules with two-component spinors
4.1 External fermion lines

Let us consider a general theory, for which we may assume that the mass matrix for fermions has
been diagonalized as discussed in the previous section. The rules for assigning two-component
external state spinors are then as follows. (From now on we suppress the momentum and spin

arguments of the spinor wave functions.)
e For an initial-state left-handed (3,0) fermion: z.
e For an initial-state right-handed (0, ) fermion: .
e For a final-state left-handed (3, 0) fermion: Z.
e For a final-state right-handed (0, §) fermion: y.

Note that, in general, the two-component external state fermion wave functions are distin-
guished by their Lorentz group transformation properties, rather than by their particle or an-
tiparticle status as in four-component Feynman rules. This helps to explain why two-component
notation is especially convenient for (i) theories with Majorana particles, in which there is no
fundamental distinction between particles and antiparticles, and (ii) theories like the Stan-
dard Model and MSSM in which the left and right-handed fermions transform under different
representations of the gauge group.

These rules are summarized in the following mnemonic diagram:

L (3,0) fermion

Initial State Final State

R (0,3) fermion

Figure 1: The external wave-function spinors should be assigned as indicated here, for initial-
state and final-state left-handed (3,0) and right-handed (0, ) fermions.

17



In contrast to four-component Feynman rules, the direction of the arrows do not correspond
to the flow of charge or fermion number. Nevertheless, the above choice is convenient—the
arrows of (%,0) fermions always point in the direction of their momenta while the arrows of
(0, %) fermions always point opposite to their momenta. These rules simply correspond to the
formulas for the one-particle wave functions given in eqgs. (3.7) and (3.8) [with the convention
that |p)s) is an initial-state fermion and (p), s| is a final-state fermion].

The rules above apply to any mass eigenstate two-component fermion external wavefunc-
tions. In particular, the same rules apply for the two-component fermions governed by the

Lagrangians of eq. (3.60) [Majorana] and eq. (3.79) [Dirac].

4.2 Fermion propagators

Next we turn to the issue of fermion propagators for two-component fermions. These are
the Fourier transforms of the free-field vacuum expectation values of time-ordered products of
two fermion fields. They are easily obtained by inserting the free-field expansion of the two-
component fermion field and evaluating the spin sums using the formulas given in egs. (3.51)
and (3.54). For the case of a single neutral two-component fermion field ¢ of mass m [see
eqs. (3.60)-(3.63)],

i

OTE@E0) O = e 5 raBNE (N = e pons (41)
OITE@E W) Ot = 5, ST G FN = o™, (12
& W) Orr = e S ralB AW TN = o mad”s (13
(O1TEH@)5(0) [0y = e 5 90 (50) = i, (4

where F'T indicates the Fourier transform from position to momentum space. These results have
an obvious diagrammatic representation, as shown in Figure 2. Note that the direction of the
momentum flow p* here is determined by the creation operator that appears in the evaluation
of the free-field propagator. Arrows on fermion lines always run away from dotted indices at a
vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction
of arrows, so it has one dotted and one undotted index. For this type of propagator, it is
convenient to establish a convention where p# in the diagram is defined to be the momentum

flowing in the direction of the arrow on the fermion propagator. With this convention, the two
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Figure 2: Feynman rules for propagator lines of a neutral two-component fermion. (The +ie
has been omitted for simplicity.)

p
<—
a il .
g .
P04 —ip-E’Ba
Z-m P _m?

Figure 3: This one rule summarizes the results of Fig. 2(a) and (b).

a B & B

—> o <" —eo >’
—imd,P —imédﬁ'

Figure 4: Fermion mass insertions can be treated as a type of interaction vertex, using the
Feynman rules shown here.

rules above for propagators of the first type can be summarized by one rule, as shown in Figure
3. Here the choice of the o or the & version of the rule is uniquely determined by the height of
the indices on the vertex to which the propagator is connected. These heights should always
be chosen so that they are contracted as in eq. (2.15).

The second type of propagator shown above does not preserve the direction of arrows, and
corresponds to an odd number of mass insertions. The indices on d,° and §% j are staggered as
shown to indicate that « or & are to be contracted with an expression to the left, while § or 5
are to be contracted with an expression to the right, in accord with eq. (2.15).

Mass insertions on fermion lines can instead be handled as interaction vertices, as shown
in Figure 4. By summing up an infinite chain of such mass insertions between massless fermion
propagators, one can easily reproduce the massive fermion propagators of both types.

It is useful to treat separately the case of charged massive fermions. Consider a charged
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Figure 5: Feynman rules for propagator lines of a charged two-component fermion.

Dirac fermion of mass m, which is described by two two-component fields x and 7, with a mass

term:

—Lmass = m(X"7 + 5(77) . (45)
Using the free field expansions given by egs. (3.65) and (3.66), and the appropriate spin-sums
legs. (3.51)—(3.54)], the two-component free-field propagators are easily obtained:

1

(01 Tx0()%50) ) = 01 T )5 0) 0 = 55 0,5 (46)
O1 TN ) O = O T ()0 () D)y = 5 ™, (47)
(01Tl (1) O)x = O1 T (1) Oy = 5 m 8. (438)
(01T ()15 ) = (01T (@) 0) [0y = 5= m 0% (4.9)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.
These results again have a simple diagrammatic representation, as shown in Figure 5. (Here we
have presented the results with the momentum along the arrow direction, as in Fig. 3.) Note that
for Dirac fermions, the propagators with opposing arrows (proportional to a mass) necessarily
change the identity (x or 1) of the two-component fermion, while the single-arrow propagators
never do. In processes involving such a charged fermion, one must of course carefully distinguish

between the x and 7 fields.

4.3 Fermion interactions

We next examine the possible interaction vertices. Renormalizable Lorentz invariant interac-

tions involving fermions must consist of bilinears in the fermion fields, which transforms as a
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Lorentz scalar or vector, coupled to the appropriate bosonic Lorentz scalar or vector field to
make an overall Lorentz scalar quantity. Here, we shall first consider the case of fermion pairs
coupled to a real scalar field ¢ and a real vector field A,. We assume that the two-component
fermion mass matrix has been diagonalized as discussed in section 3, so that the fermions con-
sist of a collection 1,; of two-component (%,0) fermions. (These may include both neutral
two-component fields £ and/or pairs of oppositely-charged field pairs x and 7.) The interaction

Lagrangian is given by
Lint = —2(A\ehinhj + Xijh'p))p — G "G ap; A (4.10)

where A is a complex symmetric Yukawa coupling matrix, and G is an hermitian gauge coupling
matrix. We have suppressed the spinor indices in eq. (4.10); the product of two component
spinors is always performed according to the index convention indicated in eq. (2.15).

In eq. (4.10), we have used the following convention concerning the “flavor” labels i and j.
Left-handed (3, 0) fermions always have lowered flavor indices and right-handed (0, 2) fermions
always have raised indices. Raised indices can only be contracted with lowered indices and vice
versa. Flipping the heights of all flavor indices of an object corresponds to complex conjugation,
as in eq. (3.56), so that

Xij = (\9)*, G'; = (GY)*. (4.11)
With this notation, an hermitian matrix G;/ satisfies the condition G/ = GJ;. In the case
where the scalar field also possesses a flavor index I, we define ¢!(z) = [¢7(z)]*. The Feynman
rules for the vertices that arise from the interaction Lagrangian given in eq. (4.10) are shown
in Fig. 6.

One clarification in the labeling is helpful. Consider a line in Fig. 6 labeled ;. This means
that the corresponding state is given by [¢;) [as in eq. (3.63), (3.68) or (3.69)], independent
of the direction of the arrow. The fact that there are two separate rules corresponding to the
same pair of outgoing states (differentiated by the arrow directions) is a consequence of the two
terms proportional to ;1; and 9’ in eq. (4.10).

In Fig. 6, two versions are given for each of the boson-fermion-fermion Feynman rules. The
correct version to use depends in a unique way on the heights of indices used to connect each
fermion line to the rest of the diagram. For example, the way of writing the vector-fermion-
fermion interaction rule depends on whether we used —1/;ja“1ﬁi, or its equivalent form J;iﬁuq/;j,
from eq. (4.10). Note the different heights of the spinor indices & and # on o* and . The
choice of which rule to use is thus dictated by the height of the indices on the lines that connect
to the vertex. These heights should always be chosen so that they are contracted as in eq. (2.15).

Similarly, for the scalar-fermion-fermion vertices, one should choose the rule which correctly
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—iNi§.P or —iAij(?Ba

—i)xijﬁdﬁ', or —iAijééd

—Z.GZ'JEZ"B or iGiJO'M/Bd

Figure 6: The form of the Feynman rules for two-component fermion interactions with a
neutral boson in a general renormalizable field theory.

matches the indices with the rest of the diagram. (However, when all indices are suppressed,
the scalar-fermion-fermion rules will have an identical appearance for both cases anyway, since
they are just proportional to the identity matrix on the 2 X 2 spinor space.) These comments
will be clarified by examples below.

We can also treat the interactions of fermions to complex scalar and vector fields. We
denote a set of neutral fermion fields by &; and a set of charged fermion fields by pairs of
oppositely charged fields x; and n;. The charged scalar and vector bosons are complex fields
denoted by ¢ and W, respectively. Here, we shall only consider the simplest case where the
charges of ¢, W and y are assumed to be equal. In this case, the interaction Lagrangian is

given by:

Ling = — L KV xi&j + (k2)iji' €] — Lol mit; + (51)ijx°€]
=W l(G)IXT"E) + (Go)id &) — sWil(Gh) '€ xi + (Ga) ' 5"&], (4.12)

where k1 and k9 are complex symmetric matrices and G; and G9 are hermitian matrices. As
in eq. (4.11), we denote (ky);j = (ng)* The corresponding Feynman rules are given in Fig. 7.

Let us now work out the specific identification of the Feynman rules in a general renor-
malizable model. The two-component fermion fields that appear in the Lagrangian are written

originally in terms of (%, 0)-fermion interaction eigenstates, 1);, which in general may consist of
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_Z'(m)ij

Xi
R —i(k1)i

&

—i(Gl)ijEﬂ or i(Gl)Z‘jUﬂ

—'L.(GQ)ijE# or i(Gg)Z‘jUﬂ

Figure 7: The form of the Feynman rules for two-component fermion interactions with a
charged boson in a general renormalizable field theory. For each diagram shown above, there
is a charge-conjugated diagram in which all arrows are reversed. The corresponding rules are
obtained simply by raising all lowered flavor indices and lowering all raised flavor indices [c.f.
eq. (4.11)]. Spinor indices are suppressed [c.f. Fig. 6]. The arrows on the boson lines and on
the charged fermion lines x and 7 indicate the flow of charge. On both charged and neutral
fermion lines, the arrows also indicate the flow of chirality.

Majorana fermions éi, and Dirac fermion pairs x; and 7; after mass terms (both explicit and
coming from spontaneous symmetry breaking) are taken into account. In order to derive the
Feynman rules for the fermion interactions, one expresses these fermion fields in terms of the
mass eigenstates, 1;. The mass eigenstate basis is achieved by a unitary rotation U;/ on the

flavor indices. In matrix form:

¢ Q 0 0 ¢
1&;(2):&/}5(0 L 0>(x), (4.13)
i 0 0 R n

where €2, L, and R are constructed as described previously in Section 3.2.

In any theory, the most general set of fermion interaction vertices with a (possibly complex)
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Figure 8: Feynman rule for Yukawa couplings of scalars to two-component fermions. Spinor
indices are suppressed; in all cases the interaction is proportional to the identity matrix on the
appropriate spinor space with either index raised and the other lowered. Here y!™" are the
Yukawa coupling matrices in the interaction-eigenstate basis, and the matrices U achieve the
rotation to the mass eigenstate basis.

scalar ¢r can be written as follows:
Ling = —5y"* drpjbr, — Syrjnd" ik, (4.14)

where the ’l/AJj are the original interaction-eigenstate two-component fermions of the theory, and

y'7* is symmetric under interchange of j and k. Therefore, the mass eigenstate Feynman rules

take the form shown in Fig. 8: Here, as before, we use the convenient notation yr;; = (y1ik)*
and Uij = (Uij )*. In the case of complex scalars, it is convenient to put an arrow on the scalar
line to indicate the flow of “analyticity”. In the special case of supersymmetric theories, the
index I on the scalar fields coincides with the two-component fermion flavor index 7. In the
case of superpotential interactions in supersymmetric theories, the three arrows must all flow
in (or all out) of a scalar-fermion-fermion vertex.

Finally, we consider the fermion coupling to vector bosons of a gauge theory. In the gauge
eigenstate basis, the interactions of two-component fermions with gauge bosons are described

by an interaction Lagrangian of the form
Ling = —gAgia ()75 , (4.15)

where g is the appropriate real gauge coupling, the T'* are the hermitian representation ma-

trices” for the two-component fermions, and the Aj, are the gauge bosons. Converting to the

"For a U(1) gauge group, the T are replaced by real numbers corresponding to the U(1) charges of the
left-handed (4, 0) fermion.
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—igUik(Ta)kmUm‘j o, or igUik(Ta)kmUmj oy

Figure 9: Feynman rule for gauge boson couplings to two-component fermions. Spinor indices
are suppressed.

mass eigenstate basis, this interaction results in a Feynman rule shown in Fig. 9.

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that
conform with the rules given above for external wavefunctions, propagators, and interactions.
Starting from any external wave function spinor, or from any vertex on a fermion loop, factors
corresponding to each propagator and vertex should be written down from left to right, following
the line until it ends at another external state wave function or at the original point on the
fermion loop. If one starts a fermion line at an = or y external state spinor, it should have
a raised undotted index in accord with eq. (2.15). Or, if one starts with an Z or ¢, it should
have a lowered dotted spinor index. Then, all spinor indices should always be contracted as in
eq. (2.15). If one ends with an x or y external state spinor, it will have a lowered undotted
index, while if one ends with an Z or ¢ spinor, it will have a raised dotted index. For arrow-
preserving fermion propagators and gauge vertices, the preceding determines whether the o or &
rule should be used. With only a little experience, one can write down amplitudes immediately
with all spinor indices suppressed.

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:
e Each closed fermion loop gets a factor of —1.

e A relative minus sign is imposed between terms contributing to a given amplitude when-
ever the ordering of external state spinors (written left-to-right) differs by an odd permu-

tation.

Amplitudes generated according to these rules will contain objects of the form:

a = 21229 (4.16)
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where z; and 29 are each commuting external spinor wave functions x, z, y, or y, and X is a

sequence of alternating o and @ matrices. The complex conjugate of this quantity is given by
af = %55 (4.17)

where 3} is obtained from % by reversing the order of all the o and & matrices, and using the
same rule for suppressed spinor indices. (Notice that this rule for taking complex conjugates
has the same form as for anticommuting spinors.) We emphasize that in principle, it does not
matter in what direction a diagram is traversed while applying the rules. However, one must
associate a sign with each diagram that depends on the ordering of the external fermions. This
sign can be fixed by first choosing some canonical ordering of the external fermions. Then
for any graph that contributes to the process of interest, the corresponding sign is positive
(negative) if the ordering of external fermions is an even (odd) permutation with respect to the
canonical ordering. If one chooses a different canonical ordering, then the resulting amplitude
changes by an overall sign (is unchanged) if this ordering is an odd (even) permutation of the
original canonical ordering.® This is consistent with the fact that the amplitude is only defined
up to an overall sign, which is not physically observable.

Note that different graphs contributing to the same process will often have different external
state wave function spinors, with different arrow directions, for the same external fermion.
Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in
some Feynman rules for Majorana fermions. Instead, one must add together all Feynman graphs

that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

A few simple examples based on the vertices of Fig. 6 will help clarify these rules. Let us first
consider a theory with a single, uncharged, massive (%, 0) fermion &, and a real scalar ¢, with

interaction
Ling = —5 (A& + NEE) . (4.18)

Consider the decay ¢ — £(5, s1)&(P2, s2), where by £ we mean the one particle state given by
eq. (3.6), as noted above. Two diagrams contribute to this process, as shown in Figure 10. The

matrix element is then given by

8For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. If instead there are four or more
external fermions, however, it may happen that there is no way to choose the same ordering of external state
spinors for all graphs when the amplitude is written down. Then the relative signs between different graphs must
be chosen according to the relative sign of the permutation of the corresponding external fermion spinors. This
guarantees that the total amplitude is antisymmetric under the interchange of any pair of external fermions.
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g(phsl) g(phsl)

Figure 10: The two tree-level Feynman diagrams contributing to the decay of a scalar into a
Majorana fermion pair.

iM = y(By, 1) (=M )y (B2, 52)5 + T(BY, 51)a(—IA 0% §)B(B2, 52)”
= —iAy(P1, 51)y (D2, s2) — iAE(P), 51)T (P2, 52)- (4.19)

The second line could be written down directly by recalling that the sum over suppressed spinor
indices is taken according to eq. (2.15). Note that if we reverse the ordering for the external
fermions, the overall sign of the amplitude changes sign.” Of course, this overall sign is not
significant and depends on the order used in constructing the two particle state. One could
even make the perverse (but correct) choice of starting the first diagram from fermion 1, and

the second diagram from fermion 2:
iM = —idy(py, 1)y (P2, s2) — (—1)iN"2(Py, 52)%(P1, 51) - (4.20)

Here the first term establishes the canonical ordering of fermions (1,2), and the contribution
from the second diagram therefore includes the relative minus sign in parentheses. It is easily
seen that equations (4.19) and (4.20) are indeed equal. Note that when a total decay rate is
computed, one must multiply the integral over the total phase space by 1/2 to account for the
identical particles, as usual.

Consider next the decay of a massive neutral vector A, into a Majorana fermion pair

A, — &Py, 51)€(P2, s2), following from the interaction
Liny = —GAFET (4.21)

where G is a real coupling parameter. The two diagrams shown in Figure 11 contribute.
Following the rules of Fig. 6, we start from the fermion with momentum p; and spin vector
s1, and end at the fermion with momentum po and spin vector so. The resulting amplitude for
the decay is
iM = et [—iGZ(Py, $1)T .y (D2, 52) + iGy(Py, $1)0,T (P2, 52)] (4.22)

9This is easily checked, since for the commuting spinor wave functions (Z and y), the spinor products in
eq. (4.19) change sign when the order is reversed [see egs. (2.32) and (2.33)].
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g(phsl) g(plvsl)

5(])2,82) 5(]72,52)

Figure 11: The two tree-level Feynman diagrams contributing to the decay of a massive vector
boson A, into a pair of Majorana fermions §.

where ¢ is the vector boson polarization vector. As illustrated in Fig. 6, we have used the
o-version of the vector-fermion-fermion rule for the first diagram of Fig. 11 and the o-version
for the second diagram of Fig. 11, as dictated by the implicit spinor indices, which we have
suppressed. However, we could have chosen to evaluate the second diagram of Fig. 11 using the
o-version of the vector-fermion-fermion rule by starting from the fermion with momentum ps.

In that case, the factor +iGy (P}, s1)0,Z(P2, s2) in eq. (4.22) is replaced by

(=D[=iGz(P, $2)0,y(P1, 51)] - (4.23)

In eq. (4.23), the factor of —iG arises from the use of the &-version of the vector-fermion-
fermion rule, whereas the overall factor of —1 is due to the fact that the order of the fermion
wave functions has been reversed; i.e (21) is an odd permutation of (12). This is in accord with
the ordering rule stated at the end of Section 4.4. Thus, the resulting amplitude for the decay

of the vector boson into the pair of Majorana fermions now takes the form:
iM = e [iGZ(P), 51)0,Y(P2, 52) + 1GT(Py, 52)0,y(P1,51)] - (4.24)

By using yotz = zoty, one trivially shows that eqs. (4.22) and (4.24) are identical. The
form given in eq. (4.24) is especially convenient because it explicitly exhibits the fact that the
amplitude is antisymmetric under the interchange of the two external identical fermions. Again,
the absolute sign of the total amplitude is not significant and depends on the choice of ordering
of the outgoing states. When computing the total decay rate, one must again multiply the total
integral over phase space by 1/2 to account for identical particles in the final state.

Next, we consider the decay of a neutral vector boson into a charged fermion-antifermion
pair. Suppose that we identify x and n as the left-handed fields with charges ) = 1 and

@ = —1, respectively. These charges may or may not correspond to the couplings of x and 7
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X(pl’sl) 77(171,31)

X(pQ’SQ) 77(172,32)

Figure 12: The two tree-level Feynman diagrams contributing to the decay of a massive neutral
vector boson A, into a Dirac fermion-antifermion pair.

to the vector field, which we write as:
Ling = —AF[Gyxo,x + Gyiio,n). (4.25)

There are two contributing graphs, as shown in Figure 12. To evaluate the amplitude, we start
from the charge @ = 41 fermion (with momentum p; and spin vector s;), and end at the charge
() = —1 fermion (with momentum p and spin vector s9). The charge flow follows the direction
of the arrow on the fermion line. Note that for the final state fermion lines, the outgoing x
with arrow pointing outward from the vertex and the outgoing 7 with arrow pointing inward

to the vertex both correspond to outgoing @ = +1 states. The amplitude for the decay is

iM =gl [_iGXQ_U(ﬁh Sl)ﬁuy(ﬁz, 52) + iGny(ﬁ1a Sl)auf(ﬁz, 32)]
= el [-iG\Z (P, 51)Tuy (P2, 52) + iGHT (DY, 52)T,y(P1,51)] - (4.26)

As in the case of the decay to a pair of Majorana fermions, we have exhibited two forms for the
amplitude in eq. (4.26) that depend on whether the @-version or the o-version of the Feynman
rule has been employed. Of course, the resulting amplitude is the same in each method (up to
an overall sign of the total amplitude which is not determined).

The next level of complexity consists of diagrams that involve fermion propagators. For
our first example of this type, consider the tree-level matrix element for the scattering of a
neutral scalar and a two-component neutral massive fermion (¢ — ¢¢), with the interaction
Lagrangian given above in eq. (4.18). Using the corresponding Feynman rules, there are eight
contributing diagrams. Four are depicted in Fig. 13; there are another four diagrams (not
shown) where the initial and final state scalars are crossed (i.e., the initial state scalar is
attached to the same vertex as the final state fermion).

We shall write down the amplitudes for these diagrams starting with the final state fermion
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Figure 13: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a neutral two-component fermion. There are four more diagrams, obtained from
these by crossing the initial and final scalar lines.

line and moving toward the initial state. Then,

. —1 . B . . o
M= s —m? {WZ [2(D2, 52) Tk x(P1, 51) + y(P2, 52) 0k §(P1, 51)]
e

+me [Azy(ﬁz, $2)2(P1, 51) + (X*)°Z (P2, 52) 7 (1, 81)] } + (crossed).  (4.27)

where k* is the sum of the two incoming (or outgoing) four-momenta s = k2, (p1,s;) are
the momentum and spin four-vectors of the incoming fermion, and (p2,s;) are those of the
outgoing fermion. “Crossed” indicates the same contribution but with the initial and final
scalars swapped. Note that we could have evaluated the diagrams above by starting with the
initial vertex and moving toward the final vertex. It is easy to check that the resulting amplitude
is the negative of the one obtained in eq. (4.27); the overall sign change simply corresponds to
swapping the order of the two fermions and has no physical consequence. The overall minus
sign is a consequence of egs. (2.32)-(2.34) and the minus sign difference between the two ways
of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a vector boson and a
neutral massive two-component fermion ¢ with the interaction Lagrangian of eq. (4.21). Again
there are eight diagrams: the four diagrams depicted in Fig. 14 plus another four (not shown)

where the initial and final state vector bosons are crossed. Starting with the final state fermion
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Figure 14: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a neutral two-component fermion. There are four more diagrams, obtained
from these by crossing the initial and final scalar lines.

AN e AN e
\\ l{} // \\ l{} //
\\ — » // \\ — » //

X X n n
AN e AN e
N s N s
AN s AN s
N e N e

Figure 15: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

line and moving toward the initial state, we obtain

. _iG2 - — — — — — — (=
M= 5 {x(pz,SQ) G-e,0-kT-e x(P1,51) +y(P2,s52) 0765, ko, (P1,51)
e
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Figure 16: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the
initial and final scalar lines.

—mg [y(f)’z, 53) 0-€,0-€ T(P1,51) + T(P2,52) T €, 0 Y(P1, sl)] } + (crossed), (4.28)
where €, and ¢, are the initial and final vector boson polarization four-vectors, respectively.
As before, k* is the sum of the two incoming (or outgoing) four-momenta and s = k%, and
(p1,s1) are the momentum and spin four-vectors of the incoming fermion, and (p2, s2) are those
of the outgoing fermion. “Crossed” indicates the same contribution but with the initial and
final vector bosons swapped. If one evaluates the diagrams above by starting with the initial
vertex and moving toward the final vertex, the resulting amplitude is the negative of the one
obtained in eq. (4.28), as expected.

Next, consider the scattering of a charged Dirac fermion with a neutral scalar. The left-
handed fields x and n have opposite charges () = +1 and —1 respectively, and interact with

the scalar ¢ according to
['int = _QS[HX'U + K'*Xﬁ] ) (429)

where £ is a coupling parameter. Then, for the elastic scattering of a () = 41 fermion and a
scalar, the diagrams of Fig. 15 contribute at tree-level plus another four diagrams (not shown)
where the initial and final state scalars are crossed. Now, these diagrams match precisely those
of Fig. 13. Thus, applying the Feynman rules yields the same matrix element, eq. (4.27),
previously obtained for the scattering of a neutral scalar and neutral two-component fermion,
with the replacement of A with k.

Consider next the scattering of a charged Dirac fermion and a charged scalar, where both
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X n U X

Figure 17: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a charged Dirac fermion. There are four more diagrams, obtained from these
by crossing the initial and final vector lines.

the scalar and fermion have the same absolute value of the charge. As usual, we denote the
charged ) = +1 fermion by the pair of two-component fermions x and 1 and the (intermediate
state) neutral two-component fermion by £. The charged ) = %1 scalar is represented by the
scalar field ¢ and its complex conjugate, and the corresponding interaction Lagrangian takes

the form:

Ling = —¢"[m1x€ + rang] — Plrané + r1x¢] (4.30)

One scattering process which requires special attention is the scattering of an initial boson-
fermion state into its charge-conjugated final state via the exchange of a neutral fermion. The
relevant diagrams are shown in Fig. 16 plus the corresponding diagrams with the initial and

final scalars crossed. The derivation is similar to the ones given previously, and we end up with

. i o ) o
IM = P {HIK/Z[(I)(p%SQ) G-k x(P1,51) + y(P2, s2) 0-k §(P1, 51)]
e

+ me I:K’%y(ﬁZ7 82)27(517 81) + (H§)2j(527 SQ)Q(ﬁh 81):| } + (crossed) ) (431)

where the four-momentum £ is defined as shown in Fig. 16.

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly
treated. For example, consider the amplitude for the elastic scattering of a charged fermion
and a neutral vector boson. Again taking the interactions as given in eq. (4.25), the relevant
diagrams are those shown in Fig. 17, plus four diagrams (not shown) obtained from these by

crossing the initial and final state vectors. Applying the Feynman rules following from eq. (4.21)
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Figure 18: Tree-level Feynman diagrams contributing to the elastic scattering of identical
neutral Majorana fermions via scalar exchange in the ¢-channel. Additionally, there are four
u-channel diagrams obtained from these by crossing either the initial or final fermion lines.
Finally, one must also evaluate four s-channel diagrams in which the two-component fermions
1 and 2 annihilate into an intermediate scalar which subsequently decays into two-component
fermions 3 and 4.

as before, one obtains the following matrix element

—1

iM =

{Gi:ﬁ(ﬁz, 59)T-ey0-pT-g) T(P1,51) + G%y(ﬁz, 59) o€, T po-e (P1,51)

— * —

2
s —mg
(P2,52) 0-6,0 €, 2(P1,51) + T(P2, 52) T, 01 Y(P1, 31)] } + (crossed) (4.32)

—mG, Gy, [y

and the assignments of momenta and spins are as before.

The computation of the amplitude for the scattering of a charged fermion and a charged
vector boson is straightforward and will not be given explicitly here.

Finally, let us do an example with four external-state fermions. Consider the case of
elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the
interaction of eq. (4.18). The t-channel diagrams for scattering initial fermions labeled 1,2 into
final state fermions labeled 3,4 are shown in Fig. 18. There are also four u-channel and four

s-channel annihilation diagrams (not shown). The resulting matrix element is:

iM = - __fn; N (@122 () + V) (0292)@320) + NP [(@102) (@324) + (G1372) (932)] }

(1) —

T VY sm)lae) + O @) @) + D (o) ) + () (a2l
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u—m¢

where z; = z(Pi, si), yi = y(Ps, si), mg is the mass of the exchanged scalar, s = (p; + p2)?,
t = (p1 —p3)? and u = (p1 — ps)°.

channel diagram and the s and u-channel diagrams is obtained by observing that 3142 is an

5 {N2(am) (ysma) + (V)2 (3470 (B2) + NP [(Z451) (y32) + (yam1) (T57)]

The relative minus sign (in parentheses) between the ¢-

odd permutation and 4132 is an even permutation of 1234.'0

5 Conventions for fermion and anti-fermion names and fields

When treating the Standard Model and its minimal supersymmetric extension, one must adopt

a naming convention for the external fermion lines.

Table 1: Fermion and anti-fermion names and two-component fields in the Standard Model

(with massless neutrinos) and the MSSM

Fermion name

Two-component fields

¢~ (lepton) 0, e

¢ (anti-lepton) el
v (neutrino) v, —

v (antineutrino) -, U
q (quark) a,q

q (anti-quark) ¢, q

f (quark or lepton) f,fe
f (anti-quark or anti-lepton) fe, f
N; (neutralino) XY, x_?
C;" (chargino) Xi f
C, (anti-chargino) Xi > E
3 (gluino) 7.7

ONote that we would have obtained the same sign for the u-channel diagram had we crossed the initial state

fermion lines instead of the final state fermion lines.
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To label incoming and outgoing fermions, one can either use symbols for the two-component
fields or for the particle names. In Table 1, we list the corresponding names and symbols for
the Standard Model and the MSSM fermions.!' In the case of Majorana fermions, there is a
one-to-one correspondence between the particle names and the left-handed fields, but for Dirac
fermions there are always two distinct two-component fields that correspond to each particle
name. Therefore, in the Dirac case, one has the option of labeling graphs by particle names
or field names; each choice has advantages and disadvantages.'? Employing symbols for two-
component fields is more convenient for applying two-component Feynman rules. Thus, it is

convenient to display a translation between the two labeling conventions, as shown in Fig. 19.

—» ¢

(a) > e
—» e o

(b) < et
—» "

(c) > e’
— "

(d) < e

Figure 19: The translation between the particle name and the two-component field name
conventions for external lines in a Feynman diagram. The diagrams represent an electron or
positron whose momentum points from left to right (as specified by the arrow above each line).
The corresponding two-component field label is indicated to the right of each line.

Note that the two-component fields e and e¢ both represent the negatively charged electron,
conventionally denoted by e, whereas both e and € represent the positively charged positron,
conventionally denoted by e’ (as indicated in Table 1).

To evaluate the invariant amplitude for a given process, we apply the Feynman rules of
Appendices C and D. However, we first need to establish a convention for labeling the two-
component fermion fields that appear in the Feynman rules. As an example, consider the

two-component Feynman rules for the QED coupling of electrons and positrons to the photon,

Y1n the original version of the Standard Model, neutrinos are exactly massless and the right-handed neutrino
is absent from the spectrum. Hence, no v appears in Table 1. If necessary, it is straightforward to add v to
the Standard Model and generate neutrino masses via the seesaw mechanism.

2Unfortunately, the notation for fermion names can be ambiguous since some of the symbols used also appear
as names for one of the two-component fermion fields. In practice, it should be clear from the context which set
of names are being employed.
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which are exhibited in Fig. 20.'3

or e

(a) iegl?  or —ieoyusa
or e
or ef

(b) —iegs®  or  ieoupa
or ef

Figure 20: The two-component Feynman rules for the QED vertex. The choice of the two-
component field label depends on the direction of momentum flow (which is independent of the
direction of the arrow on the fermion lines), following the prescription of Fig. 19.

In general, two-component fermion lines with dotted indices always correspond to arrows going
away from the vertex, and two-component fermion lines with undotted indices always corre-
spond to arrows going toward the vertex. When employing the Feynman rules of Fig. 20, the
choice of the two-component field label depends on the direction of momentum flow of the
corresponding fermion, following the prescription of Fig. 19. For example, if the direction of
the momentum flow in Fig. 20 follows the direction of the arrows of the two-component fermion
fields, then one should label the two-component fermion lines with unbarred fields. We have
followed this latter convention in labeling all the Feynman rules given in Appendices C and D,
which results in the relevant two-component fermion Feynman rules for vertices in the Standard
Model and the MSSM. That is, the Feynman rules are labeled with two-component (unbarred)
fields; they can be applied to processes involving either fermions or anti-fermions (following the
prescription of Fig. 19).

A simple example should make this clear. Consider the s-channel tree-level Feynman
diagrams that contribute to Bhabha scattering (e"e™ — e~e™). If we label the external fermion
lines according to the corresponding particle names, the result is shown in Figure 21. However,
when using the particle name convention, one must discern the identity of the external two-
component fermion fields by carefully observing the direction of the arrow of each fermion line.

If the arrow coincides with the direction of propagation, then we identify the electron [positron]

13See Fig. 52; note that Q. = —1 for the two-component electron field.
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6>/\MW/<6 6>/\MW/<6
et et et et

Figure 21: Tree-level s-channel Feynman diagrams for e et — e et, with the external
lines labeled according to the particle names. The momentum flow of the external particles is
indicated by the arrows above the corresponding fermion lines in the upper left diagram.

line with e [e¢]. If the arrow is opposite to the direction of propagation, then we identify the
electron [positron| line with e [€], in accord with the prescription of Fig. 19. Thus, in order
to employ the two-component QED Feynman rules given in Fig. 20, we relabel the graphs of
eq. (21) by employing the two-component fermion field labels, as shown in Fig. 22.

o
8y
Q
8y

Figure 22: Tree-level s-channel Feynman diagrams for eTe~ — e'e ™, with the external lines
labeled according to the two-component fermion fields. Note that all momenta flow from left
to right.

One can now employ the Feynman rules of Fig. 20 directly to compute the invariant amplitude.
Note that the choice of rule involving either the fields e and € in Fig. 20(a) or the fields e and

e in Fig. 20(b) is unambiguous.
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6 Examples from the Standard Model and Minimal Supersym-
metry

In this section we will present some examples to illustrate the use of the rules presented in this
paper. These examples are chosen from the Standard Model and the MSSM, in order to provide
an unambiguous point of reference. In all cases, the fermion lines in Feynman diagrams are

labeled by two-component field names, rather than particle names, as explained in Section 5.

6.1 Top quark decay: ¢t — bW ™

We begin by calculating the decay width of a top quark into a bottom quark and W vector
boson. Let the four-momenta and helicities of these particle be (ps, A¢), (kp, Ap) and (ky,, Aw),

respectively. Then p? = m?, kg = m% and k;%V = m%V and
2p;-kyy = mi —mj +miy, (6.1)
2p¢-ky = mi +mi —miy, (6.2)
2k -k = mi —mi —miy . (6.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for
t — bW ™ is the one shown in Fig. 23. The corresponding amplitude can be read off of the
Feynman rule of Fig. 52 in Appendix C. Here the initial-state top quark is a two-component
field ¢ going into the vertex and the final-state bottom quark is created by a two-component
field b. Therefore the amplitude (ignoring CKM mixing) is given by:

1

iM = ﬁgsjl (pw)z(pp)a"z(pt) (6.4)

where ¢, is the polarization vector of the W. Squaring this amplitude yields:

IMP? = 3g°¢;, (kw)e, (kw ) Z(po) Tz (pe) (pi)T” (o) , (6.5)
W (kw, A\w)
t(pe, At)
b(pe, \b)

Figure 23: The Feynman diagram for ¢ — bW ™ at tree level.
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where we have used equation (2.21). Next, we can average over the top quark spin polarizations
using eq. (3.51):
30 M = jo%e (kw)e, (kw)E(po)o" pr-o oz (ps) (6.6)
At

and then sum over the bottom quark spin polarizations. This yields a trace over spinor indices:

5 Y IMP = L (bw)ew () (o pe-o 0o
At,\p

= 59°c, (kw)ew (kw) [P{RY + kil — 9" peka] (6.7)

where we have used eq. (2.30). Finally we can sum over the W polarizations according to:

. k kvir)y
S (ke () = —gy + P lelbiw)o (6.8)
A myy
The final result is:
2(py -k ) (kp-k
3 D IMPP=34° [pt'kb‘*‘ (b V;q})z( ’ W)] . (6.9)
At Ap W

After performing the phase space integration, one obtains:

2 2
Lt —bWt) = %AI/Q (1,m—W ﬂg) (% > |M|2) (6.10)

167m 27
e i my vse

2
_ g llomd = mi = iy )i — g = miy) + 2mpmiy] 1 () Ty ) gy
64mmP,my "m2 m2) N
where
ANz, y,2) = 22 +y* + 22 — 22y — 222 — 2y2. (6.12)

In the approximation where m;, < my;,, m;, one ends up with the well-known result

g*my [ m? 2m? m2,\”
I'(t—bWT) = — 1+ =) 1-—F) . (6.13)
64\ m3y, m; m;

which exhibits the Nambu-Goldstone enhancement factor (m7/ms,).

6.2 Z° vector boson decay: Z° — ff

Consider the partial decay width of the Z° boson into Standard Model fermion-antifermion
final states. There are two Feynman diagrams (as in the generic example of Fig. 12), shown in
Fig. 24. The particle labels refer to the particle names rather than the two-component fermion

fields (see Section 5). Let us call the initial Z° four-momentum and helicity (p, Az) and the
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f(k1,51) fe(ki, s1)
Zo(p7‘€u) Zo(p7‘€u)

(a) f(kg, 52) (b) fc(/m, 52)

Figure 24: The Feynman diagrams for Z° decay into a fermion-antifermion pair. Fermion
lines are labeled according to the two-component fermion labeling convention (see Section 5).

final state fermion (f) and anti-fermion (f) momentum and helicities (ki,\;) and (k2, A2),

respectively. Then, k? = k3 = m?c and p? = mQZ, and
kl -k)g = %mZZ — m?c s (6.14)
p-ki =p-ke = E'm’QZ ) (6.15)
According to the rules of Fig. 52, the matrix elements for the two Feynman graphs are:
; _ Y9 pf 2 = =t
M, = i (T35 — Qrsyy) €15y (6.16)
w
52
My = ngf—W euy10HZo
Cw
§2
=igQr—Ye, o5ty (6.17)
‘w

where z; = x(EZ, s;) and y; = y(fc}, si), for i = 1,2, and €, = ¢,,(p). For iM,, we have exhibited
two identical forms for the amplitude depending on whether one makes use of the o-version or

o-version of the Feynman rule (see the discussion in Section 4.5). It is convenient to define:
a;=T] - Qss?,; by = —Qrs?, . (6.18)
In terms of these quantities the squared matrix element for the decay is given by
2
|'A/l|2 = chwﬁu&‘: [afi‘lﬁqu + bfyldqu] [afﬂgﬁl/(l)l + bfoUVgl] . (6.19)
Summing over the anti-fermion helicity using eqs. (3.51)—(3.54) gives:
g2
Z |/\/l|2 = Teus’,j a%ilﬁ“l@-aﬁ”wl + b?«yla“kg-ﬁa”gl
c
A2 w

—mfafbfa‘cﬁ“a”gjl — mfafbfy10“6”m1 . (6.20)
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Next, we sum over the fermion helicity:

2
> IMP = 697%3 [afm(a“kQ-aa”kl-a) + b3 Tr(0" ky G0 ki1 -T)
A1,A2 w

—m?cafbfTr(E“al’) - m?cafbfTr(JHE”)l . (6.21)

Finally, averaging over the Z° polarization using

LoV
2> et =1 (—g““ + 2 12) ) (6.22)
Az myz
and applying egs. (2.28)—(2.30), one gets:
2 4k -phs-
LS MmP = 39—2 (a2 + %) (le-kzg + PPN | 19a,bm3 (6.23)
spins ‘w my
29° 2 2 2 2 2
W

where we have used egs. (6.14) and (6.15). After the phase-space integration, we obtain the
well-known result for the partial width of the Z°:

1 4m2 1/2
0Z°— ff) = (1 — —f> (% > |M|2) (6.25)

167TmZ spins

2 Am?2 1/2 m> m>
g my / 2 2 / f

=40z (_—F p2) (1- —L bp—L| . 2
24%( m%) (“f“’( m%)”“f fm%] (620

Finally, we note that if the final state fermions are colored, then one must also sum over colors.
Since the Z° is a color singlet, the resulting color factor is simply equal to the dimension of the

color representation of the outgoing fermions (that is, 1 for leptons and 3 for quarks).

6.3 Bhabha scattering: ete” — efe”

In our next example, we consider the computation of Bhabha scattering in QED (that is, we
we consider photon exchange but neglect Z%-exchange). We denote the initial state electron
and positron momenta and helicities by (p1, A1) and (p2, A2) and the final state electron and
positron momenta and helicities by (p3, A3) and (p4, A1), respectively. Neglecting the electron

mass (so that p% =0fori=1,...4), we have in terms of the usual Mandelstam variables s, ¢, u:

pLp2 =P3-p1= 35, (6.27)
p1-p3 = p2-ps = —5t, (6.28)
D1y =P2-p3 = —3u. (6.29)
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Figure 25: Tree-level t-channel Feynman diagrams for ete™ — e*e ™, with the external lines
labeled according to the two-component field names. The momentum flow of the external
particles is from left to right. (Comment: T have changed all the labels so that the upper line
is the electron and the lower the positron, as in Fig. 22.)

There are eight distinct Feynman diagrams. First, there are four s-channel diagrams, as shown
in Fig. 22 with amplitudes that follow from the Feynman rules of Fig. 20 (more generally, see
Fig. 52 in Appendix C):

—ighv

S

IMg = [ ] ([—ie T10,Y2][tey30,T4] + [—ie §1Tx0][ie y30, T 4]

+[—’i€ xlaugz][ie i‘gﬁyy4] -+ [—ie gﬁuacg][ie 5636,,%]) , (6.30)

where z; = z(P;, ;) and y; = y(B;, \i), for i = 1,4. The photon propagator in Feynman gauge
is —igh” /p? = —ig" /s. Here, we have chosen to follow the fermion lines in the order 1,2, 3,4,
which dictates the use of either the @ or ¢ forms of the Feynman rules of Fig. 20. One can
group the terms of eq. (6.30) together more compactly:

—ig"

iMs = e { [fﬁl%?h + @1@&2] [y30u564 + f:ﬁuyzl]- (6.31)

There are also four #-channel diagrams, as shown in Fig. 25. The corresponding amplitudes
for these four diagrams can be written:

—ig"v

iM; = (_1)62 [ ] [10,%3 + Y10 ,Y3) [T20,T4 + YoT,y4) - (6.32)

(Comm. factored out e? and the i’s.) Here, the overall factor of (—1) comes from Fermi-Dirac
statistics, since the external fermion wave functions are written in an odd permutation (1, 3,2, 4)

of the original order (1,2,3,4) established by the first term in eq. (6.30).
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Fierzing each term using egs. (2.38)-(2.40), and using eqs. (2.32) and (2.33), the total

amplitude can be written as:

M = M+ M; = 2¢* ll (z1y3) (y274) + %(%%)(9&294) + (% + %) (1174)(z2y3)
+ (% + %) (21y4) (§273) — %(301362)(9_03504) - %(ﬂ1ﬂ2)(y3y4)]- (6.33)

Squaring this amplitude and summing over spins, all of the cross-terms will vanish in the
me — 0 limit. This is because any cross term will have an = or an z for some electron or
positron combined with a y or a y for the same particle, and the corresponding spin sum is
proportional to m, [see egs. (3.53) and (3.54)]. Hence, summing over final state spins and
averaging over initial state spins, the end result contains the sum of the squares of the six terms
in eq. (6.33):

I MP =t > {S% [(#1y3(F3%1) (F274) (ay2) + (5173) (23y1) (22y4) (F472)]

Spil’lS A1 aAZ 3A37A4

( ) [(5154) (5430) (295) (555) + (2192 (Ga51) (5273) (7332)]
1
2

+ 5 [(#122) (2271) (Z3%4) (473) + (@1?32)(y2y1)(y3y4)(§4ﬂ3)]} . (6.34)

(Comment: I reversed the order of the spinors twice. This changes nothing, it is just what you
get directly from the previous equation.) Performing the remaining spin sums using eqgs. (3.51)

and (3.52) and using the trace identities eq. (A.3):

2°P4P1°P3 1°P2 P34 1 1\?
2 |M|2:8€4{p psf n e +(—+—) p1'p4p2'p3]

- t2 s ot
spins
2 s? 1 1)\?
_ 9.4 2
Thus, the differential cross section for Bhabha scattering is given by:

do 1 9 27ra t2 82 o (1 1\?
-+ = -+ - . 6.36

dt ~ T6ms? ( SXII;S'M') L?ﬂfru <s+t> } (6:36)

This agrees with the result of, for example, problem 5.2 of ref. [4].

6.4 Neutral CP-even Higgs scalar decay in the MISSM: h°, H® — ff

In this subsection, we consider the decay of the CP-even neutral Higgs scalar bosons h° and

0 of the MSSM into Standard Model fermion-antifermion pairs. First consider the decay
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dé(p1,s1) di(p1,s1)

(a) Ji(pz, 52) (b) df(PQ, 52)

Figure 26: The Feynman diagrams for the decay h® — d;d;. We have labeled the external
quarks according to the two-component down-like quark field names.

of hY into down-like quark and anti-quark, with momenta and spin polarizations (pi, A1) and
(p2,A2), respectively. The external wave functions are denoted z; = z(d), y1 = y(d) and
zo = x(d), y2 = y(d), respectively. There are two Feynman diagrams for h® — d;d;, as shown

in Fig. 26. The rules of Figure 56 of Appendix D tell us that the resulting amplitudes are:
My = 7 Ygi SNy 1y, (6.37)

My = Yai SN 1% . (6.38)

1
V2
Now, let us specialize to the bb final state. Assuming a diagonal basis in which the bottom quark

mass and the diagonal Yukawa coupling vy, are real and positive, we have a total amplitude:

iM =M, +iMy = —=ypsina [y1ys + 7172) . (6.39)
V2
Squaring this yields:
1
M|? = yb sin® o [y1y2 + 1%2] [f2d1 + w271] - (6.40)

Summing over the quark and anti-quark spins we obtain

Z IM|? == yb sin? o [Tr(pz-apl-ﬁ) + Tr(pg-op1-0) — 2mi — Zmﬂ (6.41)
A1,A2
= 242 sin’ o (+p1-p2—mi) (6.42)
=y} sin® a(mio — 4m3), (6.43)

where we have used p;-py = %m%o — mg. Therefore,

- 1 Am? 12
D(hY — bb) = (1— 2”) o> MP (6.44)

16740 Mo

color A\1,A2
3/2
3 9 4m?
= 1-— 6.45
Ton y? sin? amyo ( 2, (6.45)
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which checks with the expression in Appendix B of the Higgs Hunter’s Guide [3].
Other decays of A and H proceed in exactly the same way, with appropriate substitutions
of the coupling parameters and the obvious accounting for color. Therefore, with no further

work one obtains from eq. (6.45) the results:

2

e H — bb by taking sin® @ — cos? a and myo — mpo.

2

h? — c¢ by taking yg sin? @ — y2 cos? & and my, — M.

HY — c¢ by taking y? — y? and my — m. and mpyo — mpo.

o W0 — 7t by taking 3y§ — yz and mp — m.

2

H° - 7+7~ by taking 3y§ sin? a — y2 cos? a and my, — m, and mpo — myo.

6.5 Neutral CP-odd Higgs decay in the MISSM: A° — ff

Let us next consider the decay A° — bb. There are two Feynman diagrams, exactly as in the
previous example with h® — A°. The external wave functions are also labeled as in the previous

section. However, the sum of the amplitudes is given by:
. . . 1 . _
IM=1M, + My = ﬁ yp sin fBly1y2 — T1T2] . (6.46)

Notice the relative minus sign between the amplitudes, which follows directly from the Feynman
rules in Figure 57 of Appendix D, and is a crucial hallmark of a pseudoscalar coupling to fermion

pairs with real positive masses. (It is not due to Fermi-Dirac statistics.) Summing and squaring

yields:
1 . 1o -
IM|? = 3 yp sin® Blyiys — 2152] [§251 — w21] . (6.47)
Now sum over the spin polarization of the b and the b:
1
Z IM? = 5 yi Sin% [Tr(pgﬂpl-ﬁ) + Tr(pg-Gp1-0) +2m3 + QmZ] (6.48)
AL,A2
= +2y sin% (p1-p2+mi) (6.49)
= yi Sin% m2o . (6.50)

Therefore:

- 1 Am? 12
(A — bb) = (1— 2”) S>> IMP (6.51)

167TmA0 ™m0 color A1,\2
1/2
N(: 2 .2 47)’1%
— 167‘_ yb Sin BmAO 1 - m1240 9 (652)
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€ (pea )\e)

Figure 27: The Feynman diagram for v — C~’Z+ et in the MSSM. Note we have used the
two-component field names.

where N — ¢ = 3 is the color factor. This again agrees with the expression in Appendix B of

the Higgs Hunter’s Guide [3]. The different threshold behavior [compared to eq. (6.45)] is due

to the relative minus sign between the contributions of the two diagrams to the amplitude.
By appropriate substitutions of coupling parameters and masses, and no further work, one

obtains:
0 +, - : 2 2
o A° — 777~ by taking 3y; — y; and my — m..
o AY — 1 by taking y? sin® 8 — y cos® 8 and my, — my.

o A% — ¢ by taking y} sin? 8 — y?2 cos? B and my — me.

6.6 Sneutrino decay 7 — C'e” in the MSSM

Next we consider the process of 7 — C~’z+ e~ in minimal supersymmetry. Because only the left-
handed electron can couple to the chargino and sneutrino (with the excellent approximation
that the electron Yukawa coupling is 0), there is just one Feynman diagram, shown in Fig. 27.
The external wave functions of the electron and chargino are denoted as z., and z 5, respectively.

From the corresponding Feynman rule given in Figure 60 of Appendix D, the amplitude is:

M = —igVin BT, (6.53)
where V;; is one of the two matrices used to diagonalize the chargino masses. Squaring this
yields:

IM[? = g*|Vir|* (Z5Tc) (e 5) - (6.54)
Now summing over the electron and chargino spin polarizations yields
> IMP =@ VaPTelpe-Tpa-o] = 20° Vil pe-pe = 7|V | (m3 —m%) | (6.55)
Xe A
where we have used 2p.-ps = m2 —m% & and have neglected the electron mass. Therefore, the
decay width is:
L7 — Cfe ) = ! ( 2’) Z M| = |V *m ( —m—%’>2 (6.56)
16mm; 2 N i v m,% ' '
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Figure 28: The Feynman diagram for C’;r — Ve~ in the MSSM.

6.7 Chargino decay C;” — et in the MSSM

Here again there is just one Feynman diagram (neglecting the electron mass in the Yukawa
coupling) shown in Fig. 28. The external wave functions for the chargino and the positron are
denoted by Ts and y,+, respectively. The momenta and helicities are denoted as in Fig. 28.

The amplitude can be directly determined using the Feynman rule given in Fig. 60 in App. D
M = —igVj] T5 Yot - (6.57)

Squaring this yields:
IMP? = Vi P (z5ye+) (Ger 25) - (6.58)

Summing over the electron helicity and averaging over the chargino helicity we obtain:

2
_ 9
5 > IMP =38V P Tr[pe- o pgs-0] = +9°|Vir [ pe-ps = E|Vi1|2(m% - m2). (6.59)
AeAs
So the decay width is, neglecting the electron mass:
1 m2\ |1 9 m2 )’
T(C" — vet) = 1——2 |z 2l = Z ViPms [1— —X ] . (6.60
(G = ver) 16mmg; iz | (3 2 MP| = glValfme, (1= 25| - (6:60)
i C /\ey)\g. C;

6.8 Selectron production: e e” — €, ¢,

Here there are 2 Feynman graphs (if we again neglect the electron mass in the Yukawa cou-
plings). Note that these two graphs are related by interchange of the identical initial state
electrons. Let the electrons have momenta p; and ps and the selectrons have momenta k; and
ko, so that p? = p3 = 0; k? = m%L; k2 = m%R; t = (p1 — k1)% u = (p2 — k1)% and (I have

modified many signs here due to the metric.)

2p1-py = s; 2k1 ko = s — m%L — m%R; (6.61)
2p1'k1 =—t+ m%L; 2p1'l€2 = —u-+ m%R; (662)
2p2-k1 = —u + mgL; O2pg-ko = —t + ng : (6.63)
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Figure 29: Feynman diagrams for e"e~ — €} € using the two component field labels. I have
played around with this figure. So please check completely.

The matrix element for the first graph, for each exchanged neutralino ]VZ-, is then:

Ma = |:—Z\/§QS—WN7,1:| |:'Li ( :2 + S—W Z"k1>:| T
cw c

% " (6.64)

+i(ky —p1)-o | _
(kl_pl)Q_m%_ "

while the matrix elements for the second graph are the same with the two incoming electrons

exchanged, e; ¢ es:

sopra]
N_

7

. S . * $ *
oo [ 2

Note that since we have written the fermion wave function spinors in the opposite order in Mo
compared to My, there is a factor (—1) for Fermi-Dirac statistics. Alternatively, starting at

the electron with momentum p; and using the Feynman rules as above, we can directly write:

i L i (e W Y] gy | == p2) @
= v [y (s« )] o [ | e o

This has no Fermi-Dirac factor (—1) because the wave function spinors are written in the same
order as in M. However, now the Feynman rule for the propagator has an extra minus sign,
as can be seen in Fig. 3. We can also obtain eq. (6.66) from eq. (6.65) using eq. (2.34). So we

can write for the total amplitude:

M = My + My =210 -052+51b-Txa (6.67)
where
g sw . SwW 1
P =3y kY — pt N; (N5 + —/N 6.68
a” =1 o (kY p1)i§:1: i1 ( 22+CW zl)t_m% ) (6.68)
9*sw : SW 1
b =—i o (kY — pb) ;Nil( i+ o i*l)u — L (6.69)
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So:

IMI? = [z1(a-0)Fs]) [y2(a*-0)E1] + [1(b-5)z2] [Z2(b"-7)y1]
+[z1(a-0)ge] [22(b"-F)y1] + [41(b-T)x2] [y2(a™-0)Z1] . (6.70)

Averaging over the initial state electron spins, the a,b* and a*,b cross terms are proportional

to me and can thus be neglected in our approximation. We get:

1
—2:|/\/l|2 Tr[a-o pe-7 a* Jp10]+4Tr[bap20b T p1o]. (6.71)

spins

These terms can be simplified using the identities:

Tr[(ky — p1)-0 p2-@ (k1 — p1)-0 p1-0] = Tr[(k1 — p2)-T p2-o (kL —p2)-Tpi-o] (6.72)
— tu— m m? (6.73)

er’

resulting in:

2 4
Z tu —m2 m2 N N (N¥ + Sw Nip + —Nl
s§s| W( er, eR)i;I j1 zl( 52 e ]1)( 2 1)
1 1 ]
+ : (6.74)
_ ) —— —
[(E=m%)E=—mZ) " (w—mZ ) (u—m% )|

To get the differential cross-section do/dt, multiply this by 1/(167s?):

do Ta? tu — mszi Sw Sw
g _ Ny Ni (NS + SN (N + YN,
dt 45124,0124, ( 52 ,le Jl zl( j2 + o yl)( 2 T+ cw zl)
1 1
+ . (6.75)
_ — 2 ) )
[(t mﬁ )t mﬁj) (u mﬁl)(u mﬁj)

To compare with eq. 26, p. 244 in Haber and Kane, note that for a pure photino exchange,

N;1 — cwdi and N;o — swd;1, so that
1
4s T2 92 2 |N7,1| |N7,2+_ zl|2 — ]- (676)
Swlw ‘w
and it checks.
6.9 e ¢ — égpep (done)
In the following we again neglect the electron mass and thus the Higgsino coupling to the

electron. There are then 2 Feynman graphs related by the exchange of identical electrons in the

initial state or equivalently by exchange of the identical selectrons in the final state, as shown
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Figure 30: The two Feynman diagrams for e"e™ — €p€p in the limit where m, — 0.

in Fig. 30. Let the electrons have momenta p; and py and the selectrons have momenta k; and

k2, so that pf = p3 = 0; ki = k3 = ng; t = (k1 —p1)?% u= (ki —p2)% and

2p1-p2 = +s; 2k ko = +s—2mf§R : (6.77)
2p1-ky = 2pg-ky = —t+m§R; (6.78)
2p1-ky = 2p2-k1 = —utm? . (6.79)

The amplitude for the first graph is:

+im

2
My = <—i\/§gs—WNz‘1>
cw

N; — =
: 6.80
(o - k1)2—m%] e (6:80)

7

for each exchanged neutralino. The amplitudes for the second graph are the same, but with

electrons exchanged:

2
M = (~iv2g N, ) X
cw (p2 — k1) —me

7

+im
N, 5 ] Y192 - (681)

Since we have chosen to write the external state wave function spinors in the same order in M
and Mo, there is no factor of (—1) for Fermi-Dirac statistics. So, the total amplitude squared

1s:

dgtsy, . .
IMJ? = CTW(ylyz)(ywl) > (N )Z(Nj1)2mﬁimﬁj
w ij=1
1 1 1 1
(t—m2~+u—m2~><t—m2~ +u—mZ~) (6.82)
N; N; N; Nj

The sum over the electron spins is given by

> (1752) (y2y1) = Trlpa-Tp1-0] = +2pa-p1 = 5. (6.83)
A1,A2
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Figure 31: The two Feynman diagrams for e"e~ — €, €, in the limit of vanishing electron
mass.

So the spin-averaged differential cross-section is:

do 1\ 1 (1
= (3) o (12 1) 659

51,52
2 4 msmz
TQ NN 1 1 1 1
— § : N V2 (N 2 6.85
20%..7( 1) (V1) s (t—m2~+u—m2~><t—m2~+u—m2~> (6.85)
1,j=1 N; N; N; N;

where the first factor of (1/2) in eq. (6.84) comes from the fact that there are identical sleptons
in the final state and thus the phase space is degenerate.
To compare with eq. E27, p. 245 in Haber and Kane, note that for a pure photino exchange,

N;1 — cwdi1, so it checks.

6.10 e e —é,¢, (done)

Again, in the limit of vanishing electron mass, there are 2 Feynman graphs related by the
exchange of identical electrons in the initial state or equivalently by exchange of the identical

selectrons in the final state. As shown in Fig. 31, they are exactly like the previous example,

but with all arrows reversed. The amplitude for the first graph is:

2 +im
. g Sw N;
Mz(z— 5+ — *> . T1T 6.86
1 \/5[ 12 cw zl] [(pl _ k1)2—m2~ J 142 ( )
N;
for each exchanged neutralino. The amplitudes for the second graph are the same, but with
p1 > p2!
2 +im =
. g SW oAz N;
— NE + 2 N d 6.87
Mz (Z\/i[ 2+ cw Zl]) (p2 — k1)2—mi~f4] e ( )

Since we have chosen to write the external state wave function spinors in the same order in My

and Mo, there is no factor of (—1) for Fermi-Dirac statistics. The total amplitude squared is:

4 4
g o " SW ~rx Sw
|IM? = o (#122)(Z271) > (N + p— 2 (Nj2 + _CWNJ' )Qmﬁimﬁj
Z-’j:1
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e(p1, A1) v(k1) e(p1, A1) v(k1)

e(p2, A2) 7 (k) e(p2, A2) v* (ko)

Figure 32: Two Feynman diagrams for ete~ — 7v* via s-channel Z° exchange.

1 1 1 1
. 6.88
(t—m2~+u—m2~)<t—m2~+u—m2~> ( )
N; N; N; Nj

The average over the electron spins is given by

Z (x122)(z221) = Tr[p2-0p1-T] = —2p2-p1 = 5. (6.89)
AL,A2

So the spin-averaged differential cross-section is:

do (1 1 (1
= (3) e (12 1) 60

5§1,52
2 4 ms mzs
Uyes SW SW N; "'N;
32 4 12 21 J J
Sy i1 cw cw S

L + ! ! + ! (6.91)
t—m%  u—mi t—m%  u-—mx :
N; N; N; Nj

where the first factor of (1/2) in eq. (6.90) comes from the fact that there are identical sleptons
in the final state. To compare with eq. K27, p. 245 in Haber and Kane, note that for a pure

photino exchange, N;1 — cwd;1 and N2 — sy d;1, so it checks.
6.11 ete” — oot

There are two graphs featuring the s-channel exchange of the Z°, shown in Fig. 32, where we
have also defined the helicities and momenta of the particles. Since we shall neglect the electron
mass, there is only one graph featuring the ¢-channel exchange of a chargino, shown in Fig. 33.

The Mandelstam variables can be expressed in terms of the momenta and the sneutrino mass

2p1'ps =8 2k1 ko = s — Zm%L : (6.92)

21k = —t + m%L : 21 -ky = —u + m%L : (6.93)
— 2 . ke = — 2

2p0-k1 = —u + mevL ; 2po-ko = —t + muL . (6.94)
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Figure 33: The one Feynman diagram for ete™ — U0* via the t-channel exchange of a chargino
in the limit where m, — 0.

The amplitude for the two graphs in Fig. 32 are given by
ig?(=3 + siy) 1

My = ()T T e k)] 6.95
1=(-1) 22, D, [G2 (k1 — k2)-T1] (6.95)
.9 9
—ig°syy 1 .
= —_— k1 —ko)- .
Moy 22, Dy [G1(k1 — k)-Tx2] , (6.96)

where Dy = s — M% +4i['z My and T'z is the Z° decay width. We have inserted an extra overall
minus sign in the first amplitude, due to the different ordering of the spinors. This could have
also been inserted in the second amplitude. The Feynman rules for the Z%e vertices are given
in Figs. 52a,b, for the Z°0; 7y, vertex in Fig. 72c, ref. [2]. The amplitude for the Feynman
graph in Fig. 33 is given by

.72 [G2(k1 — p1)-T21] (6.97)

where the relevant Feynman rule is given in Fig. 60b. Again we have inserted an extra overall
minus sign due to the ordering of the spinors. Squaring each amplitude and summing over the

incoming helicities we obtain

h i) 1

g 2 \2

M2 = (-1) (t —m? )2 +ts| (6.98)

/\;\2' ol ciy |Dz|? [ VL ]
2 948%1/ 1 2 12
A}; IMa|? = (=1) Ty mE [(t—m;L) +ts}, (6.99)
112
2 2 2
Vi ||V

M2 = —g* [(t —m? ) + ts . (6.100)

gi' | [t —m2, ]]Zl (t—mZ)(t-mZ)
2 J

The interference terms between the first and the second as well as between the second and third
amplitudes are proportional to m? and can thus be neglected. For the remaining interference
term we obtain

4(1 —2s%,) (s — M2 20|V |?
oR(MM]) =2 ( - w) ( |Dz|22) [(t—m%L)Q +ts] S % (6.101)
2 :
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In computing eqs. (6.98)-(6.101) we have used

Tr[pr-o (ki — k2)-Tp2-0 (k1 — k2)-5] =4 Tr[pa-0 (k1 — p1)-Tp1-0 (k1 —p1)-0] =
2T [p1-o (k= p1)-Tpa-o (ki — ko)) = —4[(t —mZ )* + st] . (6.102)

This agrees with eqs. E46-E48 of ref. [2]'*. We can compute the total cross section via

t+ do 1 9
o=/ —dt = W/t ( > IM| )dt (6.103)
A2
where the integration limits are given by
1/2
— 2 5 _ 4m%L

Denoting the terms corresponding to the matrix elements squared as

4

olete™ — rit) = GZ? (S1+ S+ Ss + Si3) (6.105)
we obtain
8253 5 )
=— (4 —1 1 1
5152 = 45el D, (st = 1” +1] (6.106)
N =N
S3i = Vil L_2B + (1 —27y)In m J (6.107)
{ 2 M% t — M%_ ]
S312 = [V |Vay | | —28 T2 Z —" (6.108)
[ ty — M2 J
Cz C =1 A
2 2
i -t & M (M
Si3 = V; B(l—2 4+ —)1 Y 09
13 012/1/|DZ|2 Z| 11| 'Yz) ('}’ + s ) n ty — M2 ( )

which agrees with eqs. E49-E52 of ref. [2] in the limit of a single wino chargino. Here

vi=(mi —MZ)/s (6.110)
S3 = 53,1+ 532+ 53,12 (6.111)
6.12 ecte” — NN,

Next we consider the pair production of neutralinos via eTe~-annihilation. Here there are 8
Feynman graphs shown in Figs. 34 and 35: four for s-channel Z° exchange and 4 for ¢-channel

selectron exchange. The momenta are as labeled in the graphs. We denote the neutralino
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e(p1, A1) Ni(ki) e(p1, A1) Ni(k;)

70 z°
e(p2, A2) N;(k;) e“(p2, A2) Nj(k;)
e(p1, A1) Ni(ki) e“(p1, A1) Ni(k;)
Z° Z°
e(p2, A2) N;(k;) e’(p2; A2) N;i(k;)

Figure 34: Four Feynman diagrams for ete™ — N;N ; via s-channel Z° exchange.

e(p1, >\1)= | < Ni(k;) e“(p1, >\1)< | . N;i(k;)
| |
€L vV €R ¥
| |
| |
e(p2, X2) ] N;(k;) ¢ (p2, \2) ) Nj(k;)
e(p1, M) Ni(k;) ef(p1, A1), Ni(k;)

.
P

. LN

e(p2, A2) - (k) e“(p2, A2)

Figure 35: Four Feynman diagrams for ete™ — Nlﬁ] via t-channel selectron exchange.

masses as M+~ and the selectron masses as e/, respectively. The electron mass will be
]

“There is a typo in eq. E48 of [2], it should be multiplied by 1/cos? 8,,.
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neglected. The kinematical variables are then given by

s = (p1+p2)* = 2p1-pa = (ki + kj)* = 2ki-kj + MZ + M% (6.112)
i J
t=(p1—k;)? = —2p1 ki + M]%i = (py — kj)> = —2po-kj + MﬁlM]%j : (6.113)
w=(p1 = kj)® = =2p1-kj + M% = (p2 — ki)* = —2py-ki + M% . (6.114)
J 1

Numbering the Feynman graphs in each figure from left to right and from top to bottom we

obtain for the 8 amplitudes

(0O )

My = (=1) P (ziTuy)) (J2o"11) (6.115)
s 2.2 "L
1g9°syy O L
My = CQLDZ” (Zi7,y5) (10" 32) | (6.116)
W
(=)0 (5 +s%) ,_ _
Ms = p D; = (20,) (727" 21) (6.117)
zg S%VO”L*
My = (= )T (7;0.y:) (y10"x2) | (6.118)
Gy
)2g% Af A, o
Ms = (—1)((75)_9—~2) (yir1) (Z72) (6.119)
eL
(—9)2¢°s7y Nu N
M = (-5 —— )ﬂ (@) (yjz2) | (6.120)
w eR
(—1)29” Ai A3 -
Mz = W (yjr1) (Zi2) (6.121)
eL
1)29° 57y N1 N
Ms = - C) (gu_ “)]1 (@91) (yiz2) , (6.122)
w Mer
where O”L O”L* is given in eq. (D.5), A; = —lng Nj and Dy = 1/(s— M2 +il,My),

as before. We have chosen the order (ij12) of the spinors in My to have an overall plus sign.
Thus the amplitudes M 456 receive an overall minus sign, since the order of their spinors is
an odd permutation of (ij12). We now must sum the amplitudes and then square them. We

first list the individual amplitudes squared, summed over incoming and outgoing spins.

29" |01 1P (=5 + siy)?
S M = i w {(M]%Z_ —u)(ME )+ (ME - (M, —t)](6.123)
A1,2,i,5

2948%‘,|O"L|2
> My = W [(M]%i—u)(M]%j—u)+(M]%i—t)(M]%j —t)} (6.124)
A1,2,i,5

29" |01 (—5 + siy)?

M;|* = {(M% —u)(M% —u)+ (M% —t)(M% —t)](6.125)

)‘1%;,1' ey | Dz ? N N; Ni N
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> My =

g SW|O”L 2

(M% — u)(M]%j —u) + (M]%i - t)(M]%j —t)

A1,2,i,5 |D |2 i

4 AA
T M2 = %(M%—MM 0
Al?lj L J

4ag*s NN
T Mo = ¥ (W' 32312' (M2 — (M2 — 1)
Al?lj R ' ]

2 49 |AA| 2

=7 gl o2 M% -

S Ml = 2 a2

Al?lj

)\127,]

i J

4g* st INy N
Z |M |2 g (W| 1 ]1| (MJQV —u)(M}% _u)

meR)?

(6.126)

(6.127)

(6.128)

(6.129)

(6.130)

Since we are neglecting the electron mass, interference term pairs containing x1y1, 141 or 1 — 2

vanish. Therefore, we must only compute the pairings: (13),(

ilzMz)])

2 3 RM M)

Al?lj

2 Y RMM]) =

A1,2,i,

2 > RMM)) =

A1,2,i,

2 Y RMeM]) =

AL,2,i5

2 Y R(MoM) =

A1,2,i,5

2 Y R(MoM) =

A1,2,i,

2 > RMsM]) =

AL,2,i5

2 Y R(MyMb) =

A12,i,5

2 3 RMM]) =

AL,2,i5

15),(17),(24

89RO} — sy

M~ M~
( ) C;I/V|DZ|2 N; st
8g'(—% + st )R(O}F A A3 D!
(_1) g( 22 W)~(2 i 12] Z)Mﬁ.M]\N/.S
cyy (t —m7)| Dz i Nj

8g' (3 — LR(OIF A3 4;D5)
CW(U - m%)

Sg* sty ROL?
iyl Dz|?

(—1) SM]\NTZM]\NTJ )

—8gtsiy R(N;, ]1(’)”LD 1

(M% —t)(M2 —+),

iy (t — M%) i i
8g43%V8?(N* ; (’)”LDEI)]VI~ Mo s
=g R

8g*(—3 + sty )R(OJF* 4;A3D ")

Gy (t— ) : ;

g*Of* Ar Aj(—5 + sy
ciy (u —m7 )| Dz|?

8
(=1)

(S - M%)SM]\NQM]V] s

89 SWO”L*N*N
ey (t — M) Dy |2

(s — M%)sMﬁiMﬁj ,

o8

),(26),(28),(35

(46),(48),(57), and (68): (must include iI'z in numerator and take real part 5}3[(9%2(5

(M% —t)(MZ — ),

):(37),

—M%—

(6.131)

(6.132)

2 2

(6.134)

(6.135)

(6.136)

(6.137)

(6.138)

(6.139)



Z°(kz) Z°(kz)

Ni (pi, A\&) N; (piy Ai)
N (kj, Ae) N; (kj, X))

Figure 36: The Feynman diagrams for N; — NjZO in the MSSM.

—8g"siy O NN,
2 %MAIMT = i] J 5—M2 s_*_t_M?v s_i_t_M?v , 6.140
T M) = e~ M £ M )= M), (6140

—8g*(ArA;)?
_8~gz( Z_J)~2 sMyg M ., (6.141)
(t —mz)(u—mi) v J

2 Z %(M5M$):

AL,2,i5

—8g*st (Na N )?
2 Y RMMY) = 2 KVQ( - 1132 sMg M5 . (6.142)
M ey (t —m%)(u —m3p) i Nj

The total cross section is now given as in eq. (6.103), where the integration limits are now given
by

t, = (6.143)

what kind of integrals do we have?
/(C+t+t2)dt, /(C’+t+t2)/(t—m2) dt, (6.144)
J(C +t+12)/(t — m2)? dt, /(0 L 2)/[(t—m2)(E—md) dt.  (6.145)

6.13 N, — Z°N;

For this two-body decay there are two tree-level Feynman diagrams shown in Fig. 36, where
we have also defined the momenta. The scalar products of the momenta can be expressed in

terms of the masses as

O%k:ky = M% — M% — M2 6.146
jhZ N; Nj VA ( )
i -ki = M2 + M% — M?2 6.147
pl i N; Nj Z ( )
2iky =M% — M%2 + M2 6.148

The two amplitudes are given by'®

igOff* .
M = (:E]Euxi)e“ , (6.149)
cw

""When comparing with the 4-component Feynman rule in ref. [2] note that 0" = O}**, c.f. eq. (D.5).
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_ hO(kp) _ BO(kp)

s e

N; (pis M) o N; (pi, \) o7

N Nj (kj, M) N N (kj, Ag)

J

Figure 37: The Feynman diagrams for N; — Njho in the MSSM.

. nL
_ zg(’)ij

w

Mo (gﬁuyj)e“* . (6150)

Squaring the individual amplitudes, summing over initial and final state spins and using

ko kY,
> e = —g" + L2, (6.151)
pol 4
we obtain
s S i
7 i .
Do IMIP = 3 IMoff = St | M+ M - 2MG eE (6.152)
Aij,z Xij,z w Z

For the interference term we observe that in M; and My Z; (z;) is matched with y; (v;).

Therefore it must be proportional to My M .
i J

t g*R(OF})?
7
2R(M1M3) = 12TJMMM]% : (6.153)
2
- - 1 M2 MS\ (4
I(N; » Z°Nj) = —— /2 [1,—Z i) = 2 6.154
(Wi = ) 16m M5 M2 M2 2Z|M| ( )
i N; N; Xij.z
=1z (6.155)
where

Nez,y,2) =22 +y? + 22 — 2zy — 272 — 2y2. (6.156)

6.14 N, — h°N;

Next we consider the decay of a neutralino to a lighter neutralino and the lightest neutral CP-
even Higgs boson. The two tree-level Feynman graphs are shown in Fig. 37, where we have also

labeled the momenta and helicities. We denote the masses for the neutralinos and Higgs boson
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respectively as M~ M. The invariant momentum scalar products are then given by

NN7
2k, -k, ::Adﬁi —-A4§G — M} (6.157)
2pikj = MZ +—A4§E — M} (6.158)
2pi-kr, ::A4§% —-A4§@ + Mp (6.159)

Using the Feynman rules of Fig. 59, the amplitudes are given by

My = igAj;(ziyi), (6.160)
My =igAij(yizj) (6.161)
where we have defined the mixing matrix A;; = Sjjcosa + Qf;sina (c.f. egs. (D.24) and

(D.25)). Summing over initial and final state spins we obtain for the parts of the total matrix

element squared

YoM =D MY = Pl AP (ME + ME — M), (6.162)
Xij Xij ' !
ZRLNHAAD::4Q%RQﬁﬂAQ%AQ% (6.163)

The total decay rate is given by

I(N; — hOﬁ) L2 ( Mff M2 ) ( Z |M|2) (6.164)
’ 16wﬂl~ AQ;’AQQ = :
= (6.165)
where
Nz, y, 2) = 2 +y? + 22 — 20y — 222 — 2y2. (6.166)

The decay rates for the processes N, > N i H 0 and N; — N. jAO can be obtained from the

above by replacing

6.15 N, = N; NN,

Next we consider the decay of a neutralino N; to three lighter neutralinos: ]\~7j,]\~fk,]\~fg. At
tree-level, this can proceed via a Z° boson for which the Feynman graphs are shown in Fig. 38,
where we have also defined the momenta. In addition, it can proceed via the exchange of either
of the neutral scalar Higgs bosons: h°, H?, A? as shown in Fig. 39. Since either of the final state
neutralinos can directly couple to the initial state neutralino there are two more diagrams for

each diagram shown in Figs. 38 and 39 for a total of 48 tree-level diagrams. The computation
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N; (pis A\&) Ny (k) Ni (pi, M) Np. (k)

N (k)

N; (pis A\&) Ny (k) Ni (pi, M) Np. (k)
Z0 Z0
3) N (k) 1) Ny (ko)

Figure 38: Four Feynman diagrams for N; = N; NkNg in the MSSM via Z° exchange. There
are four more where N < Nj are interchanged and another four where N + Ny are inter-
changed.

Ny (k)

Nj(kj) Nj(ks)
Ni (ps) Ni (k) Ni (pi) Ny, (k)
e e
" Ny (k) @ Ny (k)
N;(kj) N;(k;)
Ni (ps) Ni (k) Ni (pi) Ny, (k)

hO,HO,AO\ N hO,HO,AO\ N
3) Ne (k) 1) Ne (k)

Figure 39: Four Feynman diagrams for N; = N; NkNg in the MSSM via h°, H?, AY exchange.
There are four more where the labels N > Nk are interchanged and another four where
N + Ny are interchanged.

of the total decay rate is correspondingly elaborate and we restrict ourselves here to recording
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the contributing amplitudes:

ZO//LO//L
Mz = (—1)7(96]-6#3:@-)(@6”@/@), (6.167)
CWDZ
ZO//LO//L
Mzz = ____jj___(xjﬁuxﬂ(jlﬁuyk), (6.168)
Z
ZO//LO//L
Mzs = T(yﬁufﬁj)(fckﬁ“w), (6.169)
ZO//LO//L
Mzy = (—1)7(%@%)(@6“%) : (6.170)
cWD
Miziggst = —g°CJ;Cro(xiy;) (yrye) , 6.171

Mtiggs2 = —9°CiiCre(xiy;
Mitiggss = —9°CiiCro (i
Mitiggst = —9°CiiCro(UiT;

Cj=cl +c’ +cff
6.176
6.177
6.178

hO _ qn
Cij = S8i;cosa+ Q;sina

0
C-H ES{'-Sma— ]cosoz

C{;l = (—1) (S" cos 3 — Qj s1nﬁ)

For each amplitude in egs. (6.167)-(6.174), there are two further amplitudes: one where the

(6.175)
(6.176)
(6.177)
(6.178)

indices 7 <> k are swapped and another where the indices j <> £ are swapped. The additional
amplitudes all have a further factor of (-1) due to the ordering of the spinors. When computing
the total decay rate, additional attention must be paid to the case where two or more final state

indices are equal, since the phase space is then reduced by the corresponding factor.
6.16 ctem — O C;

Next we consider the pair production of charginos. We denote the chargino masses as M G
and neglect the electron mass. The s-channel Feynman diagrams are shown in Fig. 40, where
we have also introduced the notation for the momenta and helicities. The ¢-channel Feynman
diagram via sneutrino exchange is shown in Fig. 41. The invariant scalar products can be

expressed in terms of the chargino masses and the Mandelstam variables:

pi-pr=1s, ki.kj:%(s—M%i+M%j), (6.179)
pi-kj = %(M%j — 1), p2-ki = %(Mé —1), (6.180)
p1ki = %(Mé —u),  prkj= %(M(%j — u) (6.181)
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e(p1, A1) Ci (ki, Ai)
v, Z°

e do) 1) Cy (ki )

e(p1, A1) Cit (kiy \i)
v, Z°

elpz2)  (3) 5 (kj, Ay)

Figure 40:

Feynman diagrams for ete~ — C;° CN’;

e(p1, A1) Cit(ki, \i)
v, 2°

e“(p2, X2) (2) Cf (kj, Az)

e(p1, A1) CF (ki, \i)
v, Z°

e“(p2, N2)  (3) C5 (ks Az)

via s-channel v and Z° exchange.

C; (kj, Aj)

A

CiF (kiy M)

Figure 41: The Feynman diagram for eTe™ — C~’Z+ 6‘]_ via the t-channel exchange of a chargino.

The s-channel Z and v amplitudes are given by

ig? [ C
Mo = (-1) 75 (——@ -
w

A,0F
S DZ

> (ziouyj) (Y20 1),

. 9 /L
'Lg Ce BBO” _ _
M 705 (+ )C%V (3 D, (Ziopy;) (ot ) ,
g2 A QR
19 C e o o
Mozoa = (H1) (f D, ) (275, (3251
g2 B,OR
g Ce e L L
Myzoa =1 (‘? D, ) (Z5:) (117" w2)
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(6.183)
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(6.185)



where A, = —% + S%V, B, = Qes%/v and C, = —QeeQC%V/QQ. The ¢-channel amplitude is given by

—ig*VaVj;

M = (+1) -

v

(yj21)(Ziy2) (6.186)

Squaring the individual amplitudes and summing over initial and final state spins we obtain

2 29" | Ce AeOgJL'Q_ 2 2 2 2]
|IMz01]° = % ~ + D, _(M@ — t)(Maj —t)+(s+t— M@)(s +t— Maj)_ ,(6.187)
Moz0af2 = % % _ B%?JL : :(M%i — t)(M%j —t)+(s+t— Mé)(s +t— ng): ,(6.188)
M. 7042 = % %+ A;)—igi 2 _(M%i - t)(M%j —t) +(s+t— M%i)(s +t— M(%j): ,(6.189)
M0 af? = % % _ Bziof 2 :(M%i —O(ME =)+ (st = ME)(s+1 - ng): (6.190)

M2 = %(Mé —O(ME 1) (6.191)

Next we must consider the interference terms. Since we neglect the electron mass only the

amplitude pairings (13)(17)(24) and (37) contribute

4 A OL C A OB
t oy _ 8 Co , Alij ) (Cc | ATy M-
2R (M 204 M 0 ) = R K “t ) ( C )| MaMe, s (6.192)
4:94 C AeO,'L‘
2R N R|VIV, |2+ 2 MZ —t)(M% —1t),(6.193
. 894 Ce Beogf Ce Beogf*
2% (M7Z0 2M7Z0 4) - %?R [<? - TZ ? — T} MgiMajS, (6194)
4g* C.  AOf
£\ _ g *17 e eYij o
2R (M'YZO 3M;) = m% [ ilVYJ (? + TZ MCiMC’jS . (6195)
The total cross section can be computed via
t+ do 1 t+ 1
= —dt=—F - 2| dt. 6.196
7= ) @ T 167 /t (4;; |M|> (6.196)
112
where the integration limits are given by
AM2 1/2
ty =M% — % (1F8;), and B = (1 — CJ‘) (6.197)
J s
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u(pm >\u) X; (kz) u(pw >‘u) X;r(kz)
W+ W+
d(pa; Ma) X5 (k) d(pa Ma) XJ (k)
e(p1, >\1)= | < X7 (ki) e“(p1, >\1)< | . X0 (k;)
[ [
€L v S
[ |
[ [
E(pZ’ >\2) X?’(kj) ec(va )‘2) X_?(kj)
Figure 42: The four tree-level Feynman diagrams for ud — CN’;F N e
6.17 ff*— C’;“Nj
—Zg2OL*
My = m(ydauiu)(ﬂw Yj) (6.198)
_ZQZOR*
My = m(ydauayu)(w]a Yi) (6.199)
—Z\/_g 2 X5
M = 2 (@) (e ) (6.200)
u — md'L
Z\/_g VlXiju _
My = ———5—(yazi) (zuy;) (6.201)
where the neutralino couplings are given by
_ Sw _ SwW
XNid:—%NjQ—{—mle, Xde_ éN 6CWNj1. (6202)
Next we compute the individual amplitudes squared.
M| = 9105l (M2 —t)(M% —t)+ (s +t— M2)(s+t— M%) (6.203)
' |Dyy |2 Ci N; Ci N;/| '
2 g4|OR 2 2 2 2 2
Maf? = S0 [(M, —(ME =)+ (51— ME)(s+ 1 - Mﬁj)} L (6.204)
s 29 Ui Nyd| 2 2
IM3]" = —————=5—(s s+t— Mz )(s+t—M~) (6.205)
(u— mdL) Nj
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P

Figure 43: Four Feynman diagrams for the decay ﬁ;g — pt7EF in the MSSM via neutralino
exchange. We have shown in each diagram which component of the lightest stau couples.

204 \Via X 5|2
2 N M2 D(ME — ¢
(t —m2 )2 ( C; A N; )

urL

My = (6.206)

Finally we compute the interference terms

6.18 i, — ptrEA"
The lightest stau mass eigenstate, 7~'1i, is a mixture of the weak eigenstates ?Li and 7*1%. We

denote the mixing angle by 6~
7 = cos 0~ 7 4 sin 6~ TE (6.207)

In gauge mediated supersymmetry breaking models the decay of the right-handed smuon to the

lightest stau, is of interest because [...]. We shall employ the Mandelstam variables
s = (py — k)" = (ku + kpx)? (6.208)
t=(py = ku)® = (kz + krz)? (6.209)
u=(py = krx)® = (ku + k3)? (6.210)

Neglecting the final state muon and tau masses we then obtain

py-ky = %(M§+M§—s), ky ks = is, (6.211)
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Pk = %(Mﬁ—t), kotky = $(M2—1t), (6.212)
Pk = %(Mg —u), kuks = 5(M2—u), (6.213)
(6.214)
The four amplitudes are given by
—’L-QQZSWQNA;NH B o
My = cW(t — M]%) (muki-ay7+) ) (6'215)
—i29%s3y QuQ- NA M 3
= L (T2 6.216
Mo CIQ/V(t — M]’Q\;Z) (xux7+) ) ( )
iQQQSwQNAfN“Mﬁ
Mz = L (ZuT ), 6.217
3 CW(t—MZfZ\}') (:L‘HxT ) ( )
129”53y QuQ+ N>, _
My = (Zuki-oy,—). (6.218)

- MZ)

Ay = T Ny + W(Qr — TNy, ki = p(iig) — ky

The interference between the amplitudes M, 5 is proportional to m,, which we neglect;
similarly for the amplitudes M3 4. There is no interference between the first two diagrams and
the last two since they involve different final states, 7&. The total amplitude squared is thus

given in this approximation as

|Miot|? = IM1]? + |IMao|> + IM3]2 + |[My)?, (6.219)
note however, that the individual terms contain interference terms from the different neutralinos
contributing.

4g* 52, Q? A% ANy N*

2 wp 2772 JitJi Vi
= ———"(ut — MEM= 6.220
Ml cy (u p T)Z(t—M%)(t—M,%)’ ( )
i,j N; N;
4g'st, Q2 Q2 (Ni)*(Nj1)* My M.
Mof? = — ngWQA“ﬁTZ I P (6.221)
chy (k5 — ﬁi) ij (t— ﬁz)( - ﬁj)
|M |2 4948%VQ;2L Z AfiA?jNﬂN;lMﬁiMﬁj (6 222)
3 = S s .
012/V ij (t_M]%i)(t_M]%,j)
datst 0202 Nt Nt |2
My = =2 @ (ut — MEM2) Y [N | (6.223)

— M2 )2 M2V — M2
cyy (t MJ\NG) (t Mﬁi)(t MJ\NIJ')

2
In order to get differential decay rates and the total decay rate must integrate over the phase
space of the final state particles.

In four-component notation this has some tricky minus signs because of the virtual neu-

tralino. (Compare with answer given in paper with Sandro and Graham.)
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6.19 7 — G (done)

The Goldstino G is a Weyl fermion which couples to the photino 4 and photon field A* according
to the Lagrangian:
1

L=——m—0,G0"5 "7 [0,A, — 9,A,] + c.c. 6.224
NG a"agPoty | ]+cc ( )
v v
5 i
G G

Therefore ¥ can decay to fy—{—CNv’ through the diagrams:

with amplitudes:

My = 2\/§Z<F> y(é) [km/'O'E'E B E'O'kmfﬁ] kaayT(’NY) ) (6225)
My = —m xT(G) [kv-ae.a — 6'5[67'0] kégx(,?) . (6.226)

Using the on-shell condition k,-e¢ = 0, we have —e-0k,-G = ky-0¢-0 and —€-Gk,-0 = k,-Ce-0

from eqgs. (A.1) and (A.2). So we can rewrite the total amplitude as

M =M+ My =i[y(G)Ay'7) - ='(G)B=(7)] . (6.227)
where
1 = .
A= mkv-ae-akaa, (6.228)
1 _ _
B = mkv-ae-aka-a. (6.229)

The squared matrix element is therefore (taking (F') to be real):

IMI” = y(G)Ay' Fy(F) Ay'(G) + 21(G)Bz(7)2" (7) B(@)

—y(G) Ay (H)2" (7) B(G) — 27 (G)Bx(7)y(7) Ay' (G) . (6.230)
Summing over Goldstino spins and avera,ging over photino spins gives:

1 -
= Z IM|? = STe(Aps-GAkg T 7) + 5 T(Bpy-0Bkg o). (6.231)

S"' S~
~
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(The A, B cross terms die because of m5 = 0.) Therefore:

1

1 . — _ _
) Z IM|? = 4<F>2'I‘r(kmfae-ﬁka-ap;ﬁka-ae Oky-op50) + (0 < 7).

§~,5~
Gy

Now use
ka-am-ﬁka-a = —2k5~p;k5-0
k7~0k5-6k7~0 = —2k7-k(~;k7~0

and the corresponding identities with o <+ @ to rewrite this as:

53 MpP = w%(km,-ka)(p?ké)Tr(e-Ekv-ae*-Ek@ﬂ) +(ooD).

Now, using the photon spin sum identity

WBoVE Y
Zee g

v spin
we get
1 2 8 Lok Qk _ m%
§Z|M| ——W( v kg) &P = e
spins
So,

PG =96) = -5 2 MP ) = 167 (F)2
Y

spins

Can also redo this in GMSB directly using loop amplitudes!

6.20 SUSY QCD Feynman Rules

In two component formalism the gluon-quark-quark Lagrangian is given by [2]
L=—g,T% (qjauqk _ qﬁguch) AP
In two component formalism the gluon-gluino-gluino Lagrangian is given by [2]

L =195 fabe (éa ' gb)Az )

(6.232)

(6.233)
(6.234)

(6.235)

(6.236)

(6.237)

(6.238)

(6.239)

(6.240)

where g, is the strong coupling constant, a, b, ¢ are SU(3) colour indices and fg. are the SU(3)

structure constants. We have denoted the (2-component) gluino field by g% as in Table 1 and

the gluon field by Ajj. The gluino-squark-quark Lagrangian for each squark flavour f is given

by

~ i iz = ki i~
£ =—V20,15. 3 [Gud))d}, + (@585 — G0 )Trn — (@) 5uitr]
7
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Figure 44: Fermionic Feynman rules for SUSY QCD



ga(pl) Ec(kl) ga(pl) g(kl)
W i
95(p2) Ga(k2) 9a(p2) g(k2)

Figure 45: The four tree-level Feynman diagrams for gg — gg via s-channel gluon exchange.

9a(P1) R Go(k1) 9a(p1) R du(k)
g A gy

9b(p2) ) ga(k2) 9 (p2) T k)

9a(P1) Folk1) 9a(p1) ge(k)
g \ g \\

9v(p2) Ja(k2) g5 (p2) Ga(k2)

Figure 46: Four Feynman diagrams for gg — gg via t-channel gluino exchange.

6.21 gqg — gg

Using the Feynman rules of the previous section we can now compute the process gg — ¢g.
The Feynman diagrams are shown in Figs. 45,46, and 47. In writing down the amplitudes
we shall associate with the final state gluinos §¢(k1), g%(kz), by the spinors z§,y$ and 24,44,
respectively. We have included the colour indices. With the initial state gluons g,(p1), gs(p2)
we associate the polarisation vectors €; and eo, respectively. Numbering the amplitudes in the

order of the displayed Feynman diagrams we obtain

9
—1
M = M(Efﬁ“yg) [((p1 — p2)p€r-e2 + (P2 + q)-€1 €2, — (g + p1)-€2€1,] ,(6.242)

- 2
? cx)abx ;_d—
My = & de ! " (47 yf) [(pr — p2)uer-é2 + (p2 +q)-e1ezu — (g +pr)-e2ey] , (6.243)
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0000000 > 0000000 <
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ga(pl) gc(kl) ga(p1) §C(k1)
g \ g \
95(p2) Ja(k2) 9 (p2) Ga(kz)

Figure 47: Four Feynman diagrams for gg — gg via t-channel gluino exchange and where the
arrowson the gluino propagator clash.

g5 fcxafmdb e—u

Mz = =5 [#10" (k1 —p1)- 05 ySleruean (6.244)
g9
- ngfxcafdxb v ¢
M — 2 (380t (k 245
4 = t—m2 [ o ( 2 _p2)'00 yl]ﬂu@u, (6. )
9
M- = ngfcmbfxda h(k v d 6.946
5= = 3 12107 (ki = p2) 00 yslenen, (6.246)
g
o _ngfdxafxcb d— v e
M o (k 6.247
6 = ﬁ[ (k2 — p1)-0 7"y le1u€m (6.247)
g
. 2
195 fevafdzbmy;
Mz = %[ifﬁ“a”ig]emegy, (6.248)
g9
- 2
195 freafuabmy
Mg = %[yfo“ﬁ”yg]quezu, (6.249)
g
~ig; faza featy
My = su _mmch Izt 0" rileru€an , (6.250)
g9
. 2
—195 frdafrebmy;
My = sux_an;f 9 [ydot e ySler e - (6.251)
g

z is an intermediate colour index. Mandelstam variables are given by
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qa(p1, A1) ge(k1) q5(p1, A1) Ge(k1)

9(q) 9(q)
Gp(p2, A2) Ga(k2) (P2, A2) ga(ks2)
da(p1, A1) Ge(k2) q°.(p1, A1) ge(k1)
9(q) 9(q)
Gy (P2, X2) Ga(k2) a5 (p2, A2) g(k2)

Figure 48: Four Feynman diagrams for g7 — ¢gg via s-channel gluon exchange.

These amplitudes can also be combined as

Ml +M2 _ _iggfzd:vfab:v

—c— ,.d ~d— , ¢
€1u€20 [xlaTyQ + wQUTyl]

[(p1 —p2) " + (p2 + """ — (p1 +0)"9""] , (6.252)
)
2
M3z + My + M7+ Mg = %Emﬁzu [56{5“(761 —p1)-05"Ys
g

—250" (ky — p2)-0 0"y — mzT{0" 0" TG — m;yfo—ﬂaVyg} . (6.253)

- 9
i
M+ Mg+ Mg+ My = %emeb [:Efﬁ”(k:l — p2)-06“yg
g

—zd5" (ko — p1)-0 3" y§ + mgigﬁl‘a”if + mgy%a“ﬁ”y{] . (6.254)

45 interference terms. Shall we do that?? I find this puts some doubt on our formalism, no?

This calculation is much easier with 4-component fermions.
6.22 g7 — gg

This computation is very similar to ff — NZ]V]

6.23 N,N; — ff

Do this as a dark matter problem, perhaps in the slow approximation.
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= \ = \
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Figure 49: Four Feynman diagrams for g7 — gg via t-channel squark exchange.

6.24 Gauge boson wave function renormalization due to chiral fermion loops
6.25 Chiral fermion wave function renormalization due to gauge boson loops
6.26 Triangle anomaly from chiral fermion loops

6.27 Pole mass of the top quark.

6.28 Pole mass of the gluino.

6.29 Nambu-Jona-Lasinio model gap equation (e.g. top-quark condensation
from 4-fermion interaction)

6.30 Neutrino mixing (?77)
6.31 Polarized Muon Decay
6.32 R-parity violating decay N; — wud
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Appendix A: Two-component spinor notation and identities

In this Appendix, we list various identities involving the ¢ and @ matrices. When considering
a theory regularized by dimensional-continuation, one must be careful in treating cases with
contracted spacetime vector indices p, v, p,.... Instead of taking on 4 possible values, these
vector indices formally run over d values, where d is infinitesimally larger than 4 in dimensional
regularization, and infinitesimally less than 4 in dimensional reduction. This means that some
identities that would hold in unregularized 4-dimensional theories are inconsistent and must
not be used; other identities remain valid if d replaces 4 in the appropriate spots; and still other
identities hold without modification.

Two important identities that do hold in d # 4 dimensions are:

[UHEV + UVE,M]O/B — 29;1“’5?“ (Al)

[clo” + 6”0“]% = 29“”52,“ . (A.2)
The trace identities:

Trjo#T”] = Tr[c*c"] = 2¢g"” (A.3)

then follow.

In contrast, the Fierz identity (written here in three equivalent forms):

o708 = 25,057 (A.4)
Ugaauﬂﬁ = 2€08€45 (A.5)
auaaagﬁ = 2e 4P (A.6)

does not have a consistent, unambiguous meaning outside of 4 dimensions. More discussion
here about this problem, and references, would be helpful. However, the following identities

that are implied by the Fierz identity do consistently generalize to d # 4 spacetime dimensions:

(0" ,]a” = do? (A.7)
[o"0,)% 5 = do (A.8)
(05" 0] 5 = (2 = d)o?, o (A.9)
[7#0,5,]% = (2 — )73k (A.10)
(015" 075 )" = 4”780 — (4 — d)[0"5"),"° (A.11)
[6to Epau]d“ :49””50-‘ — (4—d)[§”ap]°"', (A.12)
(05" 0’5" 0], 5 = —2[0"0"0"] 5 + (4 — d)[0"T "] 4 (A.13)
G0V 0"7 |40 = —Z[EKUpEV]aﬁ + (4 — d)[g¥ 0’5" . (A.14)

76



Eq. (A.4) is the basis for other Fierz identities that hold in 4 dimensions, which are given in
detail in Appendix A of ref. [6].

Identities that involve the (explicitly and inextricably 4-dimensional) e#*?* symbol,

Fho’E’ = gME" — g'PEY + ¢VPTH — iR, (A.15)

UV P — ghV P _ gHP gV o VP gt . Y Pr
= . .
oba’ ol = g of — g'Po” 4 g"Pot 4 e P (A.16)

are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from them:!6

Tr[o"5" 05" = 2 (g" g™ — g’ g"" + g""g"" + ie!P") (A.17)
— 9 (gt

Tr[c" 0”5 0" (9" g’ — gMPg"" + gHtgtP — ielPr) | (A.18)

This could lead to ambiguities in loop computations where it is necessary to perform the com-
putation in d # 4 dimensions (until the end of the calculation where the limit d — 4 is taken).
However, in practice one typically finds that the above expressions appear multiplied by the
metric and/or other external tensors (such as four-momenta appropriate to the problem at
hand). In almost all such cases, two of the indices appearing in eqs. (A.17) and (A.18) are
symmetrized which eliminates the e#*?* term, rendering the resulting expressions unambigu-
ous. Similarly, the sum of the above trace identities can be assigned an unambiguous meaning

in d # 4 dimensions:
Tr[o#5" 05" + cta"a o"] = 4 (g" g — g'* g"" + g ¢"P) . (A.19)

By repeatedly applying the identities given in eqgs. (A.1)—(A.3) to egs. (A.17) and (A.18) in
4 dimensions and eq. (A.19) in d dimensions, and using the cyclic property of the trace, one
can recursively derive trace formulas for products of 6 or more ¢ and & matrices.

i From the sigma matrices, one can construct the antisymmetrized products:

(O-Hu)aﬁ = %(O.gﬁal/’?ﬁ _ O-(’i[.yaﬂ*/ﬁ) , (AQO)
(@) = L@ ol — 7"V aly) . (A.21)

The o#” and a*" are mainly useful because of their role in the Lorentz transformation matrices

of eq. (2.6). For the (%,0) representation, s*¥ = o#”, while for the (0,%) representation,

Y8This is analogous to the statement that Tr (y°y*y"~y~") = —4ie’?* [in our convention where ¢*'?* = 41]
is only meaningful in d = 4 dimensions. In two-component notation, the equivalent result is Tr[c"F"c”T" —
Tl e o] = 4ie"P"*. In the literature various schemes have been proposed for defining the properties of 4% in
d # 4 dimensions [5]. In two-component notation, this would translate into a procedure for dealing with general
traces involving four or more ¢ and o matrices.
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st = @ where the angles 6 and E in eq. (2.6) are related to the antisymmetric 6, by:
0 = %eijkﬁjk and ¢ = 60 = —9%,

The matrices o and " satisfy self-duality relations in exactly 4 spacetime dimensions:

py 1, prpk FhY — L, prpk—=
ot = —5ie"P o, ot = S P T,y (A.22)

Appendix B: Correspondence to four-component spinor notation

It useful to note the correspondence between the two-component notation of Appendix A and
the usual four-component Dirac spinor notation. This is most easily exhibited in the basis
in which 5 is diagonal (this is called the chiral representation). In 2x2 blocks, the gamma

matrices are given by:

0 o —8,7 0
T of — 0 1.2 3 a :
i <5uo}ﬁ 0 ) ) Vs =YY ( 0 5%) : (B.1)

In addition, we introduce:'”

i A
1S = ] = ( - WV%) , (B.2)

A four component Dirac spinor field, ¥(x), is made up of two mass-degenerate two-component

spinor fields, xo(z) and 7,(x) as follows:
Xa(T)
U(z) = . . (B.3)
()

We define chiral projections operators P, = (1 — v5) and Pg = 3(1 + 75) so that

Xa(7) 0
0 1%(x)

The free fields can be expanded in a Fourier series; each mode is multiplied by a commuting

spinor wave function as in eq. (3.61). The field ¥ and the charge conjugate field are respectively

given by
U(z) = WA = (n (), Xa) (B.5)
T Na ()
U(z) =CVU (z) = . , (B.6)
X ()

"Tn most textbooks, ¥#¥ is called ¢**. Here, we use the former symbol so that there is no confusion with the
two-component definition of ¢#” given in eq. (A.20).
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where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy [9]:
AyFATL = ym, C Iyt = —yHT (B.7)
For completeness, we also introduce a matrix B that satisfies [9]:
ByFB™E = AHT (B.8)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral

representation, A, B and C are explicitly given by

0 56‘ 5 eaﬂ 0 €ap 0
A= P Bz( ) C=—-vB1t="" 7.]. (B9
<5aﬂ 0 ) 0 —es i o ) (BI)

Note the numerical equalities, A = y°, B = y'v3 and C = i7"?, although these identifications
do not respect the structure of the undotted and dotted indices specified in eq. (B.9). In
calculations that involve translations between two-component and four-component notation,
the expressions given in eq. (B.9) should be used. In calculations involving only four-component
notation, there is no harm in using the numerical values for the matrices noted above.

The external two-component spinor momentum space wave functions are related to the

traditional four-component spinors according to:

Ta (P, )
u(p,s) = ; u(p,s) = (y* (P, s), Ta(P,s)), (B.10)

Yo (P, )
1)(]7,8) = i ) Q_)(ﬁa 3) = (xa(ﬁa 3)7 yd(ﬁ’s))’ (Bll)

18

— (=

where v(p, s) = Cu(p, s)”. One can check that u and v satisfy the Dirac equations

( —m)u(@,s) = (p+m)v(B,s) =0, u(p,s) (p —m) =0(P,s) (p+m) =0, (B.12)

corresponding to egs. (3.9)-(3.12), and

(Ys4=1) u(P, 5) = (y5#—1) v(P,5) =0, w(@, 5) (v:6—1) = v(P,s) (134-1) = 0, (B.13)
corresponding to egs. (3.24)—(3.27). For massive fermions, egs. (3.38)-(3.41) correspond to

—

u(P, $)a(P, s) = 5(1+75#) (p+m) (B.14)

v(P,8)0(P,5) = 5(1+754) (P —m). (B.15)

'8 We use the standard Feynman slash notation: p = ~,p*.

~—
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To apply the above formulas to the massless case, recall that in the m — 0 limit, s = 2Ap/m +
O(m/E). Inserting this result in egs. (B.12) and (B.13), it follows that the massless helicity

spinors are eigenstates of vy

V(P s) = 2 u(p, 5), (B.16)
Y50(P, ) = —2Xv(P, ) . (B.17)

Applying the same limiting procedure to eq. (B.15) and using the mass-shell condition (pp =

p? = m?), one obtains the helicity projection operators for a massless spin-1/2 particle

u( D, S)ﬂ( D, S) =
)u(

—

(14 2Xy5) p, (B.18)
(1 —=2X\y;)p, (B.19)

—
w

1
2
1
v 2

which correspond to eqs. (3.47)-(3.50). Finally, the spin-sum identities

w(p, s)u(p, s) = p+m, (B.20)
v(p, s)o(p,s) =p—m, (B.21)
u(@ s)o" (B,s) = (p+m)CT, (B.22)
a (P, s)o(B,s) = C7'(p — m), (B.23)

>
A
>
A
S0 (5, 9)a(F, 5) = O+ m). (B.24)
A
Z’U(ﬁ,S)UT(ﬁ,S) = ( _m)CT7 (B25)
A

correspond to egs. (3.51)—(3.54).

Bilinear covariants are quantities that are quadratic in the Dirac spinor field which trans-
form irreducibly as Lorentz tensors. These are easily constructed from corresponding quantities
that are quadratic in the two-component fermion fields. To construct a translation table be-
tween the two-component form and the four-component forms for the bilinear covariants, we

first introduce two Dirac spinor fields [c¢f. eq. (B.3)]:

(Xl(@) <X2($)>
Uy(z) = , Uy(z) = , (B.26)
m () n2()
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where spinor indices have been suppressed on the two-component fields y;(z) and 7;(z).'* The

following results are then obtained:

U\ Py = mixe, (B.27)

U Pr¥y = X112, (B.28)

U POy = X167 x2 (B.29)
Uy PrUy = ot (B.30)
U S Py = 200" X, (B.31)
W XM PRy = 216" 15 . (B.32)

Note that egs. (B.27)-(B.32) apply to both commuting and anti-commuting fermion fields.
If other combinations of the two-component spinors appear in the bilinear covariant, the
corresponding four-component expression will necessarily involve a charge-conjugated four-
component spinor. For example, TiPL\IIQ = X1x2, etc. In general, if one replaces ¥; with
U5 (5 = 1 and/or 2) in any of the above results, then in the corresponding two-component
expression one simply interchanges x; <+ n; and x; < 7;.

Using eqs. (B.27)-(B.32), it then follows that:

U0y = nix2 + X172 (B.33)
U5 0y = —mix2 + X172 (B.34)
Uy Wy = x16%x2 + motip (B.35)
Uy Ws = —x16% X2 + motip (B.36)
U STy = 2(n10" X2 + X153 7]2) (B.37)
TS5 Wy = 2(—0™ o + X157 ]2) - (B.38)

Note that egs. (B.35) and (B.36) contain both o and .2 One useful consequence of the

9Here i is a flavor index. In the convention of Section 3.2, the flavor index of an unbarred two-component
field appears as a lowered index and the flavor index of a barred two-component fermion field appears as a raised
index. If one wanted to introduce both raised and lowered indices for four-component fermion fields, one would
demand that the flavor indices of ¥ = Pr¥ and Ur = WPy, appear as lowered indices, whereas the flavor
indices of U = Pr¥ and ¥y = UPR appear as raised indices. However, such a convention appears unwieldy
for vector-like interactions. Hence in this section we shall depart from our flavor index convention, and employ
only lowered flavor indices for all fermion fields.

0Tt is sometimes more convenient to apply eq. (2.34) to egs. (B.35) and (B.36) and rewrite 105> = 267",
where the plus [minus] sign is employed for commuting [anticommuting] spinors.
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above results are the following relations satisfied by the (commuting) v and v spinors:

(P, s1)Pro(Py, s2) = —u(Ps, s2) PrLo(Py, s1), (B.39)
u(p, s1)Pro(Py, s2) = — (P, $2) Pro (P, 1) 5 (B.40)
(P, 51)7" Pro(Py, s2) = U(Py, s2)7" Pro(P1, 51) , (B.41)
u(py, s1)7" Pro(Py, s2) = (P, s2)7" Pro(py, s1) - (B.42)

The results derived above also apply to four-component Majorana fermions, W ,y;, by setting
n; = Xi. However, the extra condition imposed by ¥$,; = ¥js; can yield further restrictions.
For example, eqs. (B.35)-(B.38) imply [after employing eqgs. (2.34)(2.36)] that anticommuting

Majorana four-component fermions satisfy:

Urri" PrUaj = =V v" PR i (B.43)
EMiEIW\IfMj = —@MjENV\IfMZ', (B.44)
TMiE“”%\IIMj = _EM]'ENV'Yg)\I]Mi . (B4:5)

If we set i = j, we learn that Wy U = Uy Sy, = EMEIW'}%‘I/M =0.

We now illustrate some basic applications of the the above analysis by considering a set of
neutral and charged fermions interacting with a neutral scalar or vector boson. To convert to
four-component notation, we first identify the neutral two-component fields & and the mass-
degenerate charged pairs x; and 7; that combine to form the Dirac fermions. We may then

rewrite the interaction Lagrangian given in eq. (4.10) in the following form:
Ling = —2(A76& + Mg €8¢ — (57 ximj + kX' )¢
—(Ge)i? E'5"¢A, — [(Gy)IX'o" X + (Gy)id T 1Ay, (B.46)
where A is a complex symmetric matrix,  is an arbitrary complex matrix and G¢, G, and G,

are hermitian matrices. By assumption, x and 7 have the opposite U(1) charges, while all other

fields in eq. (B.46) are neutral. It is now simple to convert this result into four-component

notation:2!

Lint = 3N Ui PLU g + AijUni PRY pj) ¢ — (57", PLY + 550, PrT )
— (G T Ty PLasy + (G )Ty P — (Gy) Wiy PR Ay, (B.AT)

2! As noted in footnote 19, all flavor indices attached to four-component fermion fields appear as lowered indices.

Nevertheless, we continue to distinguish A;; and A = i, ete.
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War;

————— —’L()\”PL + )\ijPR)

—’i(/ﬁjiPL + K,i]'PR)

—ivu[(Ge)i? P, — (Ge);' Pr)

—ivu[(Gy)i' P, — (Gy) ' PR

Figure 50: Feynman rules for four-component fermion interactions with neutral bosons

where Wy [¥;] are a set of Majorana [Dirac| four-component fermions. It is convenient to use

eq. (B.44) to rewrite the term proportional to (G¢);/ in eq. (B.47) as follows
(Ge)i Ty PLV pgj = S0 ppiy* [(Gﬁ)ijPL — (Gﬁ)jiPR] Uy (B.48)

Using standard four-component methods, the Feynman rules for the vertices are easily
obtained and displayed in Fig. 50. Note that the arrows on the Dirac fermion lines depict the
flow of the conserved charge. A Majorana fermion is neutral under all conserved charges (and
thus equal to its own anti-particle). Thus an arrow on a Majorana fermion line simply reflects
the structure of the interaction Lagrangian; i.e., ¥y; [¥ /] is represented by an arrow pointing
out of [into] the vertex. The arrows are then used for determining the placement of the u and
v spinors in an invariant amplitude.

We can also treat the interaction of fermions with charged bosons. We may then rewrite

the interaction Lagrangian given in eq. (4.12) in four-component notation:
Ling = —3 [(HQ)M@PL‘I’M]' + (£1)i5 Y PR s | ¢
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—i(ﬂlijPL + HQZ']'PR)

0, oy
S or -— - —i(k* Pp, + k145 PR)
’ Yary ’ Wiz
0, oy
- - - or - - -
’ Wy ’ (3%

—iv*(G1i? Pr, — Go;' PR)

iv"(G1/ Pr — G2;'Py)

—i’y“(GljiPL — GgijPR)

iv*(G1/ Pr — G2;' Pr)

Figure 51: Feynman rules for four-component fermion interactions with charged bosons. The
arrows on the boson and Dirac fermion lines indicate the direction of charge flow.

— [T PN — (Ga) Wi Pr¥asy] Wy + hc. (B.49)

There is an equivalent form of the interaction given in eq. (B.49) where £ is written in
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terms of charge-conjugated fields. In general,??

TS =00 07y = T, (B.50)

where the sign np = +1 for I' = 1,v5,7"7y5 and np = —1 for I' = y#, E*, 35, Noting that
Majorana fermions are self-conjugate, the Feynman rules for the interactions of neutral and
charged fermions with charged bosons can take two possible forms, as shown in Fig. 51. Here,
the direction of an arrow on a Dirac fermion line is meaningful and indicates the direction of
charge flow. However, we are free to choose either a W or W€ line to represent a Dirac fermion
at any place in a given Feynman graph.?® Moreover, the structure of the interactions above
imply that the arrow directions on fermion lines flow continuously through the diagram. This
requirement then determines the direction of the arrows on Majorana fermion lines. Virtual
Dirac fermion lines can either correspond to ¥ or W€ Here, there is no ambiguity in the

propagator Feynman rule, since for free Dirac fermion fields,

(01T (o (2)T5())]0) = (01T (U5 (2)T5()]0) , (B.51)

so that the Feynman rules for the propagator of a ¥ and W€ line are identical.

For a given process, there may be a number of distinct choices for the arrow directions on
the Majorana fermion lines, which may depend on whether one represents a given Dirac fermion
by ¥ or €. However, different choices do not lead to independent Feynman diagrams.?* When
computing an invariant amplitude, one first writes down the relevant Feynman diagrams with
no arrows on any Majorana fermion line. The number of distinct graphs contributing to the
process is then determined. Finally, one makes some choice for how to distribute the arrows
on the Majorana fermion lines and how to label Dirac fermion lines (either as the field or its
conjugate) in a manner consistent with the rules of Figs. 50 and 51. The end result for the
invariant amplitude (apart from an overall unobservable phase) does not depend on the choices
made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion wave functions are

the same for Dirac and Majorana fermions:
e u(p,s): incoming ¥ [or U] with momentum p parallel to the arrow direction,

e u(p, s): outgoing ¥ [or ¥¢] with momentum p parallel to the arrow direction,

*2Tn deriving eq. (B.50), we noted that CT = —C and used the fact that the fermion fields anticommute.

2Since the charge of ¥ is opposite to that of ¥, the corresponding arrow direction of the two lines are also
point in opposite directions.

241n contrast, the two-component Feynman rules developed in Section 3 require that two vertices differing by
the direction of the arrows on the two-component fermion lines must both be included in the calculation of the
matrix element.
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e (P, s): outgoing ¥ [or ¥U¢] with momentum p’ anti-parallel to the arrow direction,
e (P, s): incoming ¥ [or ¥¢] with momentum p anti-parallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana

fermions is straightforward. Simply insert the plane wave expansion of the Majorana field:

3 R .
V() = Z / (27T)3/;1(§Ep)1/2 [U(I_f, s)a(p, s)e P + u(p, s)a1L (P, s)e+zp.m] (B.52)

into eq. (B.47), and evaluate matrix elements for, e.g., the decay of a scalar or vector particle
into a pair of Majorana fermions.

We now reconsider the matrix elements for scalar and vector particle decays into fermion
pairs and 2 — 2 elastic scattering of a fermion off a scalar and vector boson, respectively. We
shall compute the matrix elements using the Feynman rules of fig. 50, and check that the results
agree with the ones obtained by two-component methods in Section 3.

The matrix element for the decay ¢ — Vs (P, s1)Var(Ps, s2) is given by
iM = —iu(p, $1)(APL + X" Pr)v(Py, s2) - (B.53)

One can easily check that this result matches with eq. (4.19), which was derived using two-
component techniques. Note that if one had chosen to switch the two final states (equivalent
to switching the directions of the Majorana fermion arrows), then the resulting matrix element
would simply exhibit an overall sign change [due to the results of eqs. (B.39) and (B.40)].2
Similarly, for ¢ — W ¥ar; (i # j) or for the decay into a pair of Dirac fermions, ¢ — U,
one again obtains the invariant matrix element given in eq. (B.53).

For the decay A, — V(P 51)¥m(Ps, 52), one obtains:
iM = iGeu(py, s1)7" v5v(Pa, s2)ep - (B.54)

One can easily check that this result matches with eq. (4.22). For the decay into non-identical

Majorana fermions, A, — War;War; (i # j), we can use the Feynman rules of Fig. 50 to obtain:
iM = —ia(@;, sy [(Ge)i? P — (Ge) ;' Pr| v(8), 5))en (B.55)

Again, we note that if one had chosen to switch the two final states (equivalent to switching the
directions of the Majorana fermion arrows), then the resulting matrix element would simply

exhibit an overall sign change [due to the results of eqs. (B.41) and (B.42)]. Finally, for the

25 The overall sign change is a consequence of the Fermi-Dirac statistics, and corresponds to changing which
order one uses to construct the two particle final state.
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decay of the vector particle into a Dirac fermion-antifermion pair, 4,, — WV, the matrix element
is given by:
iM = _iﬂ’(ﬁl’ SI)VH(GXPL - GnPR)v(ﬁQ’ 32)‘5# ) (B56)

which matches the result of eq. (4.26).

Turning to the elastic scattering of a neutral Majorana fermion and a neutral scalar, we
shall examine two equivalent ways for computing the amplitude. Following the rules previously
stated, there are two possible choices for the direction of arrows on the Majorana fermion lines.

Thus, may evaluate either one of the following two diagrams:

plus a second diagram in each case (not shown) where the initial and final state scalars are

crossed. Evaluating the first diagram above, the matrix element for ¢y — ¢W,s is given by:

M= s__i:nQ (P, 52) (AP + XN*Pr)(p + m)(APL + X" Pr)u(p}, s1) + (crossed)
i . i .
=— U(Py, 52) [|)\|2]6 + ()\QPL + (A )QPR) m] u(Py, s1) + (crossed) , (B.57)

where m is the Majorana fermion mass, s is the center-of-mass energy squared. Using eqs. (B.1)

and (B.10), one recovers the results of eq. (4.27). Had we chose to evaluate the second diagram

instead, the resulting amplitude would have been given by:

—_jn? (P, 51) [_|)\|226 + (>\2PL + (A*)2PR) m] v(Py, s2) + (crossed) . (B.58)

M=
s

Using egs. (B.10) and (B.11) and the results of egs. (2.32)-(2.34) one can derive the following

results:

v(P1, 51)v(P2, s2) = —u(Py, s2)u(Pr,s1),  0(P1,s1)7"0(Py, s2) = (P, s2)7"u(Py, 51) -
(B.59)
Consequently, the amplitude computed in eq. (B.58) is just the negative of eq. (B.57). This is
expected, since the order of spinor wave functions (12) in eq. (B.58) is an odd permutation (21)
of the order of spinor wave functions in eq. (B.57). As in the two-component Feynman rules,
the overall sign of the amplitude is arbitrary, but the relative signs of any pair of diagrams is
not ambiguous. This relative sign is positive [negative] if the permutation of the order of spinor

wave functions of one diagram relative to the other diagram is even [odd].
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Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again,
we examine two equivalent ways for computing the amplitude. Following the rules previously
stated, there are two possible choices for the direction of arrows on the fermion lines, depending
on whether we represent the fermion by ¥ or W¢. Thus, we may evaluate either one of the

following two diagrams:

plus a second diagram in each case (not shown) where the initial and final state scalars are
crossed. Evaluating the first diagram above, the matrix element for ¢¥U — ¢V is given by
eq. (B.57), with A replaced by k. Had we chose to evaluate the second diagram instead, the
resulting amplitude would have been given by eq. (B.58), with A replaced by x. Thus, the
discussion above in the case of neutral fermion scattering processes also applies to charged
fermion scattering processes.

In processes that only involve vertices with two Dirac fields, it is never necessary to use
charge-conjugated Dirac fermion lines. In contrast, consider the following process that involves
a vertex with one Dirac and one Majorana fermion. Specifically, we examine the scattering of
a charged Dirac fermion and a charged scalar via the exchange of a neutral Majorana fermion,
in which the charge of the outgoing fermion is opposite to that of the incoming fermion. If
one attempts to draw the relevant Feynman diagram employing Dirac fermion lines but with
no charge-conjugated Dirac fermion lines, one finds that there is no possible choice of arrow
direction for the Majorana fermion that is consistent with the the vertex rules of Fig. 51. The
resolution is simple: one can choose the incoming line to be ¥ and the outgoing line to be ¥*

or vice versa. Thus, the two possible choices are given by:

plus a second diagram in each case (not shown) in which the initial and final scalars are crossed.

If we evaluate the first diagram, the resulting amplitude is given by:

iM = s—;zn? u(Py, s2) (k1P + Kk5PR) (P + m) (k1 P + k5 PR)u(py, s1) + (crossed)

—1

= 5 (D, 52) [m/ﬁ% + (H%PL + (H;)QPR) m} u(Py, s1) + (crossed) , (B.60)

sS—m
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where m is the Majorana fermion mass. One can check that this is equivalent to eq. (4.31)
obtained via the two-component methods. Had we evaluated the second diagram, then after
using the relations given in eq. (B.59), one finds that the resulting amplitude is just the negative
of eq. (B.60), as expected. As before, the relative sign between diagrams for the same process
is not ambiguous.

In the literature, there are a number of alternative methods for dealing with scattering
processes involving Majorana particles. For example, one can define a fermion-number violating
propagator for four-component fermions (see, e.g., [2]). These methods involve subtle choices of
signs which often require first-principles computations to verify. The advantage of the method
described above is that there is never any ambiguity in the choice of relative signs.

In the case of elastic scattering of a fermion and a neutral vector boson, the two contributing

diagrams are

e o7
\\

plus a second diagram (not shown) where the initial and final state vector bosons are crossed.
Consider first the scattering of a neutral Majorana fermion of mass m. Using the Feynman
rules of Fig. 50, we see that the Feynman rule for the A, U, U, vertex is given by iGeyH ;.
Hence, the corresponding matrix element is given by

)
—1Gy

s —m?2

iM = W, 52) -5 (p — m)y-e,u(By, 51) + (crossed) (B.61)

where we have used "5 (p + m)y*y; = v/ (p — m)y*. Using egs. (B.1) and (B.10), one easily
recovers the results of eq. (4.28).

Next, consider the scattering of a Dirac fermion. The corresponding matrix element is

given by
. . . )
IM = PR, u(psy, 52) Y€y (GyPr, — GyPr)(p+m)v-e, (GyPr — GpPr)u(p;, s1) + (crossed)
i . . )
= 48 — mZa(p2, 32) 7‘62 |:(G>2<PL -+ G%PR)ﬁ — GXGnm:I fy.glu(pl, 31) + (Crossed) . (B62)

One can easily check that this result coincides with that of eq. (4.32).
Finally, we examine the elastic scattering of two identical Majorana fermions via scalar
exchange. The three contributing diagrams are:

and the corresponding matrix element is given by

iM = —— [B1(APL + X Pr)uz is(AP, + A" Pr)oi]
e
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A 4
A 4
A 4

A 4
A 4
A 4

—14

PR [ﬂg()\PL + )\*PR)U,l ﬂ4()\PL + )\*PR)U,Q]
é

+ ——5 [ (APL + A" Pr)ur i3(APL + X" Pr)us] (B.63)
e

where u; = u(p;, i), v; = u(Pj, s5) and my is the exchanged scalar mass. The relative minus
sign of the t-channel graph relative to the other two is obtained by noting that 3142 [4132] is
an odd [even] permutation of 1234. Using egs. (B.1) and (B.10), one easily recovers the results
of eq. (4.33).

Appendix C: Standard Model Fermion Interaction Vertices

In the Standard Model, one generation of quarks and leptons is described by the two-component
fermion fields listed in Table 2, where Y is the weak hypercharge, T3 is the third component of
the weak isospin and @ is the electric charge. After SU(2)zxU(1)y breaking, the quark and
lepton fields gain mass in such a way that the above two-component fields combine to make up

four-component Dirac fermions:

U d e
v (_) b (_) . B (_) | ©1)
uc de e’

while the neutrino remains massless. (The extension of the Standard Model to include neutrino
mass will be treated elsewhere.)

Here, we follow the convention for particle symbols established in Table 1. Although there
is some potential for confusion, note that v and d are two-component fields, whereas the usual
four-component quark and charged lepton fields are denoted by capital letters U, D and F.

Consider a generic four-component field expressed in terms of the corresponding two-component

fields:
( f )
F=1_1. (C.2)
fc

The electroweak quantum numbers of f are denoted by Tg , Yy and ()¢, whereas the corre-

sponding quantum numbers for f¢ are T3f “ =0 and Qpe = %ch = —Qy. Thus we have the
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Two-component

fermion fields SU(2), Y T3 Q=T3+1iY
U 1 1 2
doublet i i i
d 3 T2 3
u® singlet  — % 0 — %
. 2 1
d° singlet 5 0 3
v -1 3 0
doublet
1 _1 _
e 2
e’ singlet 2 0 1

Table 2: Fermions of the Standard Model and their quantum numbers.
correspondence to our general notation [eq. (B.3)]
[+ x, fe+—n. (C.3)

We can then immediately translate the couplings given in the general case [Fig. 9] to the
Standard Model.

We now write out the Feynman rules for the electroweak interactions of quarks and leptons.

As an example, consider the charged current interactions of the fermions:
Ling = — = [aig*d;W,f + dig"a, W, | (C.4)
int — \/§ A8 AN ’ .

where the hatted symbols indicate interaction-eigenstates and ¢ labels the generations. Follow-
ing the discussion of Appendix B, we convert to mass-eigenstates. That is, we introduce four

unitary matrices, Ly, Lg, R, and Ry, [cf. eq. (3.75)] such that

G=Lyu, d=Lgd, 4°=Ryu’, and d°= Ryd®, (C.5)

where u, d, u® and d° are the corresponding mass-eigenstates. It then follows that ﬁiﬁl‘czi =
Kijﬁiﬁ“dj, where

K=LIL, (C.6)
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is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. (Note that K is a unitary matrix.) Thus,
the charged current interactions now take the form
Ling = —% [Kaiwd; W, + K d ot W (C.7)
where K7; = (KT);7 [see eq. (4.11)]. Note that Standard Model does not possess W= interac-
tions with ¢ and d°. The corresponding Feynman rules are given in Fig. 52. It is convenient to
introduce the following notation: [K];; = K;? and [KT]ij = K7;, which is employed in Fig. 52.
The corresponding interaction of the fermions with the neutral gauge bosons are also given
in Fig. 52. As expected, the neutral current interactions are flavor-conserving. We use the
notation sy = sinfyy, ¢y = cos Oyy. For each of the rules of Fig. 52, we have chosen to employ
Ez‘ﬁ. If the indices are lowered one should take Ez‘ﬂ — —0u84- There is a corresponding set of
Feynman rules for leptons, by replacing u - v , d - e and K — 1.
The Yukawa interactions of the fermions with the Higgs boson (hgy) are given by:
—Ly = (VM) (@005 — @*dyas| + (V)T [@7ad + 0% didf| + hc. (C.8)
In the unitary gauge, ®* = Im ®° = 0 and Re ®° = (v + hg\)/V2, where v = 2my /g =
246 GeV. After diagonalization of the quark mass matrices, M(l]] = (Y M) /\/2 and MY =
v(Y(SiM)ij/\/?, one obtains LZMURu = diag(my, me, m;) and LgMDRd = diag(mg, ms, myp).
The resulting Higgs-fermion interactions are diagonal as shown in Fig. 53. Here, the diagonal

Higgs-fermion Yukawa coupling matrices appear
Yo =LY R, vi' =LaYq Ra. (C.9)

The diagonal entries of y; (f = u or d) are related to the corresponding quark masses via
y?fd =2m 7i/v, where i labels the fermion generation.

In the Landau gauge, the Goldstone bosons, G° = v/2Im ®° and G* = ®* appear explicitly
in internal lines of Feynman diagrams. The Feynman rules for G°-fermion interactions are
flavor diagonal, whereas the corresponding rules for G possess a flavor-changing component
that depends on the CKM matrix elements. The relevant interaction Lagrangian follows easily
from egs. (C.8) and (C.9):

Lint = [yglMdldlc — yii\duluﬂ G° -+ yi}\/l[K]l]d]uchJr — yiM [KT]ijUjdzqu + h.c., (C.IO)

i
V2
where as before [K];; = K;/ and [K T]ij = K’;, and a sum over the repeated generation index
1 is implicit. The corresponding diagrammatic Feynman rules are straightforward and will not

be presented explicitly here.
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Figure 52: Feynman rules for the two-component fermion interactions with gauge bosons in
the Standard Model. Note that sy = sinfy, ey = cos@y and e = gsinfy,. For the W+
interactions, the W boson is directed into the vertex, as indicated. The charge operator is
normalized so that )y = —1 for the electron (f = e).
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Figure 53: Feynman rules for the SM Higgs-fermion interactions.

Appendix D: MSSM Fermion Interaction Vertices

D.1 Gauge interaction vertices for neutralinos and charginos

First, we introduce some notation. Following ref. [2], we define: (Have changed some *’s below.

OiLj = —%NMV;‘Q + N2 j*l ,
Og = %N%Uﬂ + NisUjt,
O;yL = —VaVii — §ViaVis + 8ij Sty s
Oif = ~UjUji = 3UiUj2 + dijsiy

off = —0jf* = L(NuNZ — NisN73) .
where U and V' are unitary matrices that diagonalize the chargino mass matrix,

% -1 _ -
U Xv— = dlag(Ma,M@),

( Mo \/§mW55>
X = .

\/EmWC,B iz
N is a unitary matrix that diagonalizes the neutralino mass matrix,

with

71 _ . . - . .
N*YN! = diag(M5 , My , Mg, , My, ),

with
M, 0 —MmzSwesg MzSwsg
0 Moy mzcwceg — —MzCwsg
Yy —
—mzSwecg Mmzcwcg 0 —
MzSwsg  —MzCwsg — 0
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Above we use the shorthand notation sg = sinf3, cg = cos 3, etc., where tan § = v, /vg is the
ratio of the two neutral Higgs vacuum expectation values.

We now list the gauge boson interactions with the neutralinos and charginos. For each of
these rules, one has a version with lowered spinor indices by replacing 7% — —0g4. We label
fermion lines with the symbols of the two-component fermion fields as given in Table 1. The
Feynman rules for Z and v interactions with charginos and neutralinos are given in Fig. 54 and
the corresponding rules for W+ interactions are given in Fig. 55.

Note that the Z J\N/'z]\NfJ interaction vertex also subsumes the Og'jR interaction found in four-
component Majorana Feynman rules as in ref. [2], due to the result of eq. (B.44) and the relation
Offt = —Oj} ineq. (D.5).

D.2 Higgs-fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two-Higgs-doublet model containing eight real scalar degrees of
freedom: one complex Y = —1 doublet, &4 = (@g,@;) and one complex Y = +1 doublet,
&, = (@}, ®Y). The notation reflects the form of the MSSM Higgs sector coupling to fermions:
®Y [®Y] couples exclusively to down-type [up-type] fermion pairs. In the supersymmetric model,
both hypercharge Y = —1 and Y = +1 complex Higgs doublets are required in order that the
theory (which now contains the corresponding Higgsino superpartners) remain anomaly-free.
The supersymmetric structure of the theory also requires (at least) two Higgs doublets to
generate mass for both “up”-type and “down”-type quarks (and charged leptons).
When the Higgs potential is minimized, the neutral components of the Higgs fields acquire
vacuum expectation values:
1 Vg 1 0
(®a) AN (Pu) Vil | (D.10)
where the normalization has been chosen such that v? = v2 + v2 = 4m?,/¢? = (246 GeV).
The phases of the Higgs fields can be chosen such that the vacuum expectation values are real
and positive. That is, the tree-level MSSM Higgs sector conserves CP, which implies that the
neutral Higgs mass eigenstates possess definite CP quantum numbers. Spontaneous electroweak
symmetry breaking results in three Goldstone bosons, which are absorbed and become the
longitudinal components of the W* and Z. The remaining five physical Higgs particles consist
of a charged Higgs pair
Hizfﬁgfsinﬁ—i—@fcosﬁ, (D.11)

one CP-odd scalar
AY = \/ﬁ(Imfbg sin 8 4 Im ®° cosﬁ) , (D.12)
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Figure 54: Feynman rules for the 2-component chargino/neutralino-neutral gauge boson in-
teractions. I have changed the chargino and neutralino symbols.
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Figure 55: Feynman rules for the chargino-neutralino-W* gauge boson interactions. I have
changed the chargino and neutralino symbols.

and two CP-even scalars:

— —(\/ﬁRe(I)g —vg)sina + (\/§Re<1>2 — vy) cos
HY = (\/EReq>3—vd)cosa+(\/§Re<I>2—vu)sina, (D.13)

with myo < mpyo. The angle « arises when the tree-level CP-even Higgs squared-mass matrix
(in the @3—(1)2 basis) is diagonalized to obtain the physical CP-even Higgs states.

It is sometimes useful to keep track of the Goldstone scalars, G and G°, which have been
absorbed by the W* and Z in the generation of gauge boson masses. In the Landau gauge,
these states appear explicitly in internal lines in Feynman diagrams. They are orthogonal to

H* and A°, respectively:

G* = oL sin — & cos 3, (D.14)
G = V2 (Im @ sin § — Tm @§ cos ) . (D.15)
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Figure 56: Feynman rules for the interactions of neutral CP-even Higgs bosons with quark-
antiquark pairs in the MSSM. For the H? interactions, replace sin @ — — cos o and cos @ — sin
in the A? interactions.

Note that G is a CP-odd scalar.

The Higgs-fermion Yukawa couplings in the interaction-basis are given by:
—Ly =Y [0;0500 — diasof| + YV [dids®) — aids@7] + hee. (D.16)

Let us change to the mass-eigenstate basis by using eq. (C.5). After diagonalization of the
fermion mass matrices, M[Z]J = vuYij/\/i and Mg = defij/\/ﬁ, one obtains LI MyR, =
diag(my, me,m¢) and LY MpR,; = diag(mg, ms, mp). The resulting neutral Higgs-fermion in-

teractions are diagonal. Here, the diagonal Higgs-fermion Yukawa coupling matrices appear:°

y, =LY ,R,, yg=LiY Ry (D.17)

*Note that y, = y>™/sin 3 and y, = y5™/ cos 3, where the Standard Model diagonal Higgs-fermion coupling
matrices are defined in eq. (C.9).
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Figure 57: Feynman rules for the interactions of neutral CP-odd Higgs bosons with quark-
antiquark pairs in the MSSM. For the G? interactions, replace sin 3 — — cos 3 and cos 3 — sin 3
in the A° interactions.

The diagonal entries of y, and y, are related to the corresponding up-type and down-type

quark masses via

Uy Vq

The interactions of h’ with fermion-antifermion pairs are given in Fig. 56. One obtains
Feynman rules for the H° interactions by taking sina — — cos @ and cos o — sin . Note that
starting with the rule with undotted fermion indices, one obtains the corresponding rule with
dotted indices (with the direction of the arrows reversed) by taking §,°% — 0% - The interactions
of A° with fermion-antifermion pairs are given in Fig. 57. One obtains Feynman rules for the
Goldstone boson (G°) interactions by taking sin 3 — — cos 8 and cos 3 — sin 3. The resulting
neutral Goldstone boson rules match precisely those of the Standard Model [eq. (C.10)]. Note
that starting with the rule with undotted fermion indices, one obtains the corresponding rule

with dotted indices (with the direction of the arrows reversed) by taking 0,7 — —&% - The
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minus sign in the last operation is a signal that A° and G° are CP-odd scalars.?”.

The couplings of the charged Higgs boson to quark anti-quark pairs are not flavor diagonal
and involve the CKM matrix K. Starting with eq. (D.16), and changing to the mass-eigenstate

basis as before, one obtains
Line = (LYY yRy)ijduSH™ cos B+ (LYY qRg)ijusdH  sin 8 + h.c., (D.19)

and the corresponding G interactions by taking sinf3 — —cos3 and cos 8 — sinf3. Using
eqs. (C.6) and (D.17), one easily obtains LYY ,R, = KTy, and LY ;R; = K*y,. Employ-
ing the notation for [K];; and [KT];; introduced below eq. (C.7), the resulting charged-scalar
Feynman rules are given in Fig. 58. One can check that the corresponding charged Goldstone

boson rules match precisely those of the Standard Model [eq. (C.10)].

D.3 Higgs interaction vertices for charginos and neutralinos

First, we introduce some notation. Following refs. [3] and [8], we define:

1

Qij = ﬁVilUﬂ’ (D-20)
1
Sij = EVZ'ZUjla (D.21)
1
;g‘ = Vj1Njs + EV]Z (Ni2 + N1 tanOyy) | (D.22)
1
Q;? =U;1N;3 — EUj (Ni2 + N1 tanOyy) | (D.23)
/.= L [Ni3(Nj2 — Nji tanOy) + Nj3(Niz — Njg tan Oyy)] (D.24)
Sii = 5 [Nia(Nj2 — Nji tan Oyw) 4+ Nja(Nig — Niy tan Oyy)] . (D.25)

We list the Higgs boson interactions with the neutralinos and charginos in Fig. 59. For each
of the Feynman rules in Fig. 59, one can reverse all arrows by taking 6,°% — 6% 5 and complex

conjugating the corresponding rule (after removing the overall factor of 7).

D.4 Chargino and neutralino interactions with quark-squark and lepton-slepton

In the MSSM, scalar partners of the two-component fields ¢ and ¢¢ are the squarks, denoted
by g1, and ¢%, respectively. In our notation, g7 and g% are the antiparticles of g, and gg,

respectively.?® Likewise, the scalar partners of the two-component fields ¢ and /¢ are the

2"Because the Feynman rules for A and G° arise from a term in Lin; proportional to i Im ®°, the latter i flips
sign when the rule is conjugated resulting in the extra minus sign noted above. As an additional consequence,
noting that the Feynman rules are obtained from iLin¢, the overall A% and G° rules contain no i

*8For example, u, ur and ug all have an electric charge of +2/3, whereas u®, %5, and %% all have an electric
charge of —2/3.
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Figure 58: Feynman rules for the interactions of charged Higgs bosons with quark-antiquark
pairs in the MSSM. For the G* interactions, replace sin 8 — — cos 3 and cos 8 — sin /3 in the
H? interactions. In the above rules, there is no implicit sum over the repeated index i.

charged sleptons, denoted by /;, and Zfz, respectively. The sneutrino, v is the superpartner
of the neutrino. There is no 7y, since v° is absent from the Standard Model.?

For simplicity, we assume that the squark squared-mass matrices are diagonal in the same
basis in which the quark mass matrix is diagonal. In this case, the super-CKM mixing matrix
coincides with the CKM mixing matrix. We also ignore ¢7,—Gr mixing. The Feynman rules for
the chargino-quark-squark interactions are given in Fig. 60, and the rules for the neutralino-
quark-squark interactions are given in Fig. 61. Note that chargino interaction vertices involving
UCJR and d“ugr are absent from the MSSM and thus do not appear in Fig. 60. For each of the
Feynman rules in Figs. 60 and 61, one can reverse all arrows by taking 8,7 — 6% 5 and complex

conjugating the corresponding rule (after removing the overall factor of 7).

In the more general case, unitary matrices that rotate from the squark interaction-basis to

29Tf the Standard Model is extended to include mass for neutrinos, then the MSSM must likewise be extended.
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ig(S} cos o+ QfF sin )8,

g(Si; cos B — Qjf sin B)da"

i sin @)da”

—ig(S}; cos o —

—g(57; cos B+ Qj; sin B£)da”

—ig QZJ* cos 3 607

—ig Q;f* sin 3 647

Figure 59: Feynman rules for the Higgs boson interactions with chargino/neutralino pairs.
For the H' interactions, replace sinow — — cos @ and cos a — sina in the h® interactions. For
the GV interactions, replace sin/3 — — cos 3 and cos 3 — sin3 in the A? interactions. For the
G* interactions, replace sinf8 — —cosf and cos3 — sinf in the H* interactions. I have
changed all the neutralino and chargino symbols to N; and éf, CN’,L»_, respectively.
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Figure 60: Feynman rules for the interactions of charginos with quark/squark pairs in the
MSSM. We have neglected q7—¢r mixing and have assumed that the CKM and super-CKM
mixing matrices coincide.

103



the squark mass-basis will appear in the corresponding Feynman rules.
To obtain the rules for chargino and neutralino couplings to lepton-slepton pairs, simply
replace d = e, d° = e, u - v, K — 1 and y4 — y., while discarding all rules containing u¢

(since v¢ does not exist in the original version of the Standard Model).
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Figure 61: Feynman rules for the interactions of neutralinos with quark/squark pairs in the
MSSM. We have neglected qr—¢r mixing and have assumed that the CKM and super-CKM

mixing matrices coincide.
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