Holomorphy

Non-renormalization theorems

Consider

$$W_{\text{tree}} = \frac{m}{2}\phi^2 + \frac{\lambda}{3}\phi^3$$

 ϕ is a chiral superfield; scalar component $\phi,$ fermion component by $\psi.$ R-charge

$$[R, Q_{\alpha}] = -Q_{\alpha}$$

$$R[\psi] = R[\phi] - 1, R[\theta] = 1$$

Lagrangian in toy model has Yukawa coupling

$$\mathcal{L} \supset \frac{\lambda}{3}\phi\psi\psi$$

which must have zero R-charge, so

$$3R[\phi] - 2 = 0$$

therefore
$$R[W] = 2$$
, or $\mathcal{L}_{int} = \int d^2\theta W$

Toy Model

$$\begin{array}{ccccc} & U(1) & \times & U(1)_R \\ \phi & 1 & & 1 \\ m & -2 & & 0 \\ \lambda & -3 & & -1 \end{array}$$

treat the mass and coupling as background spurion fields

integrate out modes from Λ down to μ , then the symmetries and holomorphy of the effective superpotential restrict it to be of the form

$$W_{\text{eff}} = m\phi^2 h\left(\frac{\lambda\phi}{m}\right) = \sum_n a_n \lambda^n m^{1-n} \phi^{n+2}$$
,

weak coupling limit $\lambda \to 0$ restricts $n \ge 0$ the massless limit $m \to 0$ restricts $n \le 1$ so

$$W_{\text{eff}} = \frac{m}{2}\phi^2 + \frac{\lambda}{3}\phi^3 = W_{\text{tree}}$$

superpotential is not renormalized

Wavefunction renormalization

$$\mathcal{L}_{\text{kin.}} = Z \partial_{\mu} \phi^* \partial^{\mu} \phi + i Z \overline{\psi} \overline{\sigma}^{\mu} \partial_{\mu} \psi$$

Z is a non-holomorphic function

$$Z = Z(m, \lambda, m^{\dagger}, \lambda^{\dagger}, \mu, \Lambda)$$

If we integrate out modes down to $\mu > m$ at one-loop order

$$Z = 1 + c\lambda\lambda^{\dagger} \ln\left(\frac{\Lambda^2}{\mu^2}\right)$$

where c is a constant determined by the perturbative calculation. If we integrate out modes down to scales below m we have

$$Z = 1 + c\lambda \lambda^{\dagger} \ln \left(\frac{\Lambda^2}{mm^{\dagger}} \right)$$

Wavefunction renormalization means that couplings of canonically normalized fields run

running mass and running coupling are given by

$$\frac{m}{Z}, \frac{\lambda}{Z^{\frac{3}{2}}}$$

Integrating out

Consider a model with two different chiral superfields:

$$W = \frac{1}{2}M\phi_H^2 + \frac{\lambda}{2}\phi_H\phi^2$$

three global U(1) symmetries:

	$U(1)_A$	$U(1)_B$	$U(1)_R$
ϕ_H	1	0	1
ϕ	0	1	$\frac{1}{2}$
M	-2	0	$\ddot{0}$
λ	-1	-2	0

where $U(1)_A$ and $U(1)_B$ are spurious symmetries for $M, \lambda \neq 0$

Integrating out

If we want to integrate out modes down to $\mu < M$, we must integrate out ϕ_H . An arbitrary term in the effective superpotential has the form

$$\phi^j M^k \lambda^p$$

To preserve the symmetries we must have j = 4, k = -1, and p = 2. By comparing with tree-level perturbation theory we can determine the coefficient:

$$W_{\text{eff}} = -\frac{\lambda^2 \phi^4}{8M}$$

algebraic equation of motion:

$$\frac{\partial W}{\phi_H} = M\phi_H + \frac{\lambda}{2}\phi^2 = 0$$

solve this equation for ϕ_H and plug the result back into the superpotential

Another Example

$$W = \frac{1}{2}M\phi_H^2 + \frac{\lambda}{2}\phi_H\phi^2 + \frac{y}{6}\phi_H^3$$

 ϕ_H equation of motion:

$$\phi_H = -\frac{M}{y} \left(1 \pm \sqrt{1 - \frac{\lambda y \phi^2}{M^2}} \right)$$

as $y \to 0$, the two vacua approach $\phi_H = -\lambda \phi/(2M)$ (as in previous example) and $\phi_H = \infty$. Integrating out ϕ_H yields

$$W_{\text{eff}} = \frac{M^3}{3y^2} \left(1 - \frac{3\lambda y\phi^2}{2M^2} \pm \left(1 - \frac{\lambda y\phi^2}{M^2} \right) \sqrt{1 - \frac{\lambda y\phi^2}{M^2}} \right)$$

singularities in W_{eff} indicate points in the parameter space and the space of ϕ VEVs where ϕ_H becomes massless and we should not have integrated it out

Singularities

The mass of ϕ_H can be found by calculating

$$\frac{\partial^2 W}{\partial \phi_H^2} = M + y\phi_H$$

and substituting in the solution for ϕ_H :

$$\frac{\partial^2 W}{\partial \phi_H^2} = \mp M \sqrt{1 - \frac{\lambda y \phi^2}{M^2}}$$

Using holomorphy assign y charges (-3,0,-1) under $U(1)_A \times U(1)_B \times U(1)_R$ then

$$W_{\text{eff}} = \frac{M^3}{y^2} f\left(\frac{\lambda y \phi^2}{M^2}\right)$$

for some function f, just as we found from explicitly integrating out ϕ_H

The holomorphic gauge coupling

chiral superfield for an SU(N) gauge supermultiplet:

$$W_{\alpha}^{a} = -i\lambda_{\alpha}^{a}(y) + \theta_{\alpha}D^{a}(y) - (\sigma^{\mu\nu}\theta)_{\alpha}F_{\mu\nu}^{a}(y) - (\theta\theta)\sigma^{\mu}D_{\mu}\lambda^{a\dagger}(y) ,$$

$$a = 1, \dots, N^{2} - 1$$

$$\tau \equiv \frac{\theta_{\rm YM}}{2\pi} + \frac{4\pi i}{g^2} \ ,$$

SUSY Yang-Mills action as a superpotential term

$$\frac{1}{16\pi i} \int d^4x \int d^2\theta \, \tau \, W_{\alpha}^a W_{\alpha}^a + h.c. =
\int d^4x \left[-\frac{1}{4g^2} F^{a\mu\nu} F_{\mu\nu}^a - \frac{\theta_{\text{YM}}}{32\pi^2} F^{a\mu\nu} \widetilde{F}_{\mu\nu}^a + \frac{i}{g^2} \lambda^{a\dagger} \overline{\sigma}^{\mu} D_{\mu} \lambda^a + \frac{1}{2g^2} D^a D^a \right]$$

g only in τ which is a holomorphic parameter, but gauge fields are not canonically normalized

Running coupling

one-loop running g is given by the RG equation:

$$\mu \frac{dg}{d\mu} = -\frac{b}{16\pi^2} g^3$$

where for an SU(N) gauge theory with F flavors and $\mathcal{N}=1$ SUSY,

$$b = 3N - F$$

The solution for the running coupling is

$$\frac{1}{g^2(\mu)} = -\frac{b}{8\pi^2} \ln\left(\frac{|\Lambda|}{\mu}\right)$$

where $|\Lambda|$ is the intrinsic scale of the non-Abelian gauge theory

Holomorphic Intrinsic Scale

$$\tau_{1-\text{loop}} = \frac{\theta_{\text{YM}}}{2\pi} + \frac{4\pi i}{g^2(\mu)}$$

$$= \frac{1}{2\pi i} \ln \left[\left(\frac{|\Lambda|}{\mu} \right)^b e^{i\theta_{\text{YM}}} \right]$$

$$\Lambda \equiv |\Lambda| e^{i\theta_{\text{YM}}/b}$$

$$= \mu e^{2\pi i \tau/b}$$

$$\tau_{1-\text{loop}} = \frac{b}{2\pi i} \ln \left(\frac{\Lambda}{\mu} \right)$$

CP Violating Term

$$F^{a\mu\nu}\widetilde{F}^{a}_{\mu\nu} = 4\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}\operatorname{Tr}\left(A_{\nu}\partial_{\rho}A_{\sigma} + \frac{2}{3}A_{\nu}A_{\rho}A_{\sigma}\right)$$

total derivative: no effect in perturbation theory nonperturbative effects: instantons have a nontrivial, topological winding number, n

$$\frac{\theta_{\rm YM}}{32\pi^2} \int d^4x \, F^{a\mu\nu} \widetilde{F}^a_{\mu\nu} = n \, \theta_{\rm YM} \ .$$

Since the path integral has the form

$$\int \mathcal{D}A^a \mathcal{D}\lambda^a \mathcal{D}D^a e^{iS}$$

$$\theta_{\rm YM} \to \theta_{\rm YM} + 2\pi$$

is a symmetry of the theory

Instanton Action

The Euclidean action of an instanton configuration can be bounded

$$0 \leq \int d^4x Tr \left(F_{\mu\nu} \pm \widetilde{F}_{\mu\nu} \right)^2 = \int d^4x Tr \left(2F^2 \pm 2F\widetilde{F} \right)$$
$$\int d^4x Tr F^2 \geq |\int d^4x Tr F\widetilde{F}| = 16\pi^2 |n|$$

one instanton effects are suppressed by

$$e^{-S_{\rm int}} = e^{-(8\pi^2/g^2(\mu)) + i\theta_{\rm YM}} = \left(\frac{\Lambda}{\mu}\right)^b$$

Effective Superpotential

integrate down to the scale μ

$$W_{\text{eff}} = \frac{\tau(\Lambda;\mu)}{16\pi i} W_{\alpha}^{a} W_{\alpha}^{a}$$

physics periodic in $\theta_{\rm YM}$ equivalent to

$$\Lambda \to e^{2\pi i/b} \Lambda$$

in general:

$$\tau(\Lambda; \mu) = \frac{b}{2\pi i} \ln\left(\frac{\Lambda}{\mu}\right) + f(\Lambda; \mu) ,$$

where f has Taylor series representation in positive powers of Λ .

$$\Lambda \to e^{2\pi i/b} \Lambda$$

in perturbative term shifts $\theta_{\rm YM}$ by 2π , f must be invariant under this transformation, so the Taylor series must be in positive powers of Λ^b

Effective Superpotential

in general, we can write:

$$\tau(\Lambda; \mu) = \frac{b}{2\pi i} \ln\left(\frac{\Lambda}{\mu}\right) + \sum_{n=1}^{\infty} a_n \left(\frac{\Lambda}{\mu}\right)^{bn}.$$

holomorphic gauge coupling only receives one-loop corrections and non-perturbative n-instanton corrections, no perturbative running beyond one-loop

Symmetry of SU(N) SUSY YM

 $U(1)_R$ symmetry is broken by instantons anomaly index: gaugino R-charge times T(Ad)Because of the anomaly, the chiral rotation

$$\lambda^a \to e^{i\alpha} \lambda^a$$

is equivalent to shift

$$\theta_{\rm YM} \to \theta_{\rm YM} - 2N\alpha$$

2N because the gaugino λ^a is in the adjoint representation, 2N zero modes in instanton background chiral rotation is only a symmetry when

$$\alpha = \frac{k\pi}{N}$$

 $U(1)_R$ explicitly broken to discrete Z_{2N} subgroup

Spurion Analysis

Treat τ as a spurion chiral superfield, define spurious symmetry

$$\lambda^a \to e^{i\alpha} \lambda^a \ , \ \tau \to \tau + \frac{N\alpha}{\pi}$$

Assuming that SUSY YM has no massless particles, then holomorphy and symmetries determine the effective superpotential to be:

$$W_{\text{eff}} = a\mu^3 e^{2\pi i\tau/N}$$

This is the unique form because under the spurious $U(1)_R$ rotation the superpotential (which has R-charge 2) transforms as

$$W_{\rm eff} \to e^{2i\alpha} W_{\rm eff}$$

Gaugino condensation

treat τ as a background chiral superfield, the \mathcal{F} component of τ (\mathcal{F}_{τ}) acts as a source for $\lambda^a \lambda^a$ gaugino condensate given by

$$\langle \lambda^a \lambda^a \rangle = 16\pi i \frac{\partial}{\partial F_{\tau}} \ln Z = 16\pi i \frac{\partial}{\partial F_{\tau}} \int d^2 \theta W_{\text{eff}}$$
$$= 16\pi i \frac{\partial}{\partial \tau} W_{\text{eff}} = 16\pi i \frac{2\pi i}{N} a \mu^3 e^{2\pi i \tau/N}$$

Drop nonperturbative corrections to running, plug in b = 3N:

$$\langle \lambda^a \lambda^a \rangle = -\frac{32\pi^2}{N} a\Lambda^3$$

vacuum does not respect the discrete Z_N symmetry since

$$\langle \lambda^a \lambda^a \rangle \to e^{2i\alpha} \langle \lambda^a \lambda^a \rangle$$

only invariant for k = 0 or k = N

 $Z_{2N} \to Z_2$, implies N degenerate vacua

 $\theta_{\rm YM} \to \theta_{\rm YM} + 2\pi$ sweeps out N different values for $\langle \lambda^a \lambda^a \rangle$

NSVZ revisited

Three seemingly contradictory statements:

• the SUSY gauge coupling runs only at one-loop

$$\beta(g) = -\frac{g^3}{16\pi^2} \left(3T(Ad) - \sum_j T(r_j) \right)$$

with matter chiral superfields Q_j in representations r_j

• the "exact" β function is

$$\beta(g) = -\frac{g^3}{16\pi^2} \frac{\left(3T(Ad) - \sum_j T(r_j)(1 - \gamma_j)\right)}{1 - T(Ad)g^2 / 8\pi^2}$$

ullet one- and two-loop terms in eta function are scheme independent

Changing renormalization schemes

$$g' = g + ag^3 + \mathcal{O}(g^5)$$

If β function is given by

$$\beta(g) = b_1 g^3 + b_2 g^5 + \mathcal{O}(g^7)$$

then

$$\beta'(g') = \beta(g) \frac{\partial g}{\partial g'} = b_1 g'^3 + b_2 g'^5 + \mathcal{O}(g'^7)$$

dependence on a only appears at higher order

Holomorphic vs Canonical Coupling

$$\mathcal{L}_{h} = \frac{1}{4} \int d^{2}\theta \frac{1}{g_{h}^{2}} W^{a}(V_{h}) W^{a}(V_{h}) + h.c.,$$

$$\frac{1}{g_{h}^{2}} = \frac{1}{g^{2}} - i \frac{\theta_{YM}}{8\pi^{2}} = \frac{\tau}{4\pi i} ,$$

$$V_{h} = (A_{\mu}^{a}, \lambda^{a}, D^{a}).$$

canonical gauge coupling for canonically normalized fields:

$$\mathcal{L}_c = \frac{1}{4} \int d^2\theta \left(\frac{1}{g_c^2} - i \frac{\theta_{\text{YM}}}{8\pi^2} \right) W^a(g_c V_c) W^a(g_c V_c) + h.c.$$

not equivalent under $V_h = g_c V_c$ because of rescaling anomaly with matter fields Q_j , additional rescaling anomaly from:

$$Q_j' = Z_j(\mu, \mu')^{1/2} Q_j$$

rescaling anomaly completely determined by the axial anomaly

Rescaling Anomaly

for fermions with a rescaling $Z = e^{2i\alpha}$. We can rewrite the axial anomaly in a manifestly supersymmetric form using the path integral measure as

$$\mathcal{D}(e^{i\alpha}Q)\mathcal{D}(e^{-i\alpha}\overline{Q}) = \mathcal{D}Q\mathcal{D}\overline{Q} \times \exp\left(\frac{-i}{4}\int d^2\theta \left(\frac{T(r_j)}{8\pi^2}2i\alpha\right)W^aW^a + h.c.\right)$$

take α to be complex gives general case:

$$\mathcal{D}(Z_j^{1/2}Q_j)\mathcal{D}(Z_j^{1/2}\overline{Q}_j) = \mathcal{D}Q_j\mathcal{D}\overline{Q}_j \times \exp\left(\frac{-i}{4}\int d^2\theta \left(\frac{T(r_j)}{8\pi^2}\ln Z_j\right)W^aW^a + h.c.\right)$$

Rescaling Anomaly

for the gauge fields (gauginos) taking $Z_{\lambda} = g_c^2$

$$\mathcal{D}(g_c V_c)$$

$$= \mathcal{D}V_c \times \exp\left(\frac{-i}{4} \int d^2\theta \left(\frac{2T(Ad)}{8\pi^2} \ln(g_c)\right) W^a(g_c V_c) W^a(g_c V_c) + h.c.\right)$$

Thus, for pure SUSY Yang-Mills we have

$$Z = \int \mathcal{D}V_h \exp\left(\frac{i}{4} \int d^2\theta \frac{1}{g_h^2} W^a(V_h) W^a(V_h) + h.c.\right)$$

=
$$\int \mathcal{D}V_c \exp\left(\frac{i}{4} \int d^2\theta \left(\frac{1}{g_h^2} - \frac{2T(Ad)}{8\pi^2} \ln(g_c)\right) W^a(g_c V_c) W^a(g_c V_c) + h.c.\right)$$

So

$$\frac{1}{g_c^2} = \operatorname{Re}\left(\frac{1}{g_h^2}\right) - \frac{2T(Ad)}{8\pi^2} \ln(g_c)$$

Rescaling Anomaly

including the matter fields:

$$\frac{1}{g_c^2} = \text{Re}\left(\frac{1}{g_h^2}\right) - \frac{2T(Ad)}{8\pi^2}\ln(g_c) - \sum_j \frac{T(r_j)}{8\pi^2}\ln(Z_j)$$

Differentiating with respect to $\ln \mu$, this leads precisely to

$$\beta(g) = -\frac{g^3}{16\pi^2} \frac{\left(3T(Ad) - \sum_j T(r_j)(1 - \gamma_j)\right)}{1 - T(Ad)g^2 / 8\pi^2}$$

relation between the two couplings is logarithmic, one cannot be expanded in a Taylor series around zero in the other