
Holomorphy



Non-renormalization theorems
Consider

Wtree = m
2 φ

2 + λ
3φ

3

φ is a chiral superfield; scalar component φ, fermion component by ψ.
R-charge

[R,Qα] = −Qα

R[ψ] = R[φ]− 1, R[θ] = 1
Lagrangian in toy model has Yukawa coupling

L ⊃ λ
3φψψ

which must have zero R-charge, so

3R[φ]− 2 = 0

therefore R[W ] = 2, or Lint =
∫
d2θW



Toy Model
U(1) × U(1)R

φ 1 1
m −2 0
λ −3 −1

treat the mass and coupling as background spurion fields
integrate out modes from Λ down to µ, then the symmetries and

holomorphy of the effective superpotential restrict it to be of the form

Weff = mφ2 h
(
λφ
m

)
=
∑
n anλ

nm1−nφn+2 ,

weak coupling limit λ→ 0 restricts n ≥ 0
the massless limit m→ 0 restricts n ≤ 1 so

Weff = m
2 φ

2 + λ
3φ

3 = Wtree

superpotential is not renormalized



Wavefunction renormalization
Lkin. = Z∂µφ

∗∂µφ+ iZψσµ∂µψ

Z is a non-holomorphic function

Z = Z(m,λ,m†, λ†, µ,Λ)

If we integrate out modes down to µ > m at one-loop order

Z = 1 + cλλ† ln
(

Λ2

µ2

)
where c is a constant determined by the perturbative calculation. If we
integrate out modes down to scales below m we have

Z = 1 + cλλ† ln
(

Λ2

mm†

)
Wavefunction renormalization means that couplings of canonically nor-
malized fields run
running mass and running coupling are given by

m
Z ,

λ

Z
3
2



Integrating out
Consider a model with two different chiral superfields:

W = 1
2Mφ2

H + λ
2φHφ

2

three global U(1) symmetries:

U(1)A U(1)B U(1)R
φH 1 0 1
φ 0 1 1

2
M −2 0 0
λ −1 −2 0

where U(1)A and U(1)B are spurious symmetries for M , λ 6= 0



Integrating out
If we want to integrate out modes down to µ < M , we must integrate
out φH . An arbitrary term in the effective superpotential has the form

φjMkλp

To preserve the symmetries we must have j = 4, k = −1, and p = 2.
By comparing with tree-level perturbation theory we can determine the
coefficient:

Weff = −λ
2φ4

8M

algebraic equation of motion:

∂W
φH

= MφH + λ
2φ

2 = 0

solve this equation for φH and plug the result back into the superpoten-
tial



Another Example
W = 1

2Mφ2
H + λ

2φHφ
2 + y

6φ
3
H

φH equation of motion:

φH = −My

(
1±

√
1− λyφ2

M2

)
as y → 0, the two vacua approach φH = −λφ/(2M) (as in previous
example) and φH =∞. Integrating out φH yields

Weff = M3

3y2

(
1− 3λyφ2

2M2 ±
(

1− λyφ2

M2

)√
1− λyφ2

M2

)
singularities in Weff indicate points in the parameter space and the space
of φ VEVs where φH becomes massless and we should not have integrated
it out



Singularities
The mass of φH can be found by calculating

∂2W
∂φ2

H

= M + yφH

and substituting in the solution forφH :

∂2W
∂φ2

H

= ∓M
√

1− λyφ2

M2

Using holomorphy assign y charges (-3,0,-1) under U(1)A×U(1)B×U(1)R
then

Weff = M3

y2 f
(
λyφ2

M2

)
for some function f , just as we found from explicitly integrating out φH



The holomorphic gauge coupling
chiral superfield for an SU(N) gauge supermultiplet:

W a
α = −iλaα(y) + θαD

a(y)− (σµνθ)αF aµν(y)− (θθ)σµDµλ
a†(y) ,

a = 1, . . . , N2 − 1

τ ≡ θYM
2π + 4πi

g2 ,

SUSY Yang–Mills action as a superpotential term

1
16πi

∫
d4x

∫
d2θ τ W a

αW
a
α + h.c. =∫

d4x
[
− 1

4g2F
aµνF aµν − θYM

32π2F
aµν F̃ aµν + i

g2λ
a†σµDµλ

a + 1
2g2D

aDa
]

g only in τ which is a holomorphic parameter, but gauge fields are not
canonically normalized



Running coupling
one-loop running g is given by the RG equation:

µ dgdµ = − b
16π2 g

3

where for an SU(N) gauge theory with F flavors and N = 1 SUSY,

b = 3N − F

The solution for the running coupling is

1
g2(µ) = − b

8π2 ln
(
|Λ|
µ

)
where |Λ| is the intrinsic scale of the non-Abelian gauge theory



Holomorphic Intrinsic Scale
τ1−loop = θYM

2π + 4πi
g2(µ)

= 1
2πi ln

[(
|Λ|
µ

)b
eiθYM

]
Λ ≡ |Λ|eiθYM/b

= µe2πiτ/b

τ1−loop = b
2πi ln

(
Λ
µ

)



CP Violating Term
F aµν F̃ aµν = 4εµνρσ∂µTr

(
Aν∂ρAσ + 2

3AνAρAσ
)

total derivative: no effect in perturbation theory
nonperturbative effects: instantons have a nontrivial, topological wind-
ing number, n

θYM
32π2

∫
d4xF aµν F̃ aµν = n θYM .

Since the path integral has the form∫
DAaDλaDDa eiS

θYM → θYM + 2π

is a symmetry of the theory



Instanton Action
The Euclidean action of an instanton configuration can be bounded

0 ≤
∫
d4xTr

(
Fµν ± F̃µν

)2

=
∫
d4xTr

(
2F 2 ± 2FF̃

)
∫
d4xTrF 2 ≥ |

∫
d4xTrF F̃ | = 16π2|n|

one instanton effects are suppressed by

e−Sint = e−(8π2/g2(µ))+iθYM =
(

Λ
µ

)b



Effective Superpotential
integrate down to the scale µ

Weff = τ(Λ;µ)
16πi W

a
αW

a
α

physics periodic in θYM equivalent to

Λ→ e2πi/bΛ

in general:

τ(Λ;µ) = b
2πi ln

(
Λ
µ

)
+ f(Λ;µ) ,

where f has Taylor series representation in positive powers of Λ.

Λ→ e2πi/bΛ

in perturbative term shifts θYM by 2π, f must be invariant under this
transformation, so the Taylor series must be in positive powers of Λb



Effective Superpotential
in general, we can write:

τ(Λ;µ) = b
2πi ln

(
Λ
µ

)
+
∑∞
n=1 an

(
Λ
µ

)bn
.

holomorphic gauge coupling only receives one-loop corrections and non-
perturbative n-instanton corrections, no perturbative running beyond
one-loop



Symmetry of SU(N) SUSY YM
U(1)R symmetry is broken by instantons

anomaly index: gaugino R-charge times T (Ad)
Because of the anomaly, the chiral rotation

λa → eiαλa

is equivalent to shift

θYM → θYM − 2Nα

2N because the gaugino λa is in the adjoint representation, 2N zero
modes in instanton background
chiral rotation is only a symmetry when

α = kπ
N

U(1)R explicitly broken to discrete Z2N subgroup



Spurion Analysis
Treat τ as a spurion chiral superfield, define spurious symmetry

λa → eiαλa , τ → τ + Nα
π

Assuming that SUSY YM has no massless particles, then holomorphy
and symmetries determine the effective superpotential to be:

Weff = aµ3e2πiτ/N

This is the unique form because under the spurious U(1)R rotation the
superpotential (which has R-charge 2) transforms as

Weff → e2iαWeff



Gaugino condensation
treat τ as a background chiral superfield, the F component of τ (Fτ )

acts as a source for λaλa

gaugino condensate given by

〈λaλa〉 = 16πi ∂
∂Fτ

lnZ = 16πi ∂
∂Fτ

∫
d2θWeff

= 16πi ∂∂τWeff = 16πi 2πi
N aµ3e2πiτ/N

Drop nonperturbative corrections to running, plug in b = 3N :

〈λaλa〉 = − 32π2

N aΛ3

vacuum does not respect the discrete ZN symmetry since

〈λaλa〉 → e2iα〈λaλa〉

only invariant for k = 0 or k = N
Z2N → Z2, implies N degenerate vacua
θYM → θYM + 2π sweeps out N different values for 〈λaλa〉



NSVZ revisited
Three seemingly contradictory statements:

• the SUSY gauge coupling runs only at one-loop

β(g) = − g3

16π2

(
3T (Ad)−

∑
j T (rj)

)
with matter chiral superfields Qj in representations rj

• the “exact” β function is

β(g) = − g3

16π2

(
3T (Ad)−

∑
j
T (rj)(1−γj)

)
1−T (Ad)g2/8π2

• one- and two-loop terms in β function are scheme independent



Changing renormalization schemes
g′ = g + ag3 +O(g5)

If β function is given by

β(g) = b1g
3 + b2g

5 +O(g7)

then

β′(g′) = β(g) ∂g∂g′ = b1g
′3 + b2g

′5 +O(g′7)

dependence on a only appears at higher order



Holomorphic vs Canonical Coupling
Lh = 1

4

∫
d2θ 1

g2
h

W a(Vh)W a(Vh) + h.c.,

1
g2
h

= 1
g2 − i

θYM
8π2 = τ

4πi ,

Vh = (Aaµ, λ
a, Da).

canonical gauge coupling for canonically normalized fields:

Lc = 1
4

∫
d2θ

(
1
g2c
− i θYM

8π2

)
W a(gcVc)W a(gcVc) + h.c.

not equivalent under Vh = gcVc because of rescaling anomaly
with matter fields Qj , additional rescaling anomaly from:

Q′j = Zj(µ, µ′)1/2Qj

rescaling anomaly completely determined by the axial anomaly



Rescaling Anomaly
for fermions with a rescaling Z = e2iα. We can rewrite the axial anomaly
in a manifestly supersymmetric form using the path integral measure as

D(eiαQ)D(e−iαQ) = DQDQ
× exp

(
−i
4

∫
d2θ

(
T (rj)
8π2 2iα

)
W aW a + h.c.

)
take α to be complex gives general case:

D(Z1/2
j Qj)D(Z1/2

j Qj) = DQjDQj
× exp

(
−i
4

∫
d2θ

(
T (rj)
8π2 lnZj

)
W aW a + h.c.

)



Rescaling Anomaly
for the gauge fields (gauginos) taking Zλ = g2

c

D(gcVc)
= DVc × exp

(
−i
4

∫
d2θ

(
2T (Ad)

8π2 ln(gc)
)
W a(gcVc)W a(gcVc) + h.c.

)
Thus, for pure SUSY Yang–Mills we have

Z =
∫
DVh exp

(
i
4

∫
d2θ 1

g2
h

W a(Vh)W a(Vh) + h.c.
)

=
∫
DVc exp

(
i
4

∫
d2θ

(
1
g2
h

− 2T (Ad)
8π2 ln(gc)

)
W a(gcVc)W a(gcVc) + h.c.

)
So

1
g2c

= Re
(

1
g2
h

)
− 2T (Ad)

8π2 ln(gc)



Rescaling Anomaly
including the matter fields:

1
g2c

= Re
(

1
g2
h

)
− 2T (Ad)

8π2 ln(gc)−
∑
j
T (rj)
8π2 ln(Zj)

Differentiating with respect to lnµ, this leads precisely to

β(g) = − g3

16π2

(
3T (Ad)−

∑
j
T (rj)(1−γj)

)
1−T (Ad)g2/8π2

relation between the two couplings is logarithmic, one cannot be ex-
panded in a Taylor series around zero in the other


