Holomorphy



Non-renormalization theorems

Consider
Wiree = %¢2 + %¢3

¢ is a chiral superfield; scalar component ¢, fermion component by 1.
R-charge

[R7 Qoz] — _Qa
R[] = Rl¢] -1, R[f] =1

Lagrangian in toy model has Yukawa coupling

LD g¢91)

which must have zero R-charge, so
3R[¢] —2=0
therefore R[W] =2, or Liny = [d?0 W



Toy Model

o) 1 1
m =2 0
A -3 —1

treat the mass and coupling as background spurion fields
integrate out modes from A down to u, then the symmetries and
holomorphy of the effective superpotential restrict it to be of the form

Weog = mgbz h (%) _ Zn an)\nml—ngbn—i—Q ’

weak coupling limit A — 0 restricts n > 0
the massless limit m — 0 restricts n < 1 so

Weff — %¢2 =+ %qbg — Wtree

superpotential is not renormalized



Wavelunction renormalization

Lyin. = Z0,,¢* 0" ¢ + i Z1pa+ 0,1
Z is a non-holomorphic function
Z = Z(m,\,m", AT, u, A)
If we integrate out modes down to > m at one-loop order
Z =1+ (4)

where c is a constant determined by the perturbative calculation. If we
integrate out modes down to scales below m we have

_ A?
Wavefunction renormalization means that couplings of canonically nor-
malized fields run
running mass and running coupling are given by



Integrating out

Consider a model with two different chiral superfields:
W =1M¢? + 3one?

three global U(1) symmetries:

U(l)a Ul)g UQ)g
on 1 0 1
¢ 0 1 5
M =2 0 0
A -1 —2 0

where U(1)4 and U(1)p are spurious symmetries for M, X #£ 0



Integrating out

If we want to integrate out modes down to u < M, we must integrate
out ¢y. An arbitrary term in the effective superpotential has the form

&) MF\P

To preserve the symmetries we must have 5 = 4, k = —1, and p = 2.
By comparing with tree-level perturbation theory we can determine the
coeflicient:

algebraic equation of motion:

o = Mo+ 36" =0

solve this equation for ¢ iy and plug the result back into the superpoten-
tial



Another Example
W =3 MY + 50n¢” + § 0k
¢z equation of motion:

o= <1i\/1—/\ﬂy4—‘é2>

as y — 0, the two vacua approach ¢y = —A¢p/(2M) (as in previous
example) and ¢ = oo. Integrating out ¢y yields

3 2 2
Wei = 35 <1— e 4 (1— Ll ) \/1 —~ /\ﬁf)

singularities in Weg indicate points in the parameter space and the space
of  VEVs where ¢ becomes massless and we should not have integrated

1t out



Singularities
The mass of ¢y can be found by calculating

2

and substituting in the solution for¢g:

Using holomorphy assign y charges (-3,0,-1) under U(1) 4 xU (1) pxU (1) g
then

y2

3 2
Weff =M (AJ\ZQZ >

for some function f, just as we found from explicitly integrating out ¢ g



The holomorphic gauge coupling

chiral superfield for an SU(N) gauge supermultiplet:
W& = —idg(y) + 0aD(y) — (0"0)aF, (y) — (00)0" DX (y) |

(87

a=1,...,N°—1

SUSY Yang—Mills action as a superpotential term

ﬁ [d*z [d*0 T WIWE + h.c. =

[ diz |~ b o Eg, — Sy FemBe, 4 AT D, N+ 5L DD

g only in 7 which is a holomorphic parameter, but gauge fields are not
canonically normalized



Running coupling

one-loop running ¢ is given by the RG equation:

dg _ b 3
’LLd,LL_ 16729

where for an SU(N) gauge theory with F' flavors and N' =1 SUSY,
b=3N — F

The solution for the running coupling is

1 _ _ b 1Al
g%(p) —  8m? ln< u)

where |A| is the intrinsic scale of the non-Abelian gauge theory




Holomorphic Intrinsic Scale

—  Oym 4w
Tl1—loop — o + 72(1)

= 55 In [(m)b ewYM]
e L

’A|€i9YM/b
M627m'7'/b

b1 (A
Tl-loop = 3.7 IN (p)

—
1l



CP Violating Term

FaFe, = 4¢hr7 9, Tr (A, 0,A, + 24, A,A,)

total derivative: no effect in perturbation theory
nonperturbative effects: instantons have a nontrivial, topological wind-
ing number, n

—:f;l;@ [ d*x F“Wfﬁy =n6ym -

Since the path integral has the form
[DA*DN*DD* e*®
HYM — HYM + 2T

is a symmetry of the theory



Instanton Action

The Euclidean action of an instanton configuration can be bounded
~ N2 -
0 < [daTr(Fu +F.) = [daTr (2F2 +2FF)
[d*aTrF? > | [ d*zTrFF| = 167%|n|
one instanton effects are suppressed by

e Sint — e_(87"2/92(ﬂ))+i9YM _ (A)b

S



Effective Superpotential

integrate down to the scale u

A
Werr = S WaWe
physics periodic in vy equivalent to
A — e2mi/bA

in general:

r(Asp) = o (4) + F(Asp) |
where f has Taylor series representation in positive powers of A.
A — e2mi/bA

in perturbative term shifts 6yy by 27w, f must be invariant under this
transformation, so the Taylor series must be in positive powers of A®



Effective Superpotential

in general, we can write:

T(A;p) = 5= 1In (%) + 37 an (%)bn .

holomorphic gauge coupling only receives one-loop corrections and non-
perturbative n-instanton corrections, no perturbative running beyond
one-loop



Symmetry of SU(N) SUSY YM

U(1)r symmetry is broken by instantons
anomaly index: gaugino R-charge times T'(Ad)
Because of the anomaly, the chiral rotation

2\ —s eioz)\a
is equivalent to shift
QYM — HYM — 2N«

2N because the gaugino A® is in the adjoint representation, 2N zero
modes in instanton background
chiral rotation is only a symmetry when

km

U(1)g explicitly broken to discrete Zsn subgroup



Spurion Analysis
Treat 7 as a spurion chiral superfield, define spurious symmetry
¢ — eta)\ T—>T—|—%

Assuming that SUSY YM has no massless particles, then holomorphy
and symmetries determine the effective superpotential to be:

W = alu3627m'7'/N

This is the unique form because under the spurious U(1)g rotation the
superpotential (which has R-charge 2) transforms as

Weff — 627;0‘ Weff



(Gaugino condensation

treat 7 as a background chiral superfield, the F component of 7 (F.)
acts as a source for A*\“
gaugino condensate given by

<)\CL)\CL> = 16m 8?77 InZ = ]_67-‘-2% fdQQWeff
— 167@%Weﬂ' — 1671—2%@”3627”’7/1\7

Drop nonperturbative corrections to running, plug in b = 3NV

(AIAY) = 323

vacuum does not respect the discrete Zny symmetry since
<)\a)\a> N €2ia<)\a>\a>

only invariant for k =0or k=N
ZoN — Zo, implies N degenerate vacua
Oym — Oy + 27 sweeps out N different values for (A*A%)



NSVZ revisited

Three seemingly contradictory statements:

e the SUSY gauge coupling runs only at one-loop

B(g) = — ks (3T(Ad) — 53, T(ry))

with matter chiral superfields @), in representations r;

e the “exact” [ function is

s (3T(Ad)=) T(r)(1—7)))
Blg) = — 1g7r2 1—T(Ad)g2 /872

e one- and two-loop terms in 8 function are scheme independent



Changing renormalization schemes
g =g+ag’+0(g°)

If 5 function is given by

B(g) = b1g> + bag® + O(g")
then

B'(g") = B(9)3 89 = 019" + b2g”” + O(¢'")

dependence on a only appears at higher order



Holomorphic vs Canonical Coupling

= 1 [ @OEW (Vi)W (Vi) + hec.

1 _ 1 _ s0vym . T
g; g 8w2 T 4mwi )
Vi = (A% A%, D).

canonical gauge coupling for canonically normalized fields:

L.=7[d0 (— - @QYM) W (g Ve )W (g:Ve) + h.c.

C

not equivalent under V; = ¢.V. because of rescaling anomaly
with matter fields ();, additional rescaling anomaly from:

Q= Zj(p, )?Q;

rescaling anomaly completely determined by the axial anomaly



Rescaling Anomaly

for fermions with a rescaling Z = e?*®. We can rewrite the axial anomaly

in a manifestly supersymmetric form using the path integral measure as

D(e*Q)D(e"*Q) = DRDQ
xexp( L [d%6 ( T")Qza) WaWa+hc)

take a to be complex gives general case:

D(2;?Q;)D(2)*Q,) = DQ,DQ;
X exp (_TifdQH (7;5(7”;)

In Zj) WaWwe 4 h.c.)



Rescaling Anomaly

for the gauge fields (gauginos) taking Z = g>

D(g:Ve)

— DV, xexp (—Ti [ d6 (ﬂﬁéd) ln(gc)) W (g Vo)W (goVe) + h.c.)

Thus, for pure SUSY Yang—Mills we have

Z = [DVyexp (ﬂd?@gizwa(vh)wa(vh) +h.c.)
— [ DVeexp (4 [d% (— ~ 2D In(g.) ) W(g.Ve) WO (geVe) + hoc)

So




Rescaling Anomaly

including the matter fields:

& =Re (&) - 8% (g - X, 54 In(2))

g2 g 872 ] 8m2
Differentiating with respect to In i, this leads precisely to

3 (BT(Ad) =Y T(r)(1—)))
Blg) = — 1g772 1—T(Ad)g2/8m2

relation between the two couplings is logarithmic, one cannot be ex-
panded in a Taylor series around zero in the other



