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Spontaneous SUSY Breaking
〈0|H|0〉 > 0

implies that SUSY is broken.

V = F i∗Fi + g2

2 D
aDa ,

find models where Fi = 0 or Da = 0 cannot be simultaneously solved

then use this SUSY breaking sector to generate the soft SUSY breaking



O’Raifeartaigh model
have nonzero F-terms

WO′R = −k2Φ1 +mΦ2Φ3 + y
2 Φ1Φ2

3.

scalar potential is

V = |F1|2 + |F2|2 + |F3|2
= |k2 − y

2φ
∗2
3 |2 + |mφ∗3|2 + |mφ∗2 + yφ∗1φ

∗
3|2.

no solution where both F1 = 0 and F2 = 0
For large m, minimum is at φ2 = φ3 = 0 with φ1 undetermined

vacuum energy density is

V = |F1|2 = k4 .



O’Raifeartaigh model
Around φ1 = 0, the mass spectrum of scalars is

0, 0, m2, m2, m2 − yk2, m2 + yk2.

There are also three fermions with masses

0, m, m.

Note that these masses satisfy a sum rule for tree-level breaking

Tr[M2
scalars] = 2Tr[M2

fermions]



O’Raifeartaigh model: One Loop
For k2 6= 0, loop corrections will give a mass to φ1
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Figure 1: Crosses mark an insertion of yk2.

yk2 insertions must appear with an even number in order to preserve
the orientation of the arrows flowing into the vertices
correction to the φ1 mass from the top three graphs vanishes by SUSY



O’Raifeartaigh model: One Loop
bottom two graphs give

−im2
1 =

∫
d4p
2π4 (−iy2) iy2k4

(p2−m2)3 + (iym)2 i
p2−m2

iy2k4

(p2−m2)3 ,

yields a finite, positive, result

m2
1 = y4k4

48π2m2 = y4

48π2
|F1|2
m2 .

the classical flat direction is lifted by quantum corrections, the potential
is stable around φ1 = 0

the massless fermion ψ1 stays massless since it is the Nambu–Goldstone
particle for the broken SUSY generator, a goldstino

ψ1 is the fermion in the multiplet with the nonzero F component.



Fayet–Iliopoulos mechanism
uses a nonzero D-term for a U(1) gauge group

add a term linear in the auxiliary field to the theory:

LFI = κ2D ,

where κ is a constant parameter with dimensions of mass
scalar potential is

V = 1
2D

2 − κ2D + gD
∑
i qiφ

i∗φi ,

and the D equation of motion gives

D = κ2 − g
∑
i qiφ

i∗φi .

If the φis have large positive mass squared terms, 〈φ〉 = 0 and D = κ2

in the MSSM, however, squarks and sleptons cannot have superpotential
mass terms



Problems
Fayet–Iliopoulos and O’Raifeartaigh models set the scale of SUSY

breaking by hand. To get a SUSY breaking scale that is naturally small
compared to the Planck scale, MPl, we need an asymptotically free gauge
theory that gets strong through RG evolution at some much smaller scale

Λ ∼ e−8π2/(bg2
0)MPl ,

and breaks SUSY nonperturbatively
can’t use renormalizable tree-level couplings to transmit SUSY breaking,
since SUSY does not allow scalar–gaugino–gaugino couplings

we expect that SUSY breaking occurs dynamically in a “hidden sec-
tor” and is communicated by non-renormalizable interactions or through
loop effects. If the interactions that communicate SUSY breaking to the
MSSM (“visible”) sector are flavor-blind it is possible to suppress FCNCs



Gauge-Mediated Scenario
add “messenger” chiral supermultiplets where the fermions and bosons

are split and which couple to the SM gauge groups
MSSM superpartners get masses through loops:

msoft ∼ αi

4π
〈F〉
Mmess

If Mmess ∼
√
〈F〉, then the SUSY breaking scale can be as low as√

〈F〉 ∼ 104–105 GeV.



Gravity-Mediated Scenario
interactions with the SUSY breaking sector are suppressed by powers of
MPl hidden sector field X with a nonzero 〈FX〉, then MSSM soft terms
of the order

msoft ∼ 〈FX〉
MP l

.

To get msoft to come out around the weak scale we need
√
〈FX〉 ∼ 1010–

1011 GeV. Alternatively, if SUSY is broken by a gaugino condensate
〈0|λaλb|0〉 = δabΛ3 6= 0, then

msoft ∼ Λ3

M2
P l

,

which requires Λ ∼ 1013 GeV. This can, of course, be rewritten as:
〈FX〉 = Λ3/MPl.



Effective Lagrangian
Below the MPl is:

Leff = −
∫
d4θ X∗

MP l
b̂′ijψiψj + XX∗

M2
P l

(
m̂i
jψiψ

j∗ + b̂ijψiψj

)
+ h.c.

−
∫
d2θ X

2MP l

(
M̂3G

αGα + M̂2W
αWα + M̂1B

αBα

)
+ h.c.

−
∫
d2θ X

MP l
âijkψiψjψk + h.c.

where Gα, Wα, Bα, and ψi are the chiral superfields of the MSSM, and
the hatted symbols are dimensionless

If 〈X〉 = 〈F〉 then

Leff = − 〈FX〉
2MP l

(
M̂3G̃G̃+ M̂2W̃W̃ + M̂1B̃B̃

)
+ h.c.

− 〈FX〉〈F∗X〉
M2

P l

(
m̂i
jψ̃iψ̃

j∗ + b̂ijψ̃iψ̃j

)
+ h.c.

− 〈FX〉
MP l

âijkψ̃iψ̃jψ̃k − 〈F
∗
X〉

MP l

∫
d2θ b̂′ijψiψj + h.c.



Assumptions
assume M̂i = M̂ , m̂i

j = m̂δij
we have generated a µ-term with µij = b̂′δiHu

δjHd
〈F∗X〉/MPl assuming

âijk = âY ijk and b̂ij = b̂δiHu
δjHd

, then soft parameters have a universal
form (when renormalized at MPl)
gaugino masses are equal

Mi = m1/2 = M̂ 〈FX〉
MP l

,

the scalar masses are universal

m2
f = m2

Hu
= m2

Hd
= m2

0 = m̂ |〈FX〉|2
M2

P l

,

A and b terms are given by

Af = AYf = â 〈FX〉
MP l

Yf , b = Bµ = b̂
b̂′
〈FX〉
MP l

µ .

µ2 and b are naturally of the same order of magnitude if b̂ and b̂′ are of
the same order of magnitude



Justified Assumptions?
the assumptions avoid problems with FCNCs. Since gravity is flavor-
blind, it might seem that this a natural result of gravity mediation.
However, the equivalence principle does not guarantee these universal
terms, since nothing forbids a Kähler function of the form

Kbad = f(X†, X)ij ψ
†jψi ,

which leads directly to off-diagonal terms in the matrix m̂i
j

Taking µ and the four SUSY breaking parameters and running them
down from the unification scale (rather than the Planck scale as one
would expect) is referred to as the minimal supergravity scenario



MSugra

Figure 2: The phase diagram of the minimal supersymmetric SM, assuming a universal
scalar mass m2, a gaugino unified mass M , a Higgsino mass µ, and trilinear term A = 0,
with all parameters defined at the GUT scale. The top Yukawa coupling is fixed such that
mt = 172.7 GeV and tanβ = 10 in the usual phase with electroweak breaking. Some
contours are shown for masses of the lightest stop (Mt̃1), the gluino (Mg̃), and the lightest
chargino (Mχ+). The green (gray) area shows the region of parameters allowed after LEP
Higgs searches.

involved in the conventional SU(2) × U(1) breaking pattern (third-generation squarks and

the two Higgses).

More interesting is a special multi-critical point, separating the various Higgs phases,

that corresponds to vanishing Higgs bilinear terms (m2
1 = m2

2 = m2
3 = 0)2. This point,

which is actually a surface in the case of general soft terms, occurs at negative m2, in the

example we are considering. Moving away from the multi-critical point, different phases

emerge, depending on the signs and the values of m2
1 and m2

2 at the scale MS. For positive
2These three conditions cannot be in general satisfied in the case of only two free parameters. However,

fig. 2 corresponds to fixed tanβ, and thus m2
3 automatically vanishes, whenever m2

1 = m2
2 = 0.
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scalar mass m2, gaugino mass M , A = 0

Giudice, Rattazzi, hep-ph/0606105



The goldstino
Consider the fermions in a general SUSY gauge theory. Take a basis

Ψ = (λa, ψi). The mass matrix is

Mfermion =
(

0
√

2ga(〈φ∗〉T a)i√
2ga(〈φ∗〉T a)j 〈W ij〉

)
eigenvector with eigenvalue zero:(

〈Da〉/
√

2
〈Fi〉

)
eigenvector is only nontrivial if SUSY is broken. The corresponding
canonically normalized massless fermion field is the goldstino:

Π = 1
FΠ

(
〈Da〉√

2
λa + 〈Fi〉ψi

)
where

F 2
Π =

∑
a
〈Da〉2

2 +
∑
i〈Fi〉2



The Goldstino
masslessness of the goldstino follows from two facts. First the superpo-
tential is gauge invariant,

(φ∗T a)iW ∗i = −(φ∗T a)iFi = 0

second, the first derivative of the scalar potential

∂V
∂φi

= −W ∗i ∂W
i

∂φi
− ga(φ∗T a)jDa

vanishes at its minimum

〈 ∂V∂φi
〉 = 〈Fi〉〈W ij〉 − ga(〈φ∗〉T a)j〈Da〉 = 0



The Supercurrent
Jµα = iFΠ(σµΠ̄)α + (σνσµψi)αDνφ

∗i − 1
2
√

2
(σνσρσµλ̄a)α F aνρ ,

≡ iFΠ(σµΠ̄)α + jµα .

terms included in jµα contain two or more fields.
supercurrent conservation:

∂µJ
µ
α = iFΠ(σµ∂µΠ̄)α + ∂µj

µ
α = 0 (∗)

effective Lagrangian for the goldstino

Lgoldstino = iΠ̄σµ∂µΠ + 1
FΠ

(Π ∂µj
µ + h.c.).

The EQOM for Π is just eqn (*)

goldstino–scalar–fermion and goldstino–gaugino–gauge boson interactions
allow the heavier superpartner to decay interaction terms have two deriva-
tives, coupling is proportional to the difference of mass squared



Eat the Goldstino
Nambu–Goldstone boson can be eaten by a gauge boson
for gravity, Poincaré symmetry, and hence SUSY, must be a local
SUSY spinor εα → εα(x): supergravity
spin-2 graviton has spin-3/2 fermionic superpartner, gravitino, Ψ̃α

µ , which
transforms inhomogeneously under local SUSY transformations:

δΨ̃α
µ = −∂µεα + . . . .

gravitino is the “gauge” particle of local SUSY transformations

when SUSY is spontaneously broken, the gravitino acquires a mass by
“eating” the goldstino: the other super Higgs mechanism
gravitino mass:

m3/2 ∼ 〈FX〉
MP l



Gravitino Mass
In gravity-mediated SUSY breaking, the gravitino mass ∼ msoft

In gauge-mediated SUSY breaking the gravitino is much lighter than the
MSSM sparticles if Mmess �MPl, so the gravitino is the LSP.

For a superpartner of mass m
ψ̃
≈ 100 GeV, and

√
〈FX〉 < 106 GeV

m3/2 < 1 keV

the decay ψ̃ → ψΠ can be observed inside a collider detector



The goldstino theorem
no matter how SUSY is spontaneously broken, even if it is dynamical,

there is a goldstino. Using the SUSY algebra it follows

〈0|{Qα, Jµ†α̇ (y)}|0〉 =
√

2σναα̇〈0|Tµν (y)|0〉 =
√

2σναα̇E η
µ
ν ,

where E is the vacuum energy density. When E 6= 0, SUSY is sponta-
neously broken. Taking the location of the current to be at the origin,
and writing out Qα as an integral over a dummy spatial variable

√
2σµαα̇E = 〈0|{

∫
d3xJ0

α(x), Jµ†α̇ (0)}|0〉
=

∑
n

∫
d3x

(
〈0|J0

α(x)|n〉〈n|Jµ†α̇ (0)|0〉+ 〈0|Jµ†α̇ (0)|n〉〈n|J0
α(x)|0〉

)
,

where we have inserted a sum over a complete set of states. Choosing
x0 = 0, use the generator of translations (Pµ) to show that

〈0|J0
α(x)|n〉 = 〈0|eiP.xJ0

α(0)e−iP.x|n〉
= 〈0|J0

α(0)e−i~pn.~x|n〉



The goldstino theorem
So we have

√
2σµαα̇E =

∑
n(2π)3δ(~pn)

(
〈0|J0

α(0)|n〉〈n|Jµ†α̇ (0)|0〉
+〈0|Jµ†α̇ (0)|n〉〈n|J0

α(0)|0〉

)
write the term in parenthesis as fn(En, ~pn,) We can also write our anti-
commutator as

√
2σµαα̇E =

∫
d4x

(
〈0|J0

α(x)Jµ†α̇ (0)|0〉+ 〈0|Jµ†α̇ (0)J0
α(x)|0〉

)
δ(x0)

=
∫
d4x ∂ρ

(
〈0|Jρα(x)Jµ†α̇ (0)|0〉Θ(x0)− 〈0|Jµ†α̇ (0)Jρα(x)|0〉Θ(−x0)

)
,

where Θ(x0) is the step function
E is related to the integral of a total divergence. Nonvanishing if there
is a massless particle contributing to the two-point function.



The goldstino theorem
Inserting a sum over a complete set of states we have

√
2σµαα̇E =

∑
n

∫
d4x∂ρ

(
〈0|Jρα(0)e−i~pn.~x|n〉〈n|Jµ†α̇ (0)|0〉Θ(x0)
−〈0|Jµ†α̇ (0)|n〉〈n|ei~pn.~xJρα(0)|0〉Θ(−x0)

)

=
∑
n

∫
d4x


−ipnρ

(
e−i~pn.~x〈0|Jρα(0)|n〉〈n|Jµ†α̇ (0)|0〉Θ(x0)
+ei~pn.~x〈0|Jµ†α̇ (0)|n〉〈n|Jρα(0)|0〉Θ(−x0)

)
+δ(x0)

(
e−i~pn.~x〈0|Jρα(0)|n〉〈n|Jµ†α̇ (0)|0〉
+ei~pn.~x〈0|Jµ†α̇ (0)|n〉〈n|Jρα(0)|0〉

)


=
∑
n(2π)3δ(~pn)

(
fn(En, ~pn,)− i

∫∞
0
dx0 ei

~En.~xEnfn(En, ~pn,)
)



The goldstino theorem
Comparing the two eqns we see that∫∞

0
dx0 eiEnx

0
Enfn(En,~0,) = 0

and if SUSY is spontaneously broken

fn(En,~0,) 6= 0

The only possibility is that

fn(En,~0,) ∝ δ(En)

so a state contributes to our two-point function with the quantum num-
bers of J0

α (i.e. a fermion) with ~p = 0 and E = 0. In other words there
must be a goldstino!


