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Spontaneous SUSY Breaking
(0|H10) > 0
implies that SUSY is broken.
V = F*F, + L DD*

find models where F; = 0 or D® = 0 cannot be simultaneously solved

then use this SUSY breaking sector to generate the soft SUSY breaking



O’Raifeartaigh model

have nonzero F-terms
Worgp = —k‘2q)1 + mdPo, P35 + %(I)lq)g
scalar potential is

V = |FP+ R+ |Fs?
= |k* — 0527 + Im@5]? + Imes + yd; o3>,

no solution where both /1 = 0 and F5 =0
For large m, minimum is at ¢ = ¢3 = 0 with ¢; undetermined

vacuum energy density is

V= |F? =k



O’Raifeartaigh model

Around ¢; = 0, the mass spectrum of scalars is
0, 0, m?, m?, m? —yk®, m?+ yk°.
There are also three fermions with masses
0, m, m.
Note that these masses satisfy a sum rule for tree-level breaking

Tr[M?2

scalars

| = 2Tr[ M2

fermions]



O’Raiteartaigch model: One

For k2 # 0, loop corrections will give a mass to ¢;
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Figure 1: Crosses mark an insertion of yk?.
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Loop

yk? insertions must appear with an even number in order to preserve

the orientation of the arrows flowing into the vertices

correction to the ¢1 mass from the top three graphs vanishes by SUSY



O’Raifeartaigh model: One Loop

bottom two graphs give

2 rd'ps o2y iylk? - 2 iy
—umy = o4 (—Z?J )(p2—m2)3 + (Zym) p2—m?2 (p2—m2)3

yields a finite, positive, result

y4 kf4 _ y4 |fl |2
4872m?2 4872 m?2

m? =

the classical flat direction is lifted by quantum corrections, the potential
is stable around ¢; = 0

the massless fermion 17 stays massless since it is the Nambu—Goldstone
particle for the broken SUSY generator, a goldstino

1 is the fermion in the multiplet with the nonzero F component.



Fayet—Iliopoulos mechanism

uses a nonzero D-term for a U(1) gauge group
add a term linear in the auxiliary field to the theory:

»CFI = /€2D ,

where k is a constant parameter with dimensions of mass
scalar potential is

V=3D*=rD+gD3Y ¢:¢" ¢ ,
and the D equation of motion gives
D = k* — 92 39" i -

If the ¢;s have large positive mass squared terms, (¢) = 0 and D = x?

in the MSSM, however, squarks and sleptons cannot have superpotential
mass terms



Problems

Fayet—Iliopoulos and O’Raifeartaigh models set the scale of SUSY
breaking by hand. To get a SUSY breaking scale that is naturally small
compared to the Planck scale, Mp;, we need an asymptotically free gauge
theory that gets strong through RG evolution at some much smaller scale

A~ e 87 03 My,

and breaks SUSY nonperturbatively
can’t use renormalizable tree-level couplings to transmit SUSY breaking,
since SUSY does not allow scalar—gaugino—gaugino couplings

we expect that SUSY breaking occurs dynamically in a “hidden sec-
tor” and is communicated by non-renormalizable interactions or through
loop effects. If the interactions that communicate SUSY breaking to the
MSSM (“visible”) sector are flavor-blind it is possible to suppress FCNCs



Gauge-Mediated Scenario

add “messenger” chiral supermultiplets where the fermions and bosons
are split and which couple to the SM gauge groups
MSSM superpartners get masses through loops:

If Mpess ~ +/(F), then the SUSY breaking scale can be as low as
VA(F) ~ 10%-10° GeV.



Gravity-Mediated Scenario

interactions with the SUSY breaking sector are suppressed by powers of

Mp; hidden sector field X with a nonzero (Fx), then MSSM soft terms
of the order

(Fx)

Mgofy ™~ Mp; °

To get mgof; to come out around the weak scale we need +/(Fyx) ~ 1010-
10" GeV. Alternatively, if SUSY is broken by a gaugino condensate
(0JA*A®|0) = 09°A® # 0, then

3

Mgoft 7 2
Mz’

which requires A ~ 10 GeV. This can, of course, be rewritten as:
(Fx) = A3/Mp;.



Effective Lagrangian
Below the Mp; is:
Log = — [d*+— X b’”%% 2 (Aziﬂzw]* i)”%%) + h.c.
— [d% 2M (Mgaa(; + NLWeW, + VBB, )+ he.
— fd2 Mpl Awkwiijk + h.c.

where G, W, B,, and 1; are the chiral superfields of the MSSM, and
the hatted symbols are dimensionless

If (X) = (F) then

Log = —2X (M GG+ MyWW + MlBB) +h.c.
- <F}§\;1<25X> ( 7 z%W* b”%‘%‘) + h.c.

<J\§§l zgszij . <}-X>fd2 b/wlﬂﬂﬂ]—#hc



Assumptions

assume M, = M, m; = ﬁzéj.

we have generated a p-term with p¥ = ¥/ 5}{u5%d (F%)/Mp; assuming
a1k = qY'iik and pi = 135}'% 5‘}%, then soft parameters have a universal
form (when renormalized at Mp;)

gaugino masses are equal

M; = myjy = M5

Mpy
the scalar masses are universal
2 o o o . Fx)]?
mg = my = my, =mj=1m e
A and b terms are given by
_ _ A~ {Fx) _ _ b (Fx)
Af — AYf—aMPl Yf, b—B,u— i/ Mpz’u'

u? and b are naturally of the same order of magnitude if b and b’ are of
the same order of magnitude



Justified Assumptions?

the assumptions avoid problems with FCNCs. Since gravity is flavor-
blind, it might seem that this a natural result of gravity mediation.
However, the equivalence principle does not guarantee these universal
terms, since nothing forbids a Kahler function of the form

Kbad — f(XT7X); ¢T]¢z ’

which leads directly to off-diagonal terms in the matrix m;
Taking 1 and the four SUSY breaking parameters and running them
down from the unification scale (rather than the Planck scale as one
would expect) is referred to as the minimal supergravity scenario



m®/u®

0 0.2 0.4 0.6 0.8 1

scalar mass m?, gaugino mass M, A = 0

Giudice, Rattazzi, hep-ph/0606105



The goldstino

Consider the fermions in a general SUSY gauge theory. Take a basis
U = (A% ;). The mass matrix is

o 0 V2g,((0n)T7)
M= (g (ry )

eigenvector with eigenvalue zero:

(“H”)

eigenvector is only nontrivial if SUSY is broken. The corresponding
canonically normalized massless fermion field is the goldstino:

1= (920 + (v

where

F2 =%, 2 4 5 (F)?



The Goldstino

masslessness of the goldstino follows from two facts. First the superpo-
tential is gauge invariant,

(¢*TG)ZWZ* — —(¢*Ta)ifi — 0
second, the first derivative of the scalar potential

oV x« OW* *xa\] Na
56 = ~Wi'gg —9a(¢"T%)'D

vanishes at its minimum

(9L = (Fi) (W) — g, ((¢*)T*)(D?) =0




The Supercurrent
JF = iFg(otIl)y + (0T 1)) D, o*t — \/—(0 oPaHAY) Fg,
= iFp(otIl), + j5* .

terms included in j£ contain two or more fields.
supercurrent conservation:

0yt = iFu(0" 0,0+, =0 ()
effective Lagrangian for the goldstino

Loldstino = 169,11 + 7= (10, 5" + h.c.).
The EQOM for II is just eqn (*)

goldstino—scalar—fermion and goldstino—gaugino—gauge boson interactions
allow the heavier superpartner to decay interaction terms have two deriva-
tives, coupling is proportional to the difference of mass squared



Eat the Goldstino

Nambu—Goldstone boson can be eaten by a gauge boson

for gravity, Poincaré symmetry, and hence SUSY, must be a local
SUSY spinor €* — €*(x): supergravity

spin-2 graviton has spin-3/2 fermionic superpartner, gravitino, Efg, which
transforms inhomogeneously under local SUSY transformations:

SUS = —0ye* + ... .

gravitino is the “gauge” particle of local SUSY transformations

when SUSY is spontaneously broken, the gravitino acquires a mass by
“eating” the goldstino: the other super Higgs mechanism
gravitino mass:

o Fx)
ms3/2 Mp;




Gravitino Mass

In gravity-mediated SUSY breaking, the gravitino mass ~ mgoft
In gauge-mediated SUSY breaking the gravitino is much lighter than the
MSSM sparticles if Myess < Mpy, so the gravitino is the LSP.

For a superpartner of mass mo ~ 100 GeV, and /(Fx) < 10° GeV
ms/2 < 1 keV

the decay z; — 1 Il can be observed inside a collider detector



The goldstino theorem

no matter how SUSY is spontaneously broken, even if it is dynamical,
there is a goldstino. Using the SUSY algebra it follows

(0{Qa. JE () }0) = V204, (0| T ()|0) = v20% Enlt

where F is the vacuum energy density. When E # 0, SUSY is sponta-
neously broken. Taking the location of the current to be at the origin,
and writing out (), as an integral over a dummy spatial variable

VIl E = (O1{f d*xJ3(), I (0)} o)
= 30, & ((0113(@)m) (nl I (0)[0) + (0721 0)1m) (] (2)[0)

where we have inserted a sum over a complete set of states. Choosing
2¥ = 0, use the generator of translations (P*) to show that

OLI2@)n) = (0ei J0(0)e=" = |n)
= (0]J2(0)e=P7|n)



The goldstino theorem

So we have

.o s ({00(0) ) (] 7T (0)]0)
V20us B = 32,02m) 5@")( 00172 (0)m) (] T2 (0) 0} )

write the term in parenthesis as f,, (Ey, pn,) We can also write our anti-
commutator as

V2ol B = [ de ((01J3(x) 74 (0)]0) + (0] I (0) I (x)[0) ) 6(a°
= [ d*z0, ((0172(2) I (0)[0)0 (=) - (01751 (0)J8 (2)|0)O(~2))

where ©(z") is the step function
E is related to the integral of a total divergence. Nonvanishing if there
is a massless particle contributing to the two-point function.



The goldstino

theorem

Inserting a sum over a complete set of states we have

\/iaga L

2l d%a?( (017 (0)

v, (
+6(2V) (
3,202 8(70) (fol B B

S [ dix

(01.75(0)e= 7" %|n) (n] J5" (0)]0) O (2°)

e~ P {0[J5(0)|n

n) (neie-?

e~ (0172 (0)|n) (n] JET(0)0 )
+etPnT (04T (0)|n) (n] J£(0)]0)

) =i o7 da® @B TE, fo(En, i)



The goldstino theorem

Comparing the two eqns we see that
[ da® eiEnonnfn(En, 0,) =0
and if SUSY is spontaneously broken
fn(En,0,) # 0
The only possibility is that
fa(En,0,) o< 6(E,)

so a state contributes to our two-point function with the quantum num-
bers of JY (i.e. a fermion) with = 0 and E = 0. In other words there
must be a goldstino!



