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Abstract

We study large N SU(N) Yang-Mills theory in three and four
dimensions using a one-parameter family of supergravity models which
originate from non-extremal rotating D-branes. We show explicitly
that varying this “angular momentum” parameter decouples the Ka-
luza-Klein modes associated with the compact D-brane coordinate,
while the mass ratios for ordinary glueballs are quite stable against this
variation, and are in good agreement with the latest lattice results. We
also compute the topological susceptibility and the gluon condensate
as a function of the “angular momentum” parameter.

1Research fellow, Miller Institute for Basic Research in Science.



1 Introduction

Generalizing the conjectured duality [1] between largeN superconformal field
theories and superstring or M theory on anti-de Sitter (AdS) backgrounds,
Witten proposed an approach to studying large N non-supersymmetric the-
ories such as pure QCD using a dual supergravity (string theory) description
[2]. The basic idea is to start with d + 1 dimensional superconformal field
theories at finite temperature – thus breaking the superconformal invari-
ance – and obtain a d dimensional non-supersymmetric gauge theory at zero
temperature by dimensional reduction in the Euclidean time direction. The
AdS space is then replaced by a certain limit of the Schwarzschild geometry
describing a black hole in an AdS space.

When the curvature of the space is small compared to the string scale (or,
in the case of M theory, Planck scale), supergravity provides an adequate ef-
fective description that exhibits a qualitative agreement with pure QCD in
three and four dimensions [2, 3]. The supergravity limit of string theory (i.e.
infinite string tension, α′ → 0 limit) corresponds to the strong coupling limit
of the gauge theory (λ = g2

Y MN ≫ 1), with 1/λ playing the role of α′. In the
approach of [2], the gauge theory has an ultraviolet cutoff proportional to the
temperature T ; the supergravity approximation should describe the large N
gauge theory in the strong coupling regime with a finite ultraviolet cutoff.
This is analogous to a strong coupling lattice gauge theory with lattice spac-
ing ∼ 1/T [3]. In the limit that the ultraviolet cutoff is sent to infinity, one
has to study the theory at small λ, and the supergravity description breaks
down. To calculate the spectrum in this regime, a better understanding of
string theory with Ramond-Ramond (R-R) background fields is required.

Glueball masses in the supergravity approximation have been computed
in [4, 5]. The Witten model [2] contains in addition to the glueballs certain
Kaluza-Klein (KK) particles with masses of the order of the glueball masses.
These KK modes do not correspond to any states in the Yang-Mills theory,
and therefore they should decouple in the “continuum” limit. The KK states
do not decouple with the inclusion of the leading 1/λ corrections [6]. Al-
though such states can decouple in a full string theory treatment, there may
be generalizations of the Witten model that have a more direct connection
with the continuum gauge theory already at the supergravity level (at least
in the sector of states with spin ≤ 2 that can appear in a supergravity de-
scription). A similar situation arises in lattice gauge theory. It is well known
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that the action one starts with has a significant effect on the speed at which
one gets to the continuum limit. One can add to the lattice action defor-
mations which are irrelevant in the continuum and arrive at an appropriate
effective description of the continuum theory while having a larger lattice
spacing (such a deformed action is called an “improved” lattice action). A
similar strategy in the dual supergravity picture would correspond to a suit-
able modification of the background metric, so as to have an appropriate
effective description of the gauge theory while still having a finite ultraviolet
cutoff. An important test of the proposal is to check that the KK modes
in the supergravity description that do not correspond to gauge degrees of
freedom are heavy and decouple, and at the same time the infrared physics is
not significantly altered. In this paper we make the first step in this direction
by examining a generalization of the Witten model that has an additional
parameter.

A more general approach to the conjectured correspondence between
gauge theories and M-theory requires the investigation of supergravity com-
pactifications which asymptotically approach anti-de Sitter backgrounds, e.g.
AdS5×S5 or AdS7×S4 (see e.g. [7, 8]). There exist a few supergravity back-
grounds that generalize the Witten model and which are regular everywhere.
These are essentially obtained by starting with the rotating version of the
non-extremal D4 brane background (or rotating D3 brane background, in
the case of QCD3) and taking a field theory limit as in [1]. These models
were investigated in [9]. The deformation of the background proposed in [2]
is parameterized by an “angular momentum” parameter (the supergravity
background is actually static, with the Euclidean time playing the role of an
internal angle). In this paper we determine numerically the scalar and pseu-
doscalar spectrum of these models as a function of the angular momentum
parameter and compare the results to those obtained by lattice calculations.
We also compute the gluon condensate and the topological susceptibility

The paper is organized as follows: Section 2 is devoted to the study of
supergravity models for pure QCD in 3 + 1 dimensions. The models are
described in Section 2.1. In Section 2.2 we compute the scalar glueball mass
spectrum and analyze its dependence on the angular momentum. In Section
2.3 we calculate the mass spectrum of some KK modes. It will be shown that
the KK modes associated with the compact D-brane coordinate decouple
as the angular momentum parameter is increased. This, however, is not
the case for the SO(3) non-singlet KK modes with vanishing U(1) charge
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in the compact D-brane coordinate. In Section 2.4 we compute the gluon
condensate from the free energy associated with the supergravity background.
In Section 2.5 we compute the topological susceptibility and its dependence
on the angular momentum parameter. Section 3 contains an analogous study
for the case of QCD in 2+1 dimensions. The conclusions are similar in both
cases, and they are summarized in Section 4.

2 QCD in 3 + 1 dimensions

2.1 Supergravity Models for QCD4

One way to construct non-supersymmetric models of QCD based on super-
gravity is to start from the non-extremal D4 brane metric, and view the
Euclidean time coordinate as an internal coordinate compactified on a circle
of radius (2πTH)−1 [2]. Possible generalizations of this proposal are con-
strained by the no-hair theorem, which implies that the most general regular
manifold with only D4 brane charges (and an isometry group containing R4)
is given by the rotating version of the non-extremal D4 brane, which has two
additional parameters representing angular momenta in two different planes.
The Euclidean version of this metric (related to the rotating M5 brane metric
by dimensional reduction) was used in [9] to construct models for QCD with
extra parameters. Here we investigate in detail the case when there is one
non-vanishing angular momentum, parametrized by a. The field theory limit
of the Euclidean rotating M5 brane with angular momentum component in
one plane is given by the metric [9]

ds2
11 = ∆1/3

[

U2

(πN)1/3

( 5
∑

i=1

dx2
i + (1 − U6

0

U6∆
)dτ 2

)

+ (πN)2/3
(

dθ2 +
∆̃

∆
sin2 θdϕ2 +

1

∆
cos2 θdΩ2

2

− 2a2U3
0

U4∆(πN)1/2
sin2 θdτdϕ

)

+
4(πN)2/3dU2

U2(1 − a4

U4 − U6
0

U6 )

]

, (2.1)

where x1, . . . , x5 are the coordinates along the M5 brane where the gauge the-
ory lives, U is the “radial” coordinate of the AdS space, while the remaining
four coordinates parameterize the angular variables of S4, and where we have
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introduced

∆ = 1 − a4 cos2 θ

U4
, ∆̃ = 1 − a4

U4
. (2.2)

Dimensional reduction along x5 (which will play the role of the “eleventh” di-
mension) gives N rotating non-extremal D4 branes, which in the low energy
regime should be described by SU(N) Yang-Mills theory at finite tempera-
ture TH , perturbed by some operator associated with the rotation. The 3+1
dimensional SU(N) Yang-Mills theory at zero-temperature can be described
by making x4 → −ix0, and viewing τ as parameterizing a space-like circle
with radius R0 = (2πTH)−1, where fermions obey anti-periodic boundary
conditions. At energies much lower than 1/R0, the theory is effectively 3 + 1
dimensional. Because of the boundary conditions, fermions and scalar parti-
cles get masses proportional to the inverse radius, so that, as R0 → 0, they
should decouple from the low-energy physics, leaving pure Yang-Mills theory
as low-energy theory.

The gauge coupling g2
4 in the 3+1 dimensional Yang-Mills theory is given

by the ratio between the periods of the eleven-dimensional coordinates x5 and
τ times 2π. It is convenient to introduce ordinary angular coordinates θ1,
and θ2 which are 2π-periodic by

τ = R0θ2 , x5 =
g2
4

2π
R0θ1 =

λ

N
R0θ1 , (2.3)

R0 = (2πTH)−1 =
A

3u0

, A ≡ u4
0

u4
H − 1

3
a4

, (2.4)

where uH is the location of the horizon, and we have introduced the ’t Hooft
coupling

λ ≡ g2
4N

2π
, (2.5)

the coordinate u by U = 2(πN)1/2u, and rescaled a → 2(πN)1/2a. By
dimensional reduction in θ1, one obtains the metric

ds2
IIA =

2πλA

3u0
u∆1/2

[

4u2( − dx2
0 + dx2

1 + dx2
2 + dx2

3)

+
4A2

9u2
0

u2 (1 − u6
0

u6∆
)dθ2

2 +
4 du2

u2(1 − a4

u4 − u6
0

u6 )

+ dθ2 +
∆̃

∆
sin2 θdϕ2 +

1

∆
cos2 θdΩ2

2 −
4a2Au2

0

3u4∆
sin2 θdθ2dϕ

]

,(2.6)
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with a dilaton background

e2φ =
8π

27

A3λ3u3∆1/2

u3
0

1

N2
. (2.7)

With this normalization, the metric reduces to Eq. (4.8) of ref. [2] after
setting a = 0. The string coupling eφ is of order 1/N , and the metric has
become independent of N , which is consistent with the expectation that in
the large N limit the string spectrum should be independent of N . The
metric is regular, and the location of the horizon is given by

u6
H − a4u2

H − u6
0 = 0 , (2.8)

i.e.

u2
H =

a4

γu2
0

+ 1
3
γu2

0 , γ = 3





1
2

+ 1
2

√

1 − 4

27

(

a

u0

)12




1/3

. (2.9)

Note that for large a, one has the approximate expressions

u2
H ≈ a2 +

u6
0

2a4
, A ≈ 3u4

0

2a4
, (2.10)

(u2
H is always real). This shows, in particular, that the radius R0 = A/(3u0)

can be made very small by increasing a/u0. This is essentially the mechanism
that will make the corresponding KK modes decouple at large a/u0. At small
a, such KK states have masses of the same order as the masses of the lightest
glueball states.

The string tension is given by [9]

σ =
4

3
λAu2

0 = 4λ
u6

0

3u4
H − a4

. (2.11)

String excitations should have masses of order σ1/2. The spin ≤ 2 glueballs
that remain in the supergravity approximation – whose masses are deter-
mined from the Laplace equation – have masses which are independent of λ.
The supergravity approximation is valid for λA ≫ 1 so that all curvature
invariants are small [9]. In this limit the spin > 2 glueballs corresponding to
string excitations will be much heavier than the supergravity glueballs.
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2.2 Spectrum of glueball masses

The glueball masses are obtained by computing correlation functions of gauge
invariant local operators or the Wilson loops, and looking for particle poles.
Following [7, 8], correlation functions of local operators O are related at large
N and large g2

Y MN to tree level amplitudes of supergravity. The generating
functional for the correlation function of O is the string partition function
evaluated with specified boundary values ϕ0 of the string fields. When the
supergravity description is applicable we have

〈e−
∫

d4xϕ0(x)O(x)〉 = e−ISG(ϕ0), (2.12)

where ISG is the supergravity action.
The spectrum of the scalar glueball2 0++ is obtained by finding the nor-

malizable solution to the supergravity equation for the dilaton mode Φ that
couples to TrF 2, which is the lowest dimension operator with 0++ quantum
numbers.

The equation for Φ reads

∂µ[
√
ge−2φgµν∂νΦ] = 0, (2.13)

where gµν is the string frame metric.
We look for θ-independent solutions of the form Φ = χ(u)eik·x. One

obtains the equation

1

u3
∂u[u(u

6 − a4u2 − u6
0)χ

′(u)] = −M2χ(u) , M2 = −k2 , (2.14)

where the eigenvalues M are the glueball masses. The solution of this (ordi-
nary) differential equation has to be normalizable and regular both at u→ uH

and u→ ∞. The eigenvalues of this equation can be easily obtained numer-
ically [4] by using the “shooting” method. One first finds the asymptotic
behavior of χ(u) for large u, and then numerically integrates this solution
back to the horizon. The solutions regular at the horizon will have a finite
derivative at uH . This condition will determine the possible values of the
glueball masses M . The results of this numerical procedure are presented in
Table 2.1 and in Figure 2.1. One can see from Figure 2.1 that the ratios of

2In the following we will use the notation JPC for the glueballs, where J is the glueball
spin, and P , C refer to the parity and charge conjugation quantum numbers respectively.
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the masses of the excited glueball states compared to the ground state are
very stable with respect to the variation in the parameter a, even though
both quantities themselves grow like M2 ∝ a2 for large a. The asymptotic
value of the mass ratios is taken on very quickly, a/u0 ≈ 2 is sufficiently
large to be in the asymptotic region. A priori one could have expected that
these mass ratios may change significantly when a is varied. This leads one
to suspect that there is a dynamical reason for the stability of the ratios of
masses.

state lattice, N = 3 supergravity a = 0 supergravity a→ ∞
0++ 1.61 ± 0.15 1.61 (input) 1.61 (input)
0++∗ 2.8 2.55 2.56
0++∗∗ - 3.46 3.48
0++∗∗∗ - 4.36 4.40

Table 2.1: Masses of the first few 0++ glueballs in QCD4, in GeV, from
supergravity compared to the available lattice results. The first column
gives the lattice result [10, 11], the second the supergravity result for
a = 0 while the third the supergravity result in the a → ∞ limit. The
authors of ref. [11] do note quote an error on the preliminary lattice
result for 0++∗. Note that the change from a = 0 to a = ∞ in the
supergravity predictions is tiny.

Let us now consider the 0−+ glueballs. The lowest dimension operator
with 0−+ quantum numbers is TrFF̃ . On the D4 brane worldvolume, the
field that couples to this operator is the R-R 1-form Aµ. In order to find the
0−+ glueball masses we have to solve its equation of motion

∂ν [
√
ggµρgνσ(∂ρAσ − ∂σAρ)] = 0 , µ, ν = 1, ..., 10 . (2.15)

Consider solutions of the form

Aθ2
= χθ2

(u) eik·x , Aµ = 0 if µ 6= θ2 . (2.16)

Plugging this into (2.16), we obtain

∂ν [
√
ggθ2θ2gνσ∂σAθ2

] = 0 , (2.17)

which reads

1

u5
(u6 − a4u2 − u6

0)∂u[u
3(u4 − a4)χ′

θ2
(u)] = −M2(u4 − a4)χθ2

(u). (2.18)

7



2 4 6 8 10
a

1.586

1.588

1.592

1.594

r

Figure 2.1: The dependence of the ratio r =
M

0++∗

M
0++

of the masses of the

first excited (0++∗) glueball state to the lowest 0++ glueball state on
the parameter a (in units where u0 = 1). The ratio changes very little
and takes on its asymptotic value quickly.

For a = 0, it yields Eq. (2.9) of [12], as required. When a 6= 0 there are no
solutions of the form (2.16). The reason is that the gθ2ϕ component of the
metric (2.6) is non-vanishing for a 6= 0 and, as a result, the ϕ component
of the Maxwell equation is not satisfied automatically (solutions contain a
non-vanishing component Aϕ).

We will work in the approximation a/u0 ≫ 1. In this approximation the
non-diagonal gθ2ϕ part of the metric can be neglected, and there are solutions
of the form (2.16). Effectively, we can solve (2.18) in the limit a ≫ u0. We
must however keep in mind that we need u0 6= 0 to regularize the horizon,
and the actual limit that is taken is a/u0 large at fixed u0 (so that curvature
invariants are bounded from above and they are small for sufficiently large
’t Hooft coupling λ).

The mass spectrum from (2.18) can be obtained using a similar numerical
method as for the 0++ glueballs. The dependence of the lightest 0−+ glueball
mass on a is presented in Figure 2.2, whereas the 0−+ glueball mass spectrum
in Table 2.2. Note that while masses ratios are fairly stable against the
variation of a (they again grow like M2 ∝ a2), the actual values of the mass
ratios compared to 0++ increase by a sizeable (∼ 25%) value. The change
is in the right direction as suggested by recent improved lattice simulations
[13]. The mass of the second 0−+ state also increases and is in agreement

8



with the new lattice results [13].

state lattice, N = 3 supergravity a = 0 supergravity a→ ∞
0−+ 2.59 ±0.13 2.00 2.56
0−+∗ 3.64 ±0.18 2.98 3.49
0−+∗∗ - 3.91 4.40
0−+∗∗∗ - 4.83 5.30

Table 2.2: Masses of the first few 0−+ glueballs in QCD4, in GeV,
from supergravity compared to the available lattice results. The first
column gives the lattice result, the second the supergravity result for
a = 0 while the third the supergravity result in the a→ ∞ limit. Note
that the change from a = 0 to a = ∞ in the supergravity predictions
is sizeable, of the order ∼ 25%.

We can directly compare the ratio of masses of the lowest glueball states
0−+ and 0++ with lattice results [10, 11, 13]. Since one of the largest errors
in the lattice calculation of glueball masses comes from setting the overall
scale3 the ratios of masses are even more accurately known from the lattice
than the masses themselves. Using the lattice results [11, 13, 14] in the more
accurate “lattice units” r0:

r0M0++ = 4.33±0.05, r0M0−+ = 6.33±0.07, r0M0−+∗ = 8.9±0.1, (2.19)

we find:
(

M
0−+

M
0++

)a=0

supergravity
= 1.24

(

M
0−+

M
0++

)a→∞

supergravity
= 1.59

(

M
0−+

M
0++

)

lattice
= 1.46 ± 0.03 (2.20)

(

M
0−+∗

M
0++

)a=0

supergravity
= 1.85

(

M
0−+∗

M
0++

)a→∞

supergravity
= 2.17

(

M
0−+∗

M
0++

)

lattice
= 2.06 ± 0.05 (2.21)

3We thank M. Peardon for emphasizing this point to us.
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a

1.25

1.35

1.4

1.45

1.5

1.55

1.6
r

Figure 2.2: The dependence of the ratio r =
M

0−+

M
0++

on the parameter a

(in units where u0 = 1). The change in the ratio is stable against the
variation of a, however it increases by about 25% while going to a = ∞.
The change is in agreement with lattice simulations. As explained in
the text, this figure is reliable only for the regions a ≪ u0 or a ≫ u0

which are shown in the plot with a solid line, while for the intermediate
region denoted by a dashed line there are corrections due to the non-
vanishing off-diagonal component of the metric gθ2ϕ.
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One can see that taking the a → ∞ improves the agreement between the
supergravity and lattice predictions significantly. One should however keep
in mind that the supergravity results presented here are for the limit N → ∞
and λ → ∞, while the lattice results are for N = 3 and λ small.4 Direct
lattice calculations for the large N limit are have just started to become
available [15], however no reliable direct estimate for the mass of the 0−+ is
known yet.

2.3 Masses of Kaluza-Klein states

In the supergravity approximation the a = 0 model contains additional light
KK modes in the spectrum whose masses are of the same order as those of
the glueball states [6]. In this section we investigate whether the additional
parameter of the model considered here can be tuned to decouple the KK
modes already at the supergravity tree-level. In the following, it will be
shown that this is indeed the case for the KK modes wrapped around the θ2
direction, which become very heavy for a/u0 ≫ 1. We thus look for solutions
of the dilaton equation (2.14) of the form

Φ = χ(u) eik·xeinθ2 . (2.22)

One finds the following equation:

1

u3
∂u

(

u(u6 −a4u2 −u6
0)χ

′(u)
)

=
(

−M2 +
n2

R2
0

u4 − a4

u4 − a4 − u6
0

u2

)

χ(u) , (2.23)

where R0 is given in Eq. (2.4). This generalizes (2.14) to the case n 6= 0. We
want to compare M0 ≡ M(n = 0) with MKK ≡ M(n = 1). The question is
how M0/MKK behaves as a function of a (we can set u0 = 1). The extra term
proportional to 1/R2

0 gives a positive contribution to the mass, so that MKK

should increase as M2
KK ∝ a8 as a is increased (the KK radius R0 = A/3u0

shrinks to zero as a → ∞). Thus one expects that M0/MKK ∝ 1/a3 → 0
as a increases. The numerical values of the masses of these KK modes are
displayed in Table 2.3 and Figure 2.3. Note that the numerical evaluation of
the masses of these KK modes becomes more and more difficult as a increases.

4For example, in Ref. [11] the results are extrapolated to λ = 0 from calculations in
the region 7.5 < g2N < 10.
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This is because the term with 1/R2
0 causes an overall shift of the masses, while

the splittings between the excited KK modes still remain of the same order as
for the ordinary glueballs. As a result, the solutions become more and more
quickly oscillating as a increases, making numerical treatments increasingly
difficult. For this reason we display only values up to a/u0 = 3.

state value for a = 0 value for a = 3
KK 2.24 20.25
KK∗ 3.12 20.37
KK∗∗ 4.01 20.52
KK∗∗∗ 4.89 20.72

Table 2.3: Masses of the KK modes which wrap around the θ2 circle
and have no corresponding states in QCD4, in GeV. The first column
gives the masses for a = 0 while the second the masses for a = 3. Note
that even for a = 3 these states are heavier by a factor of 10 than the
0++ glueball mass and are effectively decoupled from the spectrum even
in the supergravity limit.

Above we have demonstrated that the KK modes which correspond to
states that wrap the θ2 direction are effectively decoupled from the spectrum
even in the supergravity approximation. However, there are other KK modes
in this theory, and one would like to know whether these are decoupled as
well. The reason for the decoupling of the modes on θ2 is clear: the radius of
this direction shrinks to zero when a → ∞. However, the radii of the other
compact directions do not behave similarly. Therefore it is reasonable to ex-
pect that these states will not decouple at the level of supergravity from the
spectrum (but they could decouple once string theory corrections are incor-
porated). We now demonstrate by explicit calculation of the corresponding
mass spectrum that this is indeed the case.

Consider non-singlet modes which are independent of θ2, of the form
f(u)eik·x cosϕ sin θ. This corresponds to spherical harmonics on S4 with an-
gular momentum l = 1. Plugging this ansatz into the dilaton equation (2.13)
we find that f(u) satisfies the equation (u0 = 1)

u3∂u[(u
7 −a4u3 −u)f ′(u)]− f(u)

(

k2 +
4u2(4 + 3a4u2 − 4u6)

1 + a4u2 − u6

)

= 0 . (2.24)
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Figure 2.3: The dependence of the ratio r =
M

0++

MKK

of the the lowest

0++ glueball state compared to the KK mode wrapping the θ2 circle on
the parameter a in units where u0 = 1. This KK mode decouples very
quickly from the spectrum even in the supergravity approximation.

The results of the numerical analysis of the eigenvalues are presented in
Table 2.4 and Figure 2.4. One can see that these states do not decouple
from the spectrum at the supergravity level, instead their masses remain
comparable to the ordinary glueball masses.

state value for a = 0 value for a→ ∞
KK 2.30 2.84
KK∗ 3.29 3.80
KK∗∗ 4.23 4.74
KK∗∗∗ 5.15 5.65

Table 2.4: Masses of the KK modes corresponding to l = 1 angular
momentum on the S4, in GeV. The first column gives the masses for
a = 0 while the second the masses in the a → ∞ limit. Note that the
change from a = 0 to a = ∞ in the supergravity predictions is not
sufficiently large in order to decouple these particular states from the
spectrum in the supergravity limit.
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Figure 2.4: The dependence of the ratio r = MKK

M
0++

of KK modes (cor-

responding to spherical harmonics with l = 1 on S4) compared to the
lowest 0++ glueball state on the parameter a in units where u0 = 1.
This KK mode does not decouple from the spectrum in the supergravity
approximation even in the a→ ∞ limit.

2.4 Free energy and Gluon condensation

The standard relation between the thermal partition function and free energy
Z(T ) = exp(−F/T ) relates the free energy associated with the supergravity
background to the expectation value of the operator TrF 2

µν . This relation
was exploited in [12] to obtain a prediction for the gluon condensate in the
Witten (a = 0) supergravity model. Let us now derive the corresponding
supergravity result for general a. From the rotating M5 brane metric (given
in Eq. (3.1) of [9]), one can obtain the following formulas for the ADM mass,
entropy and angular momentum (see also [16, 17]):

MADM =
V5V (Ω4)

4πGN
2m(1 +

3

4
sinh2 α) , V (Ω4) =

8π2

3
, (2.25)

S =
V5V (Ω4)

4GN

2mrH coshα , (2.26)

JH =
V5V (Ω4)

4πGN
ml coshα , (2.27)

GN =
κ2

11

8π
= 24π7l9P , (2.28)
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where GN is Newton’s constant in 11 dimensions, and lP is the 11 dimensional
Planck length. The (magnetic) charge N is related to α and m by

2m coshα sinhα = πNl3P . (2.29)

The Hawking temperature and angular velocity are given by

TH =
3r2

H + l2

8πm coshα
, ΩH =

lrH

2m coshα
. (2.30)

These quantities satisfy the first law of black hole thermodynamics:

dMADM = THdS + ΩHdJH . (2.31)

We are interested in the field theory limit lP → 0, obtained by rescaling
variables as follows

r = u2l3P (4πN) , m =
1

2
u6

0l
9
P (4πN)3 , l = ia2l3P (4πN) . (2.32)

We get

E ≡MADM −Mextremal =
5

3π3
V5N

3u6
0 , (2.33)

TH =
3u0

2πA
, S =

4

3π2
V5N

3u2
Hu

3
0 , (2.34)

ΩH = i
2a2u2

H

u3
0

, JH = i
2

3π3
V5N

3a2u3
0 , (2.35)

with

A =
3u4

0

3u4
H − a4

, u4
H − a4 =

u6
0

u2
H

. (2.36)

The free energy is given by

F = E − THS − ΩHJH = − V5

3π3
N3u6

0 . (2.37)

For a = 0 this reproduces the result of [18] (u0 = 2πATH/3). The M5 brane
coordinate x5 is compactified on a circle with radius R0λ/N , given by Eq.
(2.4), so that

V5 =
V4λ

THN
. (2.38)
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The gluon condensate is then given by

〈 1

4g2
YM

Tr F 2
µν(0)〉 = − F

V4TH
=

4

27π
λN2u4

0A
2 . (2.39)

For a = 0 this reduces to the corresponding result in [12] (setting A = 1 and
u0 = 2πTH/3). Expressing u0 in terms of the string tension (2.11) we obtain

〈 1

4g2
YM

Tr F 2
µν(0)〉 =

1

12π

N2

λ
σ2. (2.40)

Note that this relation is independent of a (in particular, it applies to the
a = 0 case as well). It has the expected dependence on N , and a simple
dependence on λ.

2.5 Topological Susceptibility

The topological susceptibility χt is defined by

χt =
1

(16π2)2

∫

d4x〈TrFF̃ (x)TrFF̃ (0)〉 . (2.41)

The topological susceptibility measures the fluctuations of the topological
charge of the vacuum. At large N the Witten-Veneziano formula [19, 20] re-
lates the mass mη′ in SU(N) with Nf quarks to the topological susceptibility
of SU(N) without quarks:

m2
η′ =

4Nf

f 2
π

χt . (2.42)

The effective low-energy four dimensional brane theory contains the cou-
pling

1

16π2

∫

d4xdθ2Aθ2
Tr FµνFλσǫ

µνλσ , (2.43)

where Aθ2
is the component along the coordinate θ2 of the R-R 1-formAµ. We

will consider zero mode (M2 = 0) configurations where Aθ2
is independent

of the world-volume coordinates. Comparing to the standard Yang-Mills
coupling,

1

16π2

∫

d4x θ̂ Tr FF̃ , (2.44)
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one obtains the relation

θ̂ =
∫ 2π

0
dθ2 Aθ2

= 2πAθ2
. (2.45)

The action of the R-R 1-form is given by

I =
1

2κ2
10

∫

d10x
√
g
1

4
(∂µAν − ∂νAµ)(∂µ′Aν′ − ∂ν′Aµ′)gµµ′

gνν′

. (2.46)

As discussed in Sect. 2.2, in the approximation that a/u0 is either very large
or very small, the metric is diagonal and there are zero mode solutions of the
form Aθ2

= Aθ2
(u), Aµ = 0 , µ 6= θ2. The action reduces to

I =
1

4κ2
10

∫

d10x
√
g (

dAθ2
(u)

du
)2guugθ2θ2 . (2.47)

Using Eq. (2.6) and integrating over the angular coordinates, this becomes

I =
27π6A2λ3

27u2
0κ

2
10

V4

∫

∞

uH

du u3(u4 − a4)(
dAθ2

(u)

du
)2 . (2.48)

The equation of motion is then given by

∂u[u
3(u4 − a4)∂uAθ2

] = 0 . (2.49)

Whence

∂uAθ2
= 6A∞

θ2
C(a)

u6
0

u3(u4 − a4)
, (2.50)

Aθ2
= A∞

θ2

[

1 + 6C(a)
(

u6
0

2a4u2
+

u6
0

4a6
log

u2 − a2

u2 + a2

)]

. (2.51)

The integration constant C(a) will be fixed by assuming that Aθ2
(u) vanishes

at the horizon [21]. This gives

1

C(a)
= − 3u6

0

a4u2
H

+
3u6

0

2a6
log

u2
H + a2

u2
H − a2

. (2.52)

The other integration constant A∞

θ2
is related to the θ̂-parameter by (2.45),

2πA∞

θ2
= θ̂. Note that in the limit a = 0 one gets C(0) = 1 and Aθ2

(u) =

A∞

θ2
(1 − u6

0

u6 ).
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Using κ2
10 = κ2

11/2π = 26π7 and u0 = 2πATH/3, we obtain

I = θ̂2 V4
16π

729
A6C(a)λ3T 4

H . (2.53)

The topological susceptibility (2.41) can then be obtained by differentiating
twice with respect to θ̂:

χt =
32π

729
A6C(a)λ3T 4

H , (2.54)

or, in terms of the string tension (2.11),

χt =
C(a)

8π3
λσ2 . (2.55)

The θ̂-dependence of the vacuum energy of the form θ̂2 is the result antici-
pated in [21] for the a = 0 model, and Eq. (2.53) shows that it holds for large
a too. In the large N limit, this must be the case for consistency [21]. For
a = 0, one has A = 1 = C(a), and Eq. (2.54) reproduces the result obtained
in [12]. In the large a limit we have (see Eq. (2.10))

C(a) ≈ a6

9u6
0 log a

u0

, (2.56)

so that

χt ≈
1

18π3
λ3 u6

0

a2 log a
u0

=
1

72π3

a6

u6
0 log a

u0

λσ2. (2.57)

This decreases if we increase a/u0 at fixed λ and u0.

3 QCD in 2 + 1 dimensions

3.1 Supergravity Models for QCD3

Analogous models for QCD3 can be obtained by starting with the Euclidean
rotating D3 brane (Eq. (3.16) in [9] with x0 → −iτ , l → il) and taking
α′ → 0 by rescaling variables as follows:

r = Uα′ , 2m = U4
0α

′4 , l = aα′ . (3.1)
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In the limit α′ → 0 at fixed U, a, U0 we obtain

ds2
IIB = α′∆

1/2
0

[

U2

√
4πgsN

(h0dτ
2 + dx2

1 + dx2
2 + dx2

3) +

√
4πgsN dU2

U2(1 − a2

U2 − U4
0

U4 )

+
√

4πgsN
(

dθ2 +
∆̃0

∆0
sin2 θdϕ2 +

cos2 θ

∆0
dΩ2

3

)

− 2aU2
0

U2∆0
sin2 θdτdϕ

]

,

(3.2)

where

h0 = 1 − U4
0

U4∆0
, ∆0 = 1 − a2 cos2 θ

U2
, ∆̃0 = 1 − a2

U2
, (3.3)

dΩ2
3 = dψ2

1 + sin2 ψ1dψ
2
2 + cos2 ψ1dψ

2
3 . (3.4)

The theory describes fermions with anti-periodic boundary conditions on
the circle parameterized by τ , which has radius (2πTH)−1 with

TH =
u0

πB
, B ≡ 2u3

0

uH(2u2
H − a2)

, (3.5)

u2
H =

1

2
(a2 +

√

a4 + 4u4
0) . (3.6)

For convenience, we have rescaled variables by U = (4πgsN)1/2 u , a →
(4πgsN)1/2 a. At energies much lower than TH the theory should be effec-
tively 2 + 1 dimensional (with x0 = ix3 playing the role of time). The gauge
coupling of the 2 + 1 dimensional field theory is given by

g2
YM3

= g2
YM4

TH , g2
YM4

= 2π gs . (3.7)

λ ≡ g2
YM3

N

2π
= gsN

u0

πB
(3.8)

In this model Wilson loops exhibit an area-law behavior with string tension

σ =
1

2π

√

4πgsN u2
0 =

√
λB u

3/2
0 . (3.9)

This can be obtained by minimizing the Nambu-Goto action [22], and it is
essentially given by the coefficient of

∑3
i=1 dx

2
i at the horizon times 1/(2π) [2,

23, 24]. In the limit of large ’t Hooft coupling, the light physical states are the
supergravity modes, whose masses can be determined from the equations of
motion of the string theory effective action. In the next sections we calculate
the mass spectrum of the light physical states and of KK modes.
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3.2 Spectrum of glueball masses

In order to find the spectrum of the 0++ glueball states one has to consider
the supergravity equation for the dilaton mode Φ that couples to the operator
TrF 2

∂µ
√
ggµν∂νΦ = 0, (3.10)

evaluated in the above background. For functions of the form Φ = χ(U) eik·x,
we obtain

∂u[(u
4 − u4

0 − a2u2)uχ′(u)] +M2uχ(u) = 0, M2 = −k2 . (3.11)

The eigenvalues of this equation can again be determined numerically. The
results are presented in Table 3.1 and Figure 3.1. Figure 3.1 gives the depen-
dence on a of the mass ratio of the first excited 0++ glueball state compared
to the ground state 0++. One obtains a very similar behavior to the case of
QCD4, that is the mass ratio changes very little, and takes on its asymptotic
value quickly. The comparison to the available lattice results [25] are given
in Table 3.1

state lattice N → ∞ value for a = 0 value for a→ ∞
0++ 4.065 ± 0.055 4.07 (input) 4.07 (input)
0++∗ 6.18 ± 0.13 7.03 7.05
0++∗∗ 7.99 ± 0.22 9.93 9.97
0++∗∗∗ - 12.82 12.87

Table 3.1: Masses of the 0++ glueballs and their excited states in QCD3.
The first column gives the lattice results extrapolated to N → ∞, the
second column the supergravity results for a = 0 and the third column
the supergravity limit a → ∞. The lattice results are in the units of
the square root of the string tension. The error given is statistical and
does not include the systematic error.

3.3 Masses of KK states

Just like in the case of QCD4, we would like to analyze the behavior of the
masses of the different KK modes. We will find very similar results: the KK
modes wrapping the coordinate τ are decoupling (even though a bit slower
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a

1.727

1.728

1.729

1.731

1.732

r

Figure 3.1: The dependence on a of the ratio r =
M

0++∗

M
0++

in QCD3. One

can see that the ratio is very stable to changes in a, and reaches its
asymptotic value quickly. a is given in units of u0.

than in QCD4), while the other KK modes corresponding to states with
angular momentum on the S5 are not decoupling in the supergravity limit.

First we consider the KK modes wrapping the compact τ direction. Let
us consider solutions to the Laplace equation ∇2Φ = 0 of the form

Φ = χ(u) eik·xeiβτ . (3.12)

The coordinate τ is periodic with period T−1
H , where TH is given in eq. (3.5).

Therefore
β = 2πTH n , (3.13)

where n is an integer. Using the metric (3.2) we find

∂u((u
4 − u4

0 − a2u2)uχ′(u)) = u(−M2 + n24π2T 2
H

u2 − a2

u2 − a2 − u4
0

u2

)χ(u). (3.14)

One can see that just like in the case of QCD4 there is an additional positive
contribution to the masses, which grows like a4, therefore the masses of these
KK states should grow as M2

KK ≈ a4. Thus these KK modes decouple from
the spectrum, but slower than the corresponding KK modes in QCD4. The
results of the numerical analysis are summarized in Table 3.2 and Figure 3.2.

Next we analyze the KK modes which correspond to states with angular
momentum l = 1 on S5 in the a = 0 case. For a = 0 these states have been
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state value for a = 0 value for a = 4
KK 5.79 23.77
KK∗ 8.64 24.63
KK∗∗ 11.50 25.78
KK∗∗∗ 14.36 27.19

Table 3.2: Masses of the KK modes wrapping the circle τ in QCD3,
using the same normalization as in Table 3.1. The first column gives the
masses for a = 0 while the second the masses for a = 4. Note that these
states decouple quickly from the spectrum even in the supergravity
approximation.

1 2 3 4
a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
r

Figure 3.2: The dependence on a of the ratio r =
M

0++

MKK
of the lowest

0++ glueball state compared to the KK states wrapping the τ circle in
units where u0 = 1. These KK modes decouple from the spectrum in
the supergravity approximation very quickly.
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examined in [6], and found to be non-decoupling in the supergravity limit
and including the lowest order α′ corrections. Here we repeat this analysis
and find (just like in the case of QCD4) them to be non-decoupling even in
the a→ ∞ case, in the supergravity limit.

In order to do the analysis of these KK modes one needs to find the ex-
plicit form of the spherical harmonics. The spherical harmonics on Sd can
be constructed in the following way. One takes Sd embedded in Rd+1, and
expresses the Cartesian coordinates yi in terms of the angles. Then the spher-
ical harmonics are just the functions Ci1,...,ikyi1....yik , where C is a symmetric
traceless tensor [26]. This way, the simplest non-trivial spherical harmonic is
just the coordinate yi itself. In the case of our QCD3 theory, we actually have
to use the “spheroidal coordinates” yi given in [9] on page 9. Thus one looks
for solutions of the dilaton equation of the form f(u)eik·xyi, i = 1, 2, 3, 4, 5, 6.
For a = 0 the isometry group of S5 is SO(6), and the l = 1 KK mode is in
the representation 6 of SO(6). Introducing the angular momentum a breaks
SO(6) to SO(4)×U(1)×U(1), and the 6 decomposes into 4+ 1+ 1. These
states satisfy different eigenvalue equations. For i = 1, 2 (the two singlets
are degenerate) the equation one gets is

∂u[u(u
4 − a2u2 − 1)f ′(u)] − f(u)

(

k2u+
5u3 + 4a2u5 − 5u7

1 + a2u2 − u4

)

= 0. (3.15)

Note that for a = 0 this indeed reduces to the equation given in [6] for l = 1.
We have numerically solved this equation, and find that the mass of these KK
modes is growing slightly, until it becomes degenerate with the first excited
state of the 0++ glueball. Thus it does not decouple from the spectrum in
the supergravity limit. The results are summarized Table 3.3 and Figure 3.3.

For the other 4 KK states which are in the 4 of SO(4) one finds the
equation

∂u[u(u
4 − a2u2 − 1)f ′(u)] − f(u)(k2u+ 5u3 − 3a2u) = 0 , (3.16)

which for a = 0 reproduces the equation in [6] with l = 1. The additional
mass term is now negative, which actually makes these KK modes lighter in
the a → ∞ limit than for a = 0. However, they are still of the same order
(and slightly heavier) than the 0++ glueballs. The numerical results for this
state are summarized in Table 3.4 and Figure 3.4.
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state value for a = 0 value for a→ ∞
KK 5.27 7.05
KK∗ 8.29 9.97
KK∗∗ 11.23 12.87
KK∗∗∗ 14.14 15.76

Table 3.3: Masses of the KK modes corresponding to the two degenerate
singlet pieces of the l = 1 sextet of the original SO(6) isometry in
QCD3, using the same normalization as in Table 3.1. The first column
gives the masses for a = 0 while the second the masses in the a → ∞
limit. Note that these states do not decouple from the spectrum in the
supergravity approximation.

2 4 6 8 10
a

1.4

1.5

1.6

1.7

r

Figure 3.3: The dependence of the ratio r = MKK

M
0++

of the KK modes

corresponding to the two singlet l = 1 states compared to the lowest 0++

glueball state on the parameter a in units where u0 = 1. This KK mode
does not decouple from the spectrum in the supergravity approximation
even in the a→ ∞ limit, even though it increases slightly and becomes
exactly degenerate with the first excited glueball state 0++∗.
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state value for a = 0 value for a→ ∞
KK 5.27 4.98
KK∗ 8.29 8.14
KK∗∗ 11.23 11.15
KK∗∗∗ 14.14 14.10

Table 3.4: Masses of the KK modes corresponding to the quartet piece
of the l = 1 sextet of the original SO(6) in QCD3, using the same
normalization as in Table 3.1. The first column gives the masses for
a = 0 while the second the masses in the a→ ∞ limit. Note that these
states actually get lighter from a = 0 to a = ∞ in the supergravity
approximation.

2 4 6 8 10
a

1.22

1.24

1.26

1.28

1.3
r

Figure 3.4: The dependence of the ratio r = MKK

M
0++

of the KK states

compared to the lowest 0++ glueball state on the parameter a in units
where u0 = 1. This KK mode does not decouple from the spectrum in
the supergravity approximation even in the a→ ∞ limit, they instead
get even slightly lighter than for a = 0.

25



3.4 Free energy and Gluon condensation

From the rotating D3 brane metric (see Eq. (3.16) in [9]), one can find the
following formulas for the thermodynamic variables:

MADM =
V3V (Ω5)

4πGN

5

4
2m(1 +

4

5
sinh2 α) , V (Ω5) = π3 , (3.17)

S =
V3V (Ω5)

4GN
2mrH coshα , (3.18)

JH =
V3V (Ω5)

4πGN
ml coshα , (3.19)

TH =
rH(2r2

H + l2)

4πm coshα
, ΩH =

lr2
H

2m coshα
, (3.20)

GN =
κ2

10

8π
= 8g2

sπ
6(α′)4 , (3.21)

where
2m coshα sinα = 4πgsNα

′2 . (3.22)

One can check that they satisfy the first law of black hole thermodynamics
Eq. (2.31). In the limit α′ → 0 (rescaling variables as in (3.1) ), we get

E ≡MADM −Mext =
3

8π2
V3 N

2 u4
0 , (3.23)

TH =
u0

πB
, S =

1

2π
V3 N

2 uHu
2
0 , (3.24)

ΩH = i
au2

H

u2
0

, JH = i
1

4π2
V3 N

2 au2
0 , (3.25)

u2
H − a2 =

u4
0

u4
H

, B =
2u3

0

uH(2u2
H − a2)

. (3.26)

The free energy is then given by

F = E − THS − ΩHJH = −V3
N2u4

0

8π2
. (3.27)

This gives for the gluon condensate the following expression:

〈 1

4g2
YM

Tr F 2
µν(0)〉 = − F

V3TH

=
1

8π
N2Bu3

0 . (3.28)
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In terms of the Yang-Mills string tension, this is

〈 1

4g2
YM

Tr F 2
µν(0)〉 =

1

8π

N2

λ
σ2 . (3.29)

We find again that supergravity predicts that the gluon condensate is pro-
portional to N2/λ times the string tension squared. The result expressed in
terms of the string tension is thus independent of a.

4 Conclusions

In this paper we investigated quantitative aspects of large N SU(N) Yang-
Mills theory in three and four dimensions using a one-parameter family of
supergravity models related to non-extremal rotating D-branes. The new
feature of this class of models is the decoupling of the KK modes associated
with the compact D-brane coordinate as the angular momentum parameter
is increased. The mass ratios for ordinary glueballs were found to be very
stable against this variation. While the mass ratios of the 0++ glueballs
change only slightly compared to the case with zero angular momentum,
there is a substantial change in the mass ratios of 0−+, 0−+∗ given in Eqs.
(2.20), (2.21), which for large a are in better agreement with the lattice values
than for a = 0.

It is worth emphasizing that the ratio a/u0 should be large enough to
have MKK ≫ Mglueball, but not infinite, since there are also string states
winding around the compact D-brane coordinate with masses of order σR0

that should decouple, i.e. Mwind ≫ Mglueball. This requires λu8
0/a

8 ≫ 1,
which is consistent with the condition that curvature invariants are small
compared to the string scale [9]. In general, for any given ratio a/u0 which is
large enough to decouple KK states from the low-energy physics, it is possible
to choose λ sufficiently large so that string winding states also decouple.

We have found that the (SO(3) or SO(4)) non-singlet KK modes with
vanishing U(1) charge in the compact D-brane coordinate do not decouple in
this class of models. One can hope that those KK modes may decouple in a
model with more angular momenta (since there is room to take other limits).
In this case the isometry group of the internal space is smaller. For example,
in QCD3, for a = 0 it is given by SO(6) × U(1), whereas for a 6= 0 it is
SO(4)× U(1) × U(1). The isometry group of the model with the maximum

27



number of angular momenta only contains U(1) factors. This is consistent
with the fact that in pure QCD there can only be singlets of the original
R-symmetry.

We have also found some features which seem to be universal, i.e. which
do not depend on the extra supergravity parameter. In particular, both in
QCD3 and QCD4 supergravity gives a gluon condensate of the form N2

λ
σ2,

with a coefficient which is the same for all models parametrized by a. Another
feature that seems to be common to all supergravity models is a topological
susceptibility of the form λσ2, with a coefficient which is independent of N
but depends on a/u0. This result suggests that in the regime λ ≫ 1 the
η′ particle of QCD4 with N = 3 is much heavier than other mesons (whose
masses are proportional to the string tension).
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