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We review the calculation of the spectrum of glueball masses in non-supersymmetric Yang-Mills
theory using the conjectured duality between supergravity and large N gauge theories. The glueball
masses are obtained by solving the supergravity wave equations in a black hole geometry. The
glueball masses found this way are in unexpected agreement with the available lattice data. We also
show how to use a modified version of the duality based on rotating branes to calculate the glueball
mass spectrum with some of the Kaluza-Klein states of the supergravity theory decoupled from the
spectrum.

I. INTRODUCTION

Maldacena’s conjecture [1] relates N = 4 supersymmetric SU(N) gauge theories in the large N limit to Type IIB

string theory on an AdS5 × S
5 background, where AdS5 is a five dimensional anti-de Sitter space. The metric of this

space is given by

ds2

l2s
√

4πgsN
= ρ−2dρ2 + ρ2

4
∑

i=1

dx2
i + dΩ2

5 (1)

where ls is the string length related to the superstring tension, gs is the string coupling constant and dΩ5 is the line

element on S
5. The x1,2,3,4 directions in AdS5 correspond to R

4 where the gauge theory lives. The gauge coupling

constant g4 of the 4D theory is related to the string coupling constant gs by g2
4 = gs. In the ’t Hooft limit (N → ∞

with g2
4N = gsN fixed), the string coupling constant vanishes gs → 0. Therefore we can study the 4D theory using the

first quantized string theory in the AdS space (1). Moreover if gsN � 1, the curvature of the AdS space is small and

the string theory is approximated by classical supergravity. Witten extended this proposal to non-supersymmetric

theories [2]. In his setup supersymmetry is broken by heating up the N = 4 theory, which corresponds to putting the

four dimensional theory on a circle and assigning anti-periodic boundary conditions to the fermions. In this case the

fermions will get a supersymmetry breaking mass term of the order T = 1/2πR, where R is the radius of the compact

coordinate and T is the corresponding temperature, while the scalars (not protected by supersymmetry anymore) will

get masses from loop corrections. Thus in the T → ∞ limit this should reproduce a pure (3 dimensional) SU(N)

theory in the large N limit, which we will refer to as QCD3. On the string theory side this corresponds to replacing

the anti-de Sitter metric by a Schwarzschild metric describing a black hole in the anti-de Sitter space. This metric is

given by

ds2

l2s
√

4πgsN
=

(

ρ2 − b4

ρ2

)−1

dρ2 +

(

ρ2 − b4

ρ2

)

dτ2 + ρ2
3

∑

i=1

dx2
i + dΩ2

5, (2)

where τ parameterizes the compactifying circle and the x1,2,3 direction corresponding to the R
3 where QCD3 lives.

The horizon of this geometry is located at ρ = b with
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b =
1

2R
= πT. (3)

The supergravity approximation is valid for this theory when the curvature of the space is small, thus when gsN → ∞.

However, in order to obtain the pure gauge theory we have to take the temperature to infinity. In order to keep the

intrinsic scale g2
3N = g2

4N/R of the resulting theory at the scale of QCD, we simultaneously would need to take

g2
4N = gsN → 0. Here g3 is the dimensionful gauge coupling of QCD3. This is exactly the opposite limit in which the

supergravity approximation is applicable! Thus as expected for any strong-weak duality, the weakly coupled classical

supergravity theory and the QCD3 theory are valid in different limits of the ’t Hooft coupling g2
4N .

From the point of view of QCD3, the radius R of the compactifying circle provides the ultraviolet cutoff scale.

Therefore, with the currently available techniques, the Maldacena-Witten conjecture can only be used to study large

N QCD with a fixed ultraviolet cutoff R−1 in the strong ultraviolet coupling regime, and hope that the results one

obtains this way are not very sensitive to removing the cutoff, that is on going from one limit to the other. Since the

theory is non-supersymmetric, there is a priori no reason to believe that these two limits have anything to do with

each other, since for example there might very well be a phase transition when the ’t Hooft coupling is decreased from

the very large values where the supergravity description is valid to the small values where the theory should describe

QCD3. Nevertheless, Witten showed that the supergravity theory correctly reproduces several of the qualitative

features of a confining 3 dimensional pure gauge theory correctly [2]. In particular, he showed that there is an area

law in the Wilson loop and that there is a mass gap in the spectrum, both of which are expected features of a confining

gauge theory. Here we will address the question of whether any of the quantitative features of the gauge theories are

reproduced as well. In particular, we will calculate the glueball mass spectrum of the theory, and find, that it is in

reasonable agreement with recent lattice simulations [3].

II. THE GLUEBALL SPECTRUM IN 3 DIMENSIONS

In this section we will show how to calculate the glueball spectrum of some of the glueballs in the supergravity

approximation in the 3 dimensional case. In the following we will use the notation JPC for the glueballs, where

J is the glueball spin, and P , C refer to the parity and charge conjugation quantum numbers respectively. In the

field theory, one can find operators that have the quantum numbers corresponding to the given glueball states. For

example, an operator with quantum numbers 0++ is given by O4 = TrF 2, or an operator with quantum numbers

0−− is given by O6 = dabcF a
µαF

bαβF c
βν . According to the refinement of the Maldacena conjecture given in [4], one

should find a supergravity state corresponding to the chiral primary operators of the original N = 4 conformal theory,

which will couple to the supergravity states on the boundary of the AdS space. Assuming this coupling is maintained

while heating the system, we can find the supergravity operators coupling to O4 and O6. The dilaton and the R-R

scalar of the supergravity theory combine into a complex massless scalar field. Its real and imaginary parts couple

to the dimension 4 scalar operators O4 = tr F 2 and Õ4 = tr F ∧ F . The NS-NS and R-R two-forms combine into a

complex-valued antisymmetric field Aµν , polarized along the R
4. Its (AdS mass)2 = 16 and thus one can show that

it couples to a dimension 6 two-form operator of the N = 4 theory. This operator has been identified as the operator

O6 [5,6]. With this knowledge we would like to calculate the actual glueball mass spectrum corresponding to these

operators O4 and O6. In field theory, in order to calculate the masses of these states one would need to evaluate the

correlators 〈O4(x)O4(y)〉 =
∑

i cie
−mi|x−y|, where the mi’s are the glueball masses. According to the refinement of

the Maldacena conjecture [4], this just amounts to solving the supergravity wave equations for the fields that couple

to these operators on the boundary. In the case of the 0++ glueballs, we need to find the solutions of the dilaton

equations of motion of the form Φ = f(ρ)eikx. This is because in the supergravity theory on AdS5 × S
5, the Kaluza-

Klein modes on the S
5 can be classified according to the spherical harmonics of the S

5, which form representations of

the isometry group SO(6) (which is the R-symmetry group of the N = 4 theory). When we put the theory at finite

temperature, the states carrying non-trivial SO(6) quantum numbers should eventually decouple from the spectrum,

thus the glueballs should be identified with the SO(6) singlet states, which implies a solution of the form Φ = f(ρ)eikx
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for the dilaton as mentioned above. Thus we will look for normalizable regular solutions to the dilaton equation of

motion which will give a discrete spectrum with the glueball masses determined as k2
i = −M2

i .

In the supergravity description we have to solve the classical equation of motion of the massless dilaton,

∂µ [
√
g∂νΦgµν ] = 0 , (4)

on the AdS5 black hole background (2). Plugging the ansatz Φ = f(ρ)eikx into this equation and using the metric of

(2) one obtains the following differential equation for f :

ρ−1 d

dρ

(

(

ρ4 − b4
)

ρ
df

dρ

)

− k2f = 0 (5)

Since the glueball mass M2 is equal to −k2, the task is to solve this equation as an eigenvalue problem for k2. In

the following we set b = 1, so the masses are computed in units of b. We need to find normalizable solutions to this

equations which are also regular at the horizon. For large ρ, the black hole metric (2) asymptotically approaches the

AdS metric, and the behavior of the solution for a p-form for large ρ takes the form ρλ, where λ is determined from

the mass m of the supergravity field:

m2 = λ(λ + 4 − 2p) . (6)

Indeed both (5) and (6) give the asymptotic forms f ∼ 1, ρ−4, and only the later is a normalizable solution [2].

Changing variables to f = ψ/ρ4 we have:

(

ρ2 − ρ6
)

ψ′′ +
(

3 ρ5 − 7ρ
)

ψ′ +
(

16 + k2ρ2
)

ψ = 0 (7)

For large ρ this equation can be solved by series solution with negative even powers:

ψ = Σ∞
n=0a2nρ

−2n (8)

Since the normalization is arbitrary we can set a0 = 1. The first few coefficients are given by:

a2 =
k2

12
, a4 =

1

2
+

k4

384
, a6 =

7k2

120
+

k6

23040
. (9)

For n ≥ 5 the coefficients are given by the recursive relation:

(n2 + 4n)an = k2an−2 + n2an−4 . (10)

Since the black hole geometry is regular at the horizon ρ = 1, k2 has to be adjusted so that f is also regular at ρ = 1

[2]. This can be done numerically in a simple fashion using a “shooting” technique as follows. For a given value of

k2 the equation is numerically integrated from some sufficiently large value of ρ (ρ � k2) by matching f(ρ) with the

asymptotic solution set by (8) and (9). The glueball mass M is related to the eigenvalues of k2 by M2 = −k2 in units

of b2. The results obtained this way, together with the results of the lattice simulations [7] are displayed in Table I.

Since the lattice results are in units of string tension, we normalize the supergravity results so that the lightest 0++

state agrees with the lattice result. One should also expect a systematic error in addition to the statistical error

denoted in Table I for the lattice computations. Similar numerical results have been obtained in [8], while a WKB

approximation for the eigenvalues of (5) has been obtained in [9].

The 0−− glueballs can be dealt with similarly by considering the two-form of the supergravity theory, which couples

to the operator O6. The supergravity equation of motion for the s-wave component of this field is given by

3√
g
∂µ

[√
g ∂[µ′Aµ′

1
µ′

2
] g

µ′µgµ′

1µ1gµ′

2µ2

]

− 16gµ′

1µ1gµ′

2µ2Aµ′

1
µ′

2
= 0, (11)

where [ ] denotes antisymmetrization with strength one. For the pseudoscalar component of Aij the equation reduces

to
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TABLE I. 0++ glueball masses in QCD3 coupled to tr FµνF
µν . The lattice results are in units of the square root of the

string tension. The denoted error in the lattice results is only the statistical one.

state lattice, N = 3 lattice, N → ∞ supergravity

0++ 4.329 ± 0.041 4.065 ± 0.055 4.07 (input)
0++∗ 6.52 ± 0.09 6.18 ± 0.13 7.02
0++∗∗ 8.23 ± 0.17 7.99 ± 0.22 9.92
0++∗∗∗ - - 12.80
0++∗∗∗∗ - - 15.67
0++∗∗∗∗∗ - - 18.54

ρ
(

ρ4 − 1
)

h′′ +
(

3 + ρ4
)

h′ −
(

k2 ρ + 16 ρ3
)

h = 0 , (12)

in units where b = 1. This can be solved similarly as for the case of the 0++ glueballs, and the results are displayed in

Table II. Since the supergravity method and the lattice gauge theory compute the glueball masses in different units,

one cannot compare the absolute values of the lowest glueball mass obtained using these methods. However it makes

sense to compare the lowest glueball masses of different quantum numbers. Using Tables I and II, we find that the

supergravity results are in good agreement with the lattice gauge theory computation [7]:

(

M
0−−

M
0++

)

supergravity
= 1.50

(

M
0−−

M
0++

)

lattice
= 1.45 ± 0.08 (13)

TABLE II. 0−− glueball masses in QCD3 coupled to O6. The lattice results are in units of square root of the string tension.
The normalization of the supergravity results is the same as in Table I.

state lattice, N = 3 lattice, N → ∞ supergravity

0−− 6.48 ± 0.09 5.91 ± 0.25 6.10
0−−∗ 8.15 ± 0.16 7.63 ± 0.37 9.34
0−−∗∗ 9.81 ± 0.26 8.96 ± 0.65 12.37
0−−∗∗∗ - - 15.33
0−−∗∗∗∗ - - 18.26
0−−∗∗∗∗∗ - - 21.16

One can see, that the glueball mass ratios obtained from the supergravity calculation are in reasonable agreement

with the lattice results, even though as explained in the introduction these two calculations are in the opposite limits

for the ’t Hooft coupling. Therefore, it is important to see, how the ratios are modified once corrections due to string

theory are taken into account. The leading string theory corrections can be calculated by using the results of [10],

who calculated the first α′ corrections to the AdS black-hole metric (2). The details of the calculation can be found

in [3], here we just give the results for the 0++ state:

M2
0++ = 11.59 × (1 − 2.78ζ(3)α′3)Λ2

UV

M2
0++∗ = 34.53 × (1 − 2.43ζ(3)α′3)Λ2

UV

M2
0++∗∗ = 68.98 × (1 − 2.28ζ(3)α′3)Λ2

UV

M2
0++∗∗∗ = 114.9 × (1 − 2.23ζ(3)α′3)Λ2

UV

M2
0++∗∗∗∗ = 172.3 × (1 − 2.21ζ(3)α′3)Λ2

UV

M2
0++∗∗∗∗∗ = 241.2 × (1 − 2.20ζ(3)α′3)Λ2

UV , (14)

where ΛUV = 1
2R and the correction to the horizon is given by b = (1 − 15

8 ζ(3)α′3) 1
2R . One can see that the string

theory corrections are somewhat uniform for the different excited states of the 0++ glueball, and therefore one could

hope that these corrections to the ratios of the glueball masses are small. However, it can be seen that this is probably
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a too optimistic assumption, by considering the Kaluza-Klein partners of the glueball states. As explained above,

the glueball states do not carry quantum numbers under the SO(6) isometry, and are also singlets under the U(1)

symmetry corresponding to the compact direction τ . The Kaluza-Klein modes however do carry quantum numbers

under SO(6)×U(1), and they do not correspond to any state in the QCD theory, but rather they should decouple in

the R → 0, g2
4N → 0 limit from the spectrum. However, in the supergravity limit of finite R, g2

4N → ∞ these states

have masses comparable to the light glueballs [11]. This is simply a consequence of the fact, that the masses of the

fermions and scalars carrying the SO(6) × U(1) quantum numbers is of the order of the temperature T , thus their

bound states are expected to also have masses of the order of the temperature. However, since the temperature is

the only scale in the theory, and so this will also be the cutoff scale of the QCD theory, and thus the mass scale for

the glueballs. In particular, the masses of the KK modes of the 0++ glueballs obtained from the dilaton equation by

using the ansatz Φ = f(ρ)eikxYl(Ω5) are given by [11]

l 0 1 2 3
M2

l 11.59 19.43 29.26 41.10
Ml∗

2 34.53 48.07 63.60 81.11
Ml∗∗

2 68.98 88.24 109.5 132.7

,

where we have displayed the unnormalized values of the masses of the different KK modes.

One can explicitly see, that the masses of these KK modes are as expected of the same order as the masses of the

glueball states. One might hope that even though the supergravity approximation of these masses is of the same order

as for the glueballs, string theory corrections will increase the masses of these states compared to the glueball states.

Unfortunately, at least the leading string theory corrections calculated in [11,3] do not support this conclusion. The

corrections to the first few KK modes are

M2
0 = 11.59× (1 − 2.78ζ(3)α′3)Λ2

UV

M2
1 = 19.43× (1 − 2.73ζ(3)α′3)Λ2

UV

M2
2 = 29.26× (1 − 2.74ζ(3)α′3)Λ2

UV (15)

Thus one can see that the masses of these KK modes in fact do need large α′ corrections to remove them from the

spectrum of states. Then it is not clear why one would get large corrections to the masses of the KK modes but not

to the masses of the glueball states. This situation is clearly unsatisfactory, therefore one may try to improve on it

by introducing a different supergravity background, where some of these KK modes are automatically decoupled. We

will consider this possibility in the next section where we discuss the construction based on rotating branes [12–14].

III. THE GLUEBALL SPECTRUM IN 4 DIMENSIONS AND THE CONSTRUCTION BASED ON

ROTATING BRANES

Results similar to the the ones presented in the previous section can be obtained for the glueball mass spectrum

in QCD4 by starting from a slightly different construction where the M-theory 5-brane is wrapped on two circles [2].

The details of these results can be found in [3,15]. Here we will review only the generalized construction based on the

rotating M5 brane with one angular momentum, first constructed in [12], and explored in [13]. The metric for this

background is given by

ds2IIA =
2πλA

3u0
u∆1/2

[

4u2
(

− dx2
0 + dx2

1 + dx2
2 + dx2

3

)

+
4A2

9u2
0

u2 (1 − u6
0

u6∆
)dθ22 +

4 du2

u2(1 − a4

u4 − u6
0

u6 )

+ dθ2 +
∆̃

∆
sin2 θdϕ2 +

1

∆
cos2 θdΩ2

2 −
4a2Au2

0

3u4∆
sin2 θdθ2dϕ

]

, (16)

where x0,1,2,3 are the coordinates along the brane where the gauge theory lives, u is the “radial” coordinate of the

AdS space, while the remaining four coordinates parameterize the angular variables of S4, a is the angular momentum

parameter, and we have introduced
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∆ = 1 − a4 cos2 θ

u4
, ∆̃ = 1 − a4

u4
, A ≡ u4

0

u4
H − 1

3a
4
, u6

H − a4u2
H − u6

0 = 0 . (17)

uH is the location of the horizon, and the dilaton background and the temperature of the field theory are given by

e2φ =
8π

27

A3λ3u3∆1/2

u3
0

1

N2
, R = (2πTH)−1 =

A

3u0
. (18)

Note, that in the limit when a/u0 � 1, the radius of compactification R shrinks to zero, thus the KK modes on this

compact direction are expected to decouple in this theory when we increase the angular momentum a. In order to

find the mass spectrum of the 0++ glueballs, we need to again solve the dilaton equations of motion as a function of

a. This can be done by plugging the background (16) into the dilaton equation of motion

∂µ

[√
ge−2Φgµν∂νΦ

]

= 0. (19)

For a dilaton ansatz of the form Φ = f(u)eikx we obtain the differential equation

∂u

[

u(u6 − a4u2 − u6
0)f

′(u)
]

− k2u3f(u) = 0, (20)

which can be solved the same way as explained in the previous section, where the eigenvalues are now a function of

the angular momentum parameter a. The results of this are summarized in Table III. Note, that while some of the

KK modes decouple in the a → ∞ limit, the 0++ glueball mass ratios change only very slightly, showing that the

supergravity predictions are robust for these ratios against the change of the angular momentum parameter.

TABLE III. Masses of the first few 0++ glueballs in QCD4, in GeV, from supergravity compared to the available lattice
results. The first column gives the lattice result [7,16,17], the second the supergravity result for a = 0 while the third the
supergravity result in the a → ∞ limit. The change from a = 0 to a = ∞ in the supergravity predictions is tiny. Note, that
for the excited state the supergravity calculation came before the lattice results.

state lattice, N = 3 supergravity a = 0 supergravity a → ∞

0++ 1.61 ± 0.15 1.61 (input) 1.61 (input)
0++∗ 2.48 ± 0.18 2.55 2.56
0++∗∗ - 3.46 3.48
0++∗∗∗ - 4.36 4.40

One can similarly calculate the mass ratios for the 0−+ glueballs, by considering the equations of motion of the RR

1-form in the background (16), since on the D4 brane worldvolume this couples to the operator TrFF̃ . To find the

glueball spectrum we have to solve the supergravity equation of motion of the RR 1-form

∂ν [
√
ggµρgνσ(∂ρAσ − ∂σAρ)] = 0 (21)

in the background (16). Using the ansatz Aθ2
= f(u)eikx leads to the differential equation

(u6 − a4u2 − u6
0)∂u

[

u3(u4 − a4)f ′(u)
]

− k2u5(u4 − a4)f(u), (22)

which we solve using the same numerical methods as in the previous section. The results are summarized in Table

IV. Note, that the change in the 0−+ glueball mass is sizeable when going from a = 0 to a → ∞, and is in the right

direction as suggested by lattice results [16,17].

One can also calculate the masses of the different Kaluza-Klein modes in the background of (16). One finds, that

as expected from the fact that for a → ∞ the compact circle shrinks to zero, the KK modes on this compact circle

decouple from the spectrum, leading to a 4 dimensional field theory in this limit. However, the KK modes of the sphere

S4 do not decouple from the spectrum even in the a→ ∞ limit. These conclusions remain unchanged even in the case

when one considers the theory with the maximal number of angular momenta (which is two for the case of QCD4)

[14,18]. In the limit when the angular momentum becomes large, a/u0 � 1, the theory approaches a supersymmetric

limit [12,14] since the supersymmetry breaking fermion masses get smaller with increasing angular momentum [19].

Therefore, the limit of increasing angular momentum on one hand does decouple some of the KK modes which makes

the theory four dimensional, but at the same time reintroduces the light fermions into the spectrum [19].
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TABLE IV. Masses of the first few 0−+ glueballs in QCD4, in GeV, from supergravity compared to the available lattice
results. The first column gives the lattice result, the second the supergravity result for a = 0 while the third the supergravity
result in the a → ∞ limit. Note that the change from a = 0 to a = ∞ in the supergravity predictions is of the order ∼ 25%.

state lattice, N = 3 supergravity a = 0 supergravity a → ∞

0−+ 2.59 ±0.13 2.00 2.56
0−+∗ 3.64 ±0.18 2.98 3.49
0−+∗∗ - 3.91 4.40
0−+∗∗∗ - 4.83 5.30

IV. CONCLUSIONS

We have seen how the Witten extension of Maldacena’s conjecture can be used to study pure Yang-Mills theories

in the large N limit. These theories reproduce several of the qualitative features of QCD, and one can also study the

predictions for the glueball mass spectra. One finds, that the supergravity calculations are in a reasonable agreement

with the lattice results, even though they are obtained in the opposite limit of the ’t Hooft coupling. It would be very

important to understand, whether this unexpected agreement is purely a numerical coincidence or whether there is

any deeper reason behind it.
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