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We develop a simple model for coupling the pseudo-Goldstone bosons of QCD Or's, K's, -q) to quark fields. This nonlocal 
model incorporates a momentum dependent dynamical quark mass ,~ (p) in a manner consistent with global chiral symmetry. 
Explicit current quark masses and gauge fields are also introduced. All low energy parameters of the chiral lagrangian are 
expressed in terms of ~(p). In particular we obtain the ten coefficients of order pa terms in the energy expansion. The 
physical values for too, mR +, inK0 , f#, and fn are used to determine the three current quark masses, the constituent quark 
mass, and the quark condensate. The results are in surprisingly good agreement with the experimental values. 

In this paper  we will present  a simple nonlocal  model  for pseudo-Golds tone  bosons (PGBs) coupled to 
massive quarks. Upon integrating out the quarks and performing a derivative expansion the model  yields an 
effective low energy chiral lagrangian. We will make no at tempt to "der ive"  the model  as a control led 
approx imat ion  to QCD,  and there is no reason a priori  why the chiral lagrangian we obtain should resemble 
the low energy effective theory of  QCD. But the model  does incorporate  a nontrivial momentum dependence  
for the quark mass and thereby represents the dynamical  quark mass in QCD. This is accomplished in a manner  
consistent with the dynamical  breakdown of  chiral symmetry and it improves previous derivations of  chiral 
lagrangians in chiral quark models.  We find, rather surprisingly, that the model  does well at reproducing what 
is currently known about  low energy QCD. 

An effective chiral lagrangian may be used to encode the physics of  the PGBs of  QCD in a systematic 
low-energy expansion.  In the notat ion of  Gasser  and Leutwyler [ 1 ], for QCD with three light quarks the leading 
(order  p~) and next- to-leading (order  p4) terms of  the chiral lagrangian are the following: 

L = ]Fo2{(V ~ U+V~. U) + (X+ U + X U+)} + L, (V ~ U+V. U) 2 + L2(V~ U+V.  U)(V ~' U+V "U) + La(V g UtV~, UV"U+V. U) 

"t-La(F ~ U*V~ U)(X* U + X U*) -F Ls(V" U+Vg U(X+ U + X U+)) + L6(X+ U + xU+)  2 + Lv(X+ U - X Ut)  2 

+ L s ( X + U x + U + x U + x U + )  • R ~. ~ + L ~. + ~ + R L.~ -1L9(F~,~V UV U + F ~ V  U V U ) + L l o ( U  F~ , ~UF ) + L w z .  (1) 

We may express U in terms of  the PGBs (here 0r~ represents the pions,  the kaons, and the eta) as follows: 

[,~ 2i~i(x)A,'~ 
U--- exp,2_ Foo ] '  (2) 

where Fo is the decay constant in the chiral limit and Tr AiAk =~8~k. X is defined by (?o:) 
X ~-- 2 B o M ,  M = ma • (3) 

0 m s 

The Wess -Zumino  term Lwz introduces no further parameters  and thus to this order  in the energy expansion 
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the chiral lagrangian contains 14 independent parameters: 

Fo, Bomu, Boma, Boms, LI-Llo. (4) 

All low energy physical quantities are functions of  these parameters, and their values have been obtained in 
the phenomenological analysis of  Gasser and Leutwyler. L~-L1o are scale dependent and these authors choose 
to renormalize these quantities at the "q mass. Their values are included in table 1. 

More recently various groups [2,3] have argued that some of  these parameters, in particular L~, L2, L3, L9, 
L~o, are in fact saturated by the lowest lying spin-1 resonances of  QCD. The authors of  ref. [2] develop a chiral 
lagrangian model including vector and axial-vector mesons; integrating out the spin-1 fields yields results which 
are reproduced in table 1 (renormalized at the r/ mass). 

In this paper we argue that all the quantities in (4) are quite consistent with a different picture in which the 
essential dynamics occurs at the quark level. The main point of  our model will be to incorporate a momentum 
dependent dynamical quark mass Z(p) characteristic of  the dynamical chiral symmetry breaking of  QCD [4]. 
.,Y,(p) represents an order parameter and it is natural for PGBs to appear as fluctuations of  this order parameter. 

(p) will also serve as a natural regulator in our calculations, thereby avoiding the introduction of  an independent 
ultraviolet cutoff. (This is also a feature of  the work in ref. [5].) 

Our model is closely related to the Pagels-Stokar (PS) approximation [6] for QCD in which all corrections 
beyond those contained in 2 ( p )  are dropped. In particular we will reproduce the PS formula for Fo (see (16) 
below). Recently [7], Fo has been calculated from the Bethe-Salpeter equation in the ladder approximation. 
This goes beyond the PS formula and includes corrections beyond those contained in Z (p). These corrections 
are found to be surprisingly small, thus lending some support to the PS approximation. 

The gauging of  our model will be nontrivial since it is nonlocal, but this will be necessary to obtain t 9 and 
L~o. To obtain L4, ts,  L6, L7 and L8, current quark masses are introduced in an obvious way. The model then 
clearly distinguishes between the dynamical, momentum-dependent quark mass and the current quark mass. 

This distinction is lost if ~ ( p )  is replaced by a constant. Then the model reproduces previous calculations 
in local chiral quark models [8]. They yield values for the quantities L1, L2, L3, L9, Llo as shown in table 1. 
In fact these quantities may be derived in models making no mention of  quark mass. In that context there is 
no natural scale and it would be difficult to associate these quantities with the scale dependent couplings of  a 
chiral lagrangian. Even so, there is surprisingly fair agreement between the values listed and the physical Li's 
renormalized at m,. 

Other quantities are a more sensitive reflection of  the details of  chiral symmetry breaking. For example, when 
,~(p) is a constant, f~ and other Li's acquire dependence on an ultraviolet cutoff. But we shall see that this 
cutoff dependence is just a consequence of  the unrealistic, constant Z(p ) .  

Upon integrating out the quark fields the dynamical quark mass (or more precisely twice this mass) will 
provide a natural scale at which to match the effective theory to the underlying theory. Thus our model will 
express parameters of  the effective chiral lagrangian, when renormalized at this scale, purely in terms of  integrals 
of  Z(p) and its derivatives. 

Expanding Lwz produces terms with, respectively, five PGBs, three PGBs and one gauge field, and one PGB 
and two gauge fields. The coefficients of these three terms in our model turn out to be independent of  2 ( p )  
as they should; the associated integrals of  2 (p) involve total derivatives and are identically equal to the correct 
constants [4,5]. 

We use physical values for masses and decay constants (m,~o, mK÷, inK-, f,~, and fK) to determine the five 
parameters of  our model: the constituent quark mass, the quark condensate (or equivalently the parameter Bo), 
and the three current quark masses. In our model the current quark masses and the parameter Bo are independent 
parameters, unlike the chiral lagrangian (1), and this will allow us to determine the overall scale of  the quark 
masses as well as their ratios. 

As for the 10 L~'s we find that one combination of  L 5 and Ls, and all the other L~'s are independent of  the 
above mentioned parameters. (The running of  the L~'s does of  course depend on the parameters.) We present 
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results for  two different  X ( p ) ,  bo th  o f  which  are consis tent  with the asympto t ic  behav io r  impl i ed  by Q C D  

(add i t iona l  logs are safely ignored) .  

2m 3 4m 3 

.X (p ) ,  m 2 + p 2 ,  ,,~ (P)2 3 m 2 + p 2  • (5) 

.X(p) is no rma l i zed  by set t ing . X ( m ) =  m and we have  ident i f ied m with the cons t i tuent  qua rk  mass. 

Tab le  1 gives the  L~'s and  table  2 gives the five parameters .  As we have  said, the m o d e l  yields values  for  the 

runn ing  coup l ings  effect ively r eno rma l i zed  a t / x  ~ 2m (we actual ly  u s e / z  = 2m + mo + mo). To c o m p a r e  to the 
Gasse r  and  Leu twyle r  va lues  we run our  va lues  d o w n  to thei r  choice ,  /x = m~. It may  be  no ted  that  m a n y  of  

the quant i t ies  d isp lay  lit t le sensi t ivi ty to the choice  for  Z ( p ) .  The  most  sensi t ive is L,0, and its va lue  shows a 

marked  i m p r o v e m e n t  f rom the  cons tan t  Z ( p )  case. 

We now descr ibe  our  mode l .  Inco rpora t ing  a m o m e n t u m  d e p e n d e n t  self-energy .X (p)  requires  a b i local  te rm 

b i l inear  in the  f e rmion  field. All ¢ri(x) d e p e n d e n c e  occurs  in this te rm;  that  is, PGBs a p p e a r  as f luctuat ions  o f  

the o rder  parameter .  O u r  m o d e l  l agrangian  then  takes the form,  in euc l idean  space,  

L(x, y) = t~(x)8(x - y).g~b( y) + ~(x).X~(x, Y)4'( Y). (6) 

.X~(x,y) is a func t ion  o f  7r(x) and 7r(y) such that  Z ~ ( x , y ) ~ 2 ( x - y )  for  z r = 0 ,  where  Z ( x - y )  is Four i e r  

t r ans fo rm o f  ~ (p) .  The  quarks  carry bo th  co lor  and  f lavor but  .X~ (x, y)  is nontr iv ia l  only  in f lavor  space.  " c o l o r "  

is only  a g loba l  symmetry .  

The  m o d e l  must  retain a g loba l  chiral  invar iance  and  this will cons t ra in  .X~(x, y).  Even  so, our  choice  for  

.X~(x, y)  will  not  be  un ique ,  and  we can only  argue that  we are mak ing  a min imal  choice.  O u r  cho ice  fo l lows  

f rom the s t andard  der iva t ive  coup l ing  cons t ruc t ion  for  coup l ing  PGBs to mat te r  fields [9]. A n d  as we shall  see, 

this cho ice  will  r e p r o d u c e  the Page l s -S toka r  fo rmula  for  Fo. 

U n d e r  a g loba l  chiral  t r ans fo rma t ion  the quan t i ty  ~: (x)= exp[-izr(x)/Fo], where  I t ( x ) - - - ~  7r~(x)A~3,5, t rans-  

forms as 

~ ( x ) ~ g ( x ,  ~, 7r(x))~(x) e x p ( - i a y s )  = exp(-iay5)~(x)g*(x, a, zr(x)). (7) 

g is a n o n l i n e a r  func t ion  o f  a = ~ aiA~ and 7r(x). The  vec tor  field 

V,, (x)  = )i(O,,¢¢* + 0,,¢*~:) (8) 

Table 1 
Values, multiplied by 10 3, for the coefficients of the order p4 
chiral lagrangian. GL: experimental values, Gasser and 
Leutwyler [l]; VMD: vector and axial vector meson model [2]; 
LCQ: local chiral quark models [8]; last two columns are values 
from our model with quark self energies ,X (p)l and ,X (p)2 given 
in eq. (5). 

GL VMD LCQ Z(p)l  .,X (p)2 

L 1 0.9 + 0.3 1.1 0.79 0.97 0.90 
L 2 1.7 + 0.7 2.2 1.58 1.95 1.80 
L3 -4.4±2.5 -5.5 -3.17 -4.20 -3.90 
L 4 0±0.5 - 0.16 0.13 
L 5 2.2 ± 0.3 - 2.04 2.07 
L 6 0±0.3 - 0.10 0.08 
L 7 --0.4± 0.15 - --0.249 --0.252 
L 8 1.1 ±0.7 - 1.04 1.06 
L 9 7.4±0.7 7.8 6.33 6.27 6.11 
Ll0 -6.0±0.7 -6.0 -3.17 -7.09 -5.23 

Table 2 
Values, in MeV, for the current quark masses, the constituent 
quark mass m, and the quark condensate (~/,)~. 

.X(p), 4.7 8.1 160 331 211 
~ ' ( P ) 2  5.0 8.7 170 292 208 
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transforms as 
.~ (x ,  y) which transforms under a global chiral transformation as 

.~,, (x, y)~exp(-iay~)~,,(x, y) exp(-iay~).  

We may take 

V~(x)~gV,~(x)g*+i(a,~g)g*. In terms of  these quantities it is straightforward to construct a 

(9) 

y 

whoreX x y, Pexp(i I ) 
x 

X(x, y) is the standard path ordered exponential. This is a minimal choice for ,~,~(x, y) in the sense that it 
reduces to a very simple and suggestive form, ¢(x)~(x-y)¢(y) ,  when V. happens to vanish. V~, vanishes when 
[0~,  set] = 0 or when [zr(x), ~r(y)] = 0  for all x,y. 

But as it stands (10) is not terribly useful for obtaining an explicit power series expansion in 7r(x) and 7r(y) 
for ,~ (x ,  y). We will instead write ,~,~(x, y) as the following explicit function of  7r(x) and ~r(y), and then 
impose the constraint that 2~(x, y ) ~ ( x ) , ~ ( x - y ) ~ ( y )  when [Tr(x), zr(y)] = 0'. 

~,,~(x, y) = .~,(x -y)G(~'(x), zr(y)), 

G(~(x), "rr(y))=½{[a,V(x)+a2V(x)V(y)*V(x)+a3V(x)V(y)*V(x)V(y)*V(x)+...] + (xC:~y)}. (11) 

V(x)=--exp[-2i~r(x)ys/Fo]; this explicitly transforms in the correct manner since V ( x ) ~  
exp( - i ays )  V(x) exp( - i ays )  under a chiral transformation. The constraint on G(Ir(x), zr(y)) implies that the 
ak must satisfy 

~ ak(2k -- 1) 2" = 1 for n = 0, 
k = l  

= 0  for n = 1 , 2 , 3 , . . . .  (12) 

These equations do in fact have solutions of  the form 

4(-1)(k-l)  
c o s ( ( 2 k -  1) t), t<~r/2. (13) 

ak r r ( 2 k - 1 )  

But we are more interested in the explicit expansion in It(x) and lr(y) ,  and for our purposes we require this 
expansion to order ~.4. To this order we need only satisfy the first three equations in (12), (n --0, 1, 2). We find 
that any ak which satisfies these equations gives a unique expansion for 2~(x, y) to O(7r4). We find (leaving 
out the factors of  Fo 1) 

G(Tr(x), ~r(y)) = 1 - iTr(x) - irr(y) - 7r(x)2/2-  ~r (y)2/2-  ~r(x)Tr(y)/2- ~r(y)Tr(x)/2+irr(x)a/6+iTr(y)3/6 

+i ~r(x) 7r(y) 7r(x)/2 + iTr(y) It(x) 7r( y)/2 + ~r(x)4/24 + ~r( y)4/24 - 7r(x) 2 It(y)2/8 - 7r( y)27r(x)2/8 

- It(x) 7r( y)3/24 - Ir (x)37r ( y ) /24  - 7r( y)~r(x)3/24 - ~r( y)31r(x)/24 

+ rr(x)'rr(y)~(x)2/8 - ~(x)~(y)2~(x)/8+ rr(x)2"n'(y)zr(x)/8 

+ ~'(y) zr(x)zr( y)2/8 - 7r(y)'rr(x) ~ ~r( y)/8 + ~r(y)%r(x) lr( y)/8 

+ 37r(x)rr(y)~(x)~r(y)/8 + 3rr(y)~r(x) ~r(y)~(x) /8  + (higher order in ~r). (14) 

With this we may integrate out the quark fields and obtain the chiral lagrangian Len(~'(x)): 

exp ( -  I d4x Le~('n'(x))) =- I DJ/ D~ exp( -  I d4x d4y L(x, y) ) , 

f d4xLe~(~r(x))=-trlogS~ ~ , S;~=-~x6(x-y)+X~(x,y). (15) 
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This may be expanded simultaneously in powers of  ~r and in powers of  derivatives. This involves quark loop 
diagrams with zr's attached in all possible ways according to (14). Fortunately the result is constrained by chiral 
symmetry to take the form of a standard chiral lagrangian, a function of  the U(x)  in (2). 

We will insert current quark masses below but for now there are no zero derivative terms, i.e. no zr mass. 
For the two derivative term in the chiral lagrangian it is sufficient to look at the two PGB diagrams. Standard 
normalization of  the kinetic term in the chiral lagrangian implies a formula for Fo, 

Nc f (~ (q )_½q22 , (q )~  . . . . .  d 2 ( q )  Fo 2 (2~.)2 dq2q2X' (q) \  [q2+2(q)212 1,  = w n e r e z  (q)~- ~qYq2 • (16) 

This happens to be the result derived by Pagels and Stokar by quite different methods. It is related to our 
particular choice for ,~,~(x, y), other choices can give different formulas for Fo [4]. (The physical f ,  and fK are 
related to Fo but incorporate quark mass and PGB loop corrections.) 

To find the four derivative terms in the chiral lagrangian we must look at both the two PGB and the four 
PGB diagrams in the derivative expansion. The two PGB-four derivative piece will fix the coefficient of  the 
Tr(O 2 U* 02 U) term in the cbiral lagrangian. But as Gasser and Leutwyler described [ 1 ], the equations of  motion 
may be used to remove this term and in the process adjust the parameter L3 (along with Lv and Ls when there 
are quark masses). The four PGB-four derivative piece will then determine Lt,  L2, L3. We eventually arive at 
lengthy integral expressions involving ,~(p) and its first four derivatives. Table 1 gives the result of  evaluating 
these expressions for the two different choices of  Z(p ) .  Note that for a given form for £ ( p ) ,  L1, L2, L3 are 
independent of  m. 

Now let us incorporate a current quark mass matrix M (as given in (3)). We simply add a PGB independent 
quark mass term to the model; that is, the $7/ appearing in (15) takes the modified form 

S,~'(x, y) =- .~xa(x - y) + ,~,~(x, y) + Ma(x  - y). (17) 

We first find the term in the chiral lagrangian (1) which depends linearly on M;  this determines the quantity Bo. 

(~p) f X(q)  
Bo - Fo 2 where (~@) = _ N c  d4 q . (18) , 4rr2 q2+,V(q)2 

The standard relation 2 2 = Fore . -(mu+ma)(~p@) follows. But the expression for (~b) in (18) is divergent and 
must of  course be renormalized. The prescription in QCD leads to a result which is related to the high energy 
behavior of  X (p). [:or our purposes we will simply take the renormalized Bo to be a parameter, to be determined, 
and define (~b) ,  =-F2oBo . 

Thus for a given form for X(p )  with X(m) = m the model has two parameters Bo and m, besides the three 
quark masses mu, ma, ms (Fo is related to M through (16)). We find that all but one combination of  the L~'s 
are independent of  these parameters. L4, Zs, L6, L7, L8 are defined in the lagrangian (1) with appropriate 
factors of  Bo inserted to make up the correct dimensions. In our derivative expansion factors of  m appear in 
place of  Bo, and thus it seems that we need the ratio Bo/m to determine these Li's. But it turns out that these 
Li's are independent of  Bo/m except for one combination of  L5 and L8. 

L4 and L 6 a r e  simply zero (up to PGB loop corrections) and this is consistent with Zweig's rule. (2L~ - L 2 = 0 
is also a reflection of  Zweig's rule.) Lv is nonzero only due to the shift introduced by the Tr(a2U * a2U) term 
mentioned above. But the coefficient of T r ( a  2 U* ~2 U ) ,  like the other four derivative terms, is independent of  
Bo and m and thus so is L7. Note that in QCD Lv is sensitive to physics in the flavor singlet channel including 
r/' exchange. 

The model yields the following relation between L5 and L8 which is also independent of  Bo and m. 

L25 + cl L8 = c2, (19) 

(el, c2) = (-1.55 × 10 2, -1 .16 × 10-5), (-1.43 x 10 -2, --1.08 X 10 -5)  for ,~(p)~, ~,(P)2 respectively. In either case, 
this relation is well satisfied by the experimental values renormalized at ~ ~ 2m. 
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The parameters mu, rod, ms, m, and (~O)~, in table 2 are found by calculating m~,, mK,, mKo,f,,,fK and then 
fitting the resulting expressions to the experimental values. Second order quark mass effects and PGB loop 
corrections as described in ref. [1] are included. The quark mass ratios are very stable against changes in 
Z(p) :  mu/md=(0.58,0.58) and ms/ma = (19.7, 19.6). These values agree with the analysis of ref. [1] which 
includes input from baryon octet mass splittings. In addition the model yields the overall scale of the quark 
masses. We obtain Bo = (1420, 1340) and Fo = (81.5, 82.0) and this yields the values for (t~0). in table 2. 

To find L 9 and L~o it is sufficient to gauge the model with a non-abelian vector gauge field A~,. This is done 
by introducing appropriate factors of 

Y(x,y)=Pexp(-i f gA. dx"). (20) 
x 

The expansion in (11) now reads 

½{[a, V(x) + az V(x) Y(x, y) V(y)* Y(y, x) V(x) + . . . ]  + (x ¢:>y)}. (21) 

But since the PGBs themselves transform linearly under vector transformations, factors of Y(x,y) may be 
inserted directly into the expansion for G(zr(x), zr(y)) in (14). This is then translated into the nonlocal 
multi-At,-multi-~r-?:l q vertices appearing in the two sets of quark loop diagrams used to determine L9 and L~o. 
The former set involves two ~r's and one A,, attached in all possible ways and the latter involves two zr's and 
two Afs .  

We will elaborate on the derivation of the gauge field vertices elsewhere. Schematically, we transform the 
action to momentum space and expand Z(p) in powers of p. We replace powers of p by derivatives which, 
when acting on Y(x, y), yield A~,(y) and its derivatives [10]. The resulting derivative expansion for each gauge 
vertex is then summed to all orders. These vertices satisfy the appropriate Ward-Takahashi identities. There 
are additional checks since coefficients of various terms in the chiral lagrangian may be determined in more 
than one way, by considering appropriate quark loop diagrams with and without gauge fields attached. 

We now note the following fact in QCD; the dynamical mass X ( x - y )  is expected to have some dependence 
on the current quark mass. This would result in M dependence in 2,,(x, y) and produce M dependent PGB-quark 
couplings. Does this make our results for L5 and Ls necessarily inconsistent with QCD? The answer is no since 
the model can incorporate an M dependent dynamical mass without changing the results. This occurs if Z,~(x, y) 
depends only on MM* or M*M. (Z,(x,y) cannot have a linear dependence on M without disrupting the 
standard relation following (18).) The correction term would take the form 

•(x -y)[MM*G(~r(x), ~r(y)) + G(~r(x), rr(y))M*M]. (22) 

It is not difficult to see that this will not contribute to any of the Li. 
In conclusion we have found that a simple model which incorporates a momentum dependent constituent 

quark mass reproduces low energy QCD quite well. This is surprising given that our model has completely 
ignored all QCD physics associated with confinement. This seems to suggest that QCD corrections beyond 
those already contained in Z(p) are relatively unimportant for low energy chiral dynamics. 

J.T. thanks P. Geiger and E. Swanson for discussions. This research was supported in part by the Natural 
Sciences and Engineering Research Council of Canada and by the National Science Foundation under Grant 
No. PHY82-17853, supplemented by funds from the National Aeronautics and Space Administration. 

Note added in proof A quark-based model of the QCD chiral lagrangian was also recently discussed in ref. 
[11]. 
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