arXiv.org > hep-ph > arXiv:1205.4032 Composite Higgs Sketch Brando Bellazzini, Csaba Csáki, Jay Hubisz, Javi Serra, John Terning (Submitted on 17 May 2012 (v1), last revised 30 Aug 2013 (this version, v4)) The coupling of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness is reached, which would suggest that additional composites should lie well below this scale. In this paper we account for the presence of an additional spin 1 custodial triplet of rhos. We examine the implications of requiring perturbative unitarity up to the compositeness scale and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and the rho couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the spin 1 triplet. We find that they can substantially enhance the Higgs di-photon rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel where the charged rhos decay to a W-boson and a Z, which then decay leptonically. We find that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV is currently experimentally viable.