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t- lntroduction

ln recent Usars, particle phusicists have become increasir€lu interested in

the uss of cosmological calculations as tests for their hupothoses about

elcmsntarg particles. Not onlu did particlss in the earlu Univorse have

erprgies that tar exceed the limits of presont dau accelsrators, but also,

donsities at these times were so large that even weaklu interactirE particles

like neutrinos possesssd mean free paths shorter than 3 x 108 m. Under these

conditions, particles that interact with normal matter onlu weaklg or

gravitationallg can produco significant effects, whose repercusions could

still be measurable at the present time.

Constraints from Cosmologu can usuallg be obtairpd bU asking the

question: could a Univsrse containir€ a certain tgpe of particle avolve inlo

ths Univorse that we presentlu observe? ln this paper we will find

mass--lifotime constraints on particles whose strongest interaction is the

weak interaction, and mass--couplirE constant constraints on particles that

interact with normal matter onlu gravitationallu, bU requiring that their

present energg der€itu not exceed ths critical erprgu densitg, and that densitu

perturbations in the earlu Universe be allowed to grow into galaxies.



2. Stable weaklU Intcracting llassiv? PErticlss

At the present time, observable galaxies appear to be engaged in a rapid

expansioni so it vyould seem that in the past the matter of the universe was

more denselU packed than it is now. For the galactic matter to have escapsd

the gravitational potential well of this denser era' it must have been much

more energetic. If we continue to trace this behaviour back further and

further in timg, y/e come to more dsnselg packed epochs' with even more

energetic particles; and eventuallg we come to a EingularitUl where all

Darticles are ultra-relativistic' This is the esssnce of Big Bang Cosmologu.

The Doint that will Frove to be central to our dlscussion of stablez

weaklu interacting massive particles (WIt1Ps3) is that these particles were

0nce moving ultra-relativisticallU,6nd were so dsnselU packed that reactions

occurred veru quicklg, and hence, at veru earlU times all particles comprised a

relativistic gas in thermal equilibrium. This runs counter to the usual cases in

thermodgnamics where thsrmal equilibriums are established after some period

of time; but in the cose of Cosmologu, the Universe rapidlU goes into a thermal

equilibrium ,*hich is eventuallg destroued' This being the case, via can treat

different particles in the earlg lJniverse in a manner somewhat analogous to,

sag, the different modes of vibration and rotation of atoms, or to different

radation mBdes inside a reflecting cavitU.

To begin a discussion of particlas in ths eartu Universe, it is helpful to

recall some results from cosmologg which are derived using the

Robertson-Walker metric4. tlost importantlU, distances between fundamsntal

points (i,e. points follov/ing the expansion of space-time) grow in time
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proportionallg to a scale factor R(t). Since, bg the de Broglie relation,

momenta ars inverselu proportional to w6velengths, theu decrease with time'

Hore concretelg, if a Particle h6s a momentum pr at time tt,6t 8nU subsequent

time t, the particles momentum is

p(!) :  p1 R(ty ' /R(t )  . ( 2 . 1 )

For ultra-relativistic Farticles, this decrease in energg is often relerred to as

'red-shifting awag.' From this relation it is obvious that the energu of a

relativistic gas, and hence its temperature, will decrease as the ljniverse

expands. More preciselUr since kT , where k is Boltzmann's constant and T is

ths temperature, is 6 measure of the average energu of a particle in thermal

equilibrium, the tsmperature of an ultra-relativistic gas is given bU

T(t) = constant/R(t) (2.2J

w? are now in a position to ask what happens to neutral massive spin l/2

pErticles 6s the universe expands, and the relativistic gas it contains coois'

When the temperaturesis much larger than the m6ss, mx of a particle X' the

two competing procssses of creation and annihilation 6re held in balance: X

particles annihilate with anti-X particles' but other particles in the gas have

sufficient ensrgg to create more X's when theu annihilate or decag6' For ang

reaction that destrogs X's, there is E reversed reaction that creates X's' and

these two tupes of reactions occur, on average' equallg often. During this

period the number of x p6rticles per comoving volumess is const6nt, however,

as ths temperature falls below rnx, particles which havs sufficient energg t0

produce X's become incrBasinglg rare, in accordance with the Boltzmann factor

exp(-m*/kT). Thus, although X's continue to 6nnihil6te, thsir rate of

production decreases rapldlU with decreasing temperature, and so the number

of X particles per comoving volume declines. The snnihilation of X particles
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does not continue unabated though, since the annihil6tion rats is proportional

to the X number densitU, n, times the anti-X number densitg, which is

assumed? to b9 equal to n, so as n decreases, the annihilation rate decreases

like n2, For this reason, the decrease in n due to annihilation eventuallU

beeomes insignificant in comparison to th€ decrease in n due to the general

expansi0n of the ljnivsrse, QualitativslU, it Decomes harder and harder for the

x's to find anti-X's to annihilate with, and so theu eventuallu behave as if n0

annihilati0n is allowed. llathematicallU the rate of change of n v/as expressed

bU Lee and weinberg [3] a6

d n/ttt = - 3 ( ft(t)/R(t)) n(t) - <dv> n2(t)

where <dv> is the th€rmal average of the X anti-X

times the relative velocitur and neo is the number

* .5y, iro21q;, 12,31

annihilatiBn cross section

densitu of X particles in

(2,6)

(2.71

thermal equi libriumi that is- f a

non(T) = 2lQl)3 | 4flpzdp (exp(( p2 + mrz)1/2 /kT ) + l)-r (2.41
r6

where the factor 2 comis from assuming X has two spin states (and h = c = l,

as throughout),

It can be shown that in I Universe with a flats Bobertson-Walker metric

the Hubble oarameter is

H = A/B = (B Tf P Gl3 \1/2 , (2'5)

where G is the gravitational constant, and P is the energg densitg of the

relativistic oass:

P = Nr a T4 = Hr ( fl2l15) (kr)4

Nf here is the effective number of degrees of freedom,

N t  =  l / 2 ( n g  +  r T t n t  1

where nb and nf are the total number of internal degrees of freedomlo for all

bosons and fermions present in equilibrium in the gas.
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and

<o v>

when the temperature is bslow mx, the velocities of the X particles ars

non-rel ati vi sti ci for Dirac particles this means that the annihilation cross

section in the center 0f mass frame is proportional to l/v, th?refore <dv> i8

veloeitu, and hence temperature independentll. lf x interacts onlg weaklu, and

m* << 112, the Z boson mass! we can write <dv> as

<dv> = ( Gpzl2n) m*2 Ng , (2.8)

where NA is a dimsnsionl?ss factor which takes into account the various

channels the annihilation can procsed intol2. Unfortunatelu eq' (2.E) is not

valid for large mx; this can be rsctified bg noting the correspondence svident

in the 65w electroweak theorul3:

G7ll2 --> g2l(B((4mxz - tlrz )z + l1r2lr2) cos2 0* ) , (2.9)

.  (2 . r0)

= e4 mx2 NA /(64fl((4mxz - Nzz )? + nzzrz2)cos4ovrsi n49r! ) ' (2'l l)

where 9w is the Weinberg angle, and fz is the resonance vridth of the z boson.

We are making the approximation here that all the X particles have the samg

energu, mx; if we took into account the distribution of energies, the peak in

the eross Bection at mx = Hz would be lowered and spread out'

We are now readu to attempt a calculation of the number densitg of X

particles that survive to the present time. Eq. (2.3) can be simplified bU

making the substitution

n = f  T3 '  nro = fro T3 (2'12)

Using sq. (2.2), this removes the explicit cosmic expansion dependence

from the equation, giving

dl ldt = 'dv'(45/Efi3Nfk49)1/2 (12 - feo2) (2.13)

Revrriting the temperature as

g  :  g s i n 0 \ r



gields

v/here

(2.14)

(2.15)

(2.16)
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x  =  k T / m x

df /dx = b ( f2  -  feqz)

b = <dv> (mx/k3) (45/6Tr3N IG)t/z

The boundaru condition foreq. (2.15) is that as x --> 6, f(x) approaches

fo"(x), which, from eq. (2.4), is given bU
- &

t  "^ (x)  =  k i  l (2112)  |  Ouu2(exp(u2 + x-z) r ' � l2  + l ) - r ) .  (2 .17)
J O

It is expected the num6er of particles psr comovingss volume, which is

proportional to I, remains approximatelU equal to the numbsr of particles per

comoving volume in equilibrium, feo, until the chemical equilibrium is

destroued 6t the freezing temperaturg, The number densitu of x Farticles in

equilibrium is determined bU the temperature, and decreases rapidlg as T falls

belovi mx, but the tot6l number densitU of X particles can onlg be reduced bU

expansion and annihilation(which decreases rapidlU with n)' The freeze-out'

occurs when the rate of change of n due to the cosmic expansion, -3H n'

becomes much larger than the rate of change of n due to annihilation, <dv> rP.

This condition is roughlu equivalent to requiring that the mean free time of

the X particles becomss greater than the characteristic expansion time. In

terms of our new variables, Lee snd weinberg l5l defined the freezing

temperature, Tf, bg

d fs t /dx  =  b feqz  ,  a t  x f  =  kT f /mx  (2 .18 )

Belovr the freezing temperature, f becomes much larger than t?a, (see fig'

I ) so eq. (2.1 5) can be appro*imated bU

d f l d x  =  b f ?  ,  x .  x 1 . (2.1s)


