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1. Introduction

In recent years, particle physicists have become increasingly interested in
the use of cosmological calculations as tests for their hypotheses about
elementary particles. Not only did particles in the early Universe have
energies that far exceed the limits of present day accelerators, but also,
densities at these times were so large that even weakly interacting particles
like neutrinos possessed mean free paths shorter than 3 x 108 m. Under these
conditions, particles that interact with normal matter only weakly or
gravitationally can produce significant effects, whose repercusions could
still be measurable at the present time.

Constraints from Cosmology can usually be obtained by asking the
question: could a Universe containing a certain type of particle evolve into
the Universe that we presently observe? In this paper we will find
mass--lifetime constraints on particles whose strongest interaction is the
weak interaction, and mass--coupling constant constraints on particles that
interact with normal matter only gravitationally, by requiring that their
present energy density not exceed the critical energy density, and that density

perturbations in the early Universe be allowed to grow into galaxies.



2. Stable Weakly Interacting Massive Particles

At the present time, observable galaxies appear to be engaged in a rapid
expansion; so it would seem that in the past the matter of the Universe was
more densely packed than it is now. For the galactic matter to have escaped
the gravitational potential well of this denser era, it must have been much
more energetic. If we continue to trace this behaviour back further and
further in time, we come to more densely packed epochs, with even more
energetic particles; and eventually we come to a singularity’ where all
particles are ultra-relativistic. This is the essence of Big Bang Cosmology.

The point that will prove to be central to our discussion of stable?
weakly interacting massive particles (WIMPs?®) is that these particles were
once moving ultra-relativistically, and were so densely packed that reactions
occurred very quickly, and hence, at very early times all particles comprised a
relativistic gas in thermal equilibrium. This runs counter to the usual cases in
thermodynamics where thermal equilibriums are established after some period
of time; but in the case of Cosmology, the Universe rapidly goes into a thermal
equilibrium which is eventually destroyed. This being the case, we can treat
different particles in the early Universe in a manner somewhat analogous to,
gay, the different modes of vibration and rotation of atoms, or to different
radation modes inside a reflecting cavity.

To begin a discussion of particles in the early Universe, it is helpful to
recall some results from Cosmology which are derived using the
Robertson-Walker metric®. Most importantly, distances between fundamental

points (i.e. points following the expansion of space-time) grow in time



proportionally to a scale factor R(t). Since, by the de Broglie relation,
momenta are inversely proportional to wavelengths, they decrease with time.
More concretely, if a particle has a momentum py at time t,, at any subsequent
time t, the particles momentum is
p(t) = p; R(ty/R(L) . (2.1)
For ultra-relativistic particles, this decrease in energy is often referred to as
"red-shifting away." From this relation it is obvious that the energy of a
relativistic gas, and hence its temperature, will decrease as the Universe
expands. More precisely, since kT , where k is Boltzmann’s constant and T is
the temperature, is a measure of the average energy of a particle in thermal
equilibrium, the temperature of an ultra-relativistic gas is given by
T(t) = constant/R{t) . (2.2)

We are now in a position to ask what happens to neutral massive spin 1/,
particles as the universe expands, and the relativistic gas it contains cools.
When the temperatureSis much larger than the mass, my of a particle X, the
two competing processes of creation and annihilation are held in balance: X
particles annihilate with anti-X particles, but other particles in the gas have
sufficient energy to create more X's when they annihilate or decay®. For any
reaction that destroys X’s, there is a reversed reaction that creates X’s, and
these two types of reactions occur, on average, equally often. During this
period the number of X particles per comoving volume?® is constant, however,
as the temperature falls below my, particles which have sufficient energy to
produce X’s become increasingly rare, in accordance with the Boltzmann factor
exp(-my/kT).  Thus, although X's continue to annihilate, their rate of
production decreases rapidly with decreasing temperature, and so the number

of X particles per comoving volume declines. The annihilation of X particles



does not continue unabated though, since the annihilation rate is proportional
to the X number density, n, times the anti-X number density, which is
assumed? to be equal to n, so as n decreases, the annihilation rate decreases
like n2. For this reason, the decrease in n due to annihilation eventually
becomes insignificant in comparison to the decrease in n due to the general
gxpansion of the Universe. Qualitatively, it becomes harder and harder for the
X’s to find anti-X’s to annihilate with, and so they eventually behave as if no
annihilation is allowed. Mathematically the rate of change of n was expressed
by Lee and Weinberg [3] as
dn/dt = — 3(RI/ARMI ) — <ov>n2(t) + <ov>ngg(t), (2.3)
where <ov> is the thermal average of the X anti-X annihilation cross section
times the relative velocity, and Neq is the number density of X particles in
thermal equilibrium; thaUs
gl = 2 f(zn:ﬁL amip?dp (exp(( p2 + mAVZ/AT) + )7 (2.4)
where the factor 2 comes from assuming X has two spin states (and h=c= 1,
as throughout).
It can be shown that in a Universe with a flat® Robertson-Walker metric
the Hubble parameter is
H= RBMR = (BmnpG/3)2 | (2.5)
where G is the gravitational constant, and p is the energy density of the

relativistic gas®:

p = Npa T4 = Ne(m2/15) (kT4 . (2.6)
N¢ here is the effective number of degrees of freedom,
Nf = lfz ( Np + ?fa ng ) (2.7)

where ny and ng are the total number of internal degrees of freedom'® for all

bosons and fermions present in equilibrium in the gas.



When the temperature is below my, the velocities of the X particles are
non-relativistic; for Dirac particles this means that the annihilation cross
section in the center of mass frame is proportional to 1/v, therefore <gv> is
velocity, and hence temperature independent’. If X interacts only weakly, and
m,, << M., the Z boson mass, we can write <ov> as

<gv> = (Gp2/2mimy? Ny (2.8)
where Ny is a dimensionless factor which takes into account the various
channels the annihilation can proceed into'. Unfortunately eq. (2.8) is not
valid for large my; this can be rectified by noting the correspondence evident
in the GSW electroweak theory':

Gp/+2 --> g2/(B((dmy? - M;2 )2 + M,2T,2) cos? 8y, ) , (2.9)

and g = gsinBy : (2.10)
S0,

<ov> = et my2 Ny /(BAm({dmy? - M,2 )2 + M, 2T 2)cos?eysinidy,) , (2.11)
where 8,, is the Weinberg angle, and ', is the resonance width of the Z boson.
We are making the approximation here that all the X particles have the same
energy, my; if we took into account the distribution of energies, the peak in
the cross section at my = M, would be lowered and spread out.

We are now ready to attempt a calculation of the number density of X
particles that survive to the present time. Eq. (2.3) can be simplified by
making the substitution

n=fT3 , ngg = fgq T° : (2.12)

Using eq. (2.2), this removes the explicit cosmic expansion dependence

from the equation, giving
df /dt = <ov>(45/83NK4G)/2 (2 - fg?) . (2.13)

Rewriting the temperature as



x = kT/my (2.14)
yields df/dx = b(f? - fgg?) (2.15)
where b = <ov>(my/k3) (45/813NG)2 . (2.16)

The boundary condition for eq. (2.15) is that as x --> oo, f(x) approaches
feqtx), which, from eq. (2.4), is given by
feqlx) = k¥/(2m?) J du u? {exp (Uz + x 3172 + 1)71) . (2.17)
It is expected the number of particles per comoving®® volume, which is
proportional to f, remains approximately equal to the number of particles per
comoving volume in equilibrium, feq' until the chemical equilibrium is
destroyed at the freezing temperature. The number density of X particles in
equilibrium is determined by the temperature, and decreases rapidly as T falls
below my, but the total number density of X particles can only be reduced by
expansion and annihilation({which decreases rapidly with n). The freeze-out,
occurs when the rate of change of n due to the cosmic expansion, -3H n,
becomes much larger than the rate of change of n due to annihilation, <ov= n2.
This condition is roughly equivalent to requiring that the mean free time of
the X particles becomes greater than the characteristic expansion time. In
terms of our new variables, Lee and Weinberg [3] defined the freezing
temperature, T¢, by
dfgg/dx = bfgg® , at xp = kTg/my . (2.18)
Below the freezing temperature, f becomes much larger than feq- (see fig.
1) so eq. (2.15) can be approximated by
df/dx = bf2 , % < % ; (2.19)



